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INVARIANT MEASURES AND STEADY STATE

INVARIANT MEASURE

Consider a CTMC with rate matrix Q and finite state space S.
An invariant measure for the CTMC is a probability distribution
⇡ satisfying

⇡Q = 0.

If Q is irreducible (has a strongly connected graph), then it has
a unique invariant measure.

STEADY STATE BEHAVIOUR

Consider an irreducible CTMC with rate matrix Q and finite
state space S, and let ⇡ be its invariant probability distribution.
Then, for each si , sj 2 S,

lim
t!1

Pij(t) = ⇡j .

Notice that aperiodicity is not required. Why?
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EXAMPLE: BIRTH-DEATH PROCESS

A birth-death process is a CTMC on S = N with birth rate �i
(from i to i + 1) and death rate µi (from i to i � 1).
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To derive the steady state ⇡, we can use the fact that the net
flow along each cut must be zero (why?):

⇡i�i = ⇡i+1µi+1

Hence we get:
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EXAMPLE: BIRTH-DEATH PROCESS

Consider a birth-death process with constant birth rate � and
constant death rate µ. It is the model of an M/M/1 queue.
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� � � �

µ µ µ µ

⇡k =

 
�

µ

!k
⇡0; ⇡0 =

0
BBBBBB@1 +

1X

k=1

 
�

µ

!k
1
CCCCCCA

�1

If � � µ, then ⇡0 = 0 = ⇡k . No state is positive recurrent,
there is no invariant measure. The chain escapes to
infinity.

If � < µ, then ⇡0 = 1��/µ
2��/µ and ⇡k =

⇣
�
µ

⌘k 1��/µ
2��/µ
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EXAMPLE: BIRTH-DEATH PROCESS

If � < µ, then ⇡0 = 1��/µ
2��/µ and ⇡k =

⇣
�
µ

⌘k 1��/µ
2��/µ

Assume � = 1, µ = 2.

0: 1
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6 2: 1
12 3: 1
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MATRIX EXPONENTIAL

The solution of the forward Kolmogorov equation dP(t)
dt = P(t)Q,

for a generic CTMC, can be given in terms of the matrix
exponential

P(t) = eQt =
1X

n=0

tnQn

n!
.

However, numerical computation of the series expansion is
numerically unstable.
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UNIFORMIZATION

A more efficient strategy is to solve the uniformized CTMC.
Let � � maxi {�qii }.
Then one considers a CTMC with jump chain Y (n) with matrix

⇧ = I +
1
�

Q,

and uniform exit rate �.
The number of fires of this CTMC up to time t is a Poisson
process N�(0, t), and so

X (t) = YN(0,t) = YY(�t).

It follows that

P(t) =
1X

n=0

e��t(�t)n

n!
⇧n,

which can be truncated above (and below) by bounding the
Poisson r.v.
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A SIMPLE EXAMPLE: THE MOOD CHAIN
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TIME-INHOMOGENEOUS EXPONENTIAL

DEFINITION
A exponential random variable T ⇠ Exp(�) has time inhomogeneous rate iff
� = �(t) is a function � : [0,1[! R+.

Cumulative rate is ⇤(t) =
R t

0 �(s)ds

Cdf is P(T < t) = 1 � e�⇤(t)

Survival probability is P(T > t) = e�⇤(t)

INVERSION METHOD
One can simulate unidimensional random variables by sampling a uniform r.v.
U 2 [0,1], and then finding t⇤ such that t⇤ = inft P(T  t) = U.
For a time-inhomogeneous Exp(�(t)), one has to solve e�⇤(t) = U, iff
⇤(t) = � log U = ⇠, with ⇠ ⇠ Exp(1).
If � is constant, then ⇤(t) = �t , and one has t = � 1

� log(U).
In general, one can either integrate �(t) or the equivalent ODE d⇤(t)

dt = �(t),
and check for the root of ⇤(t) + log(U) along the solution.
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TIME-INHOMOGENEOUS POISSON PROCESS

A time-inhomogeneous Poisson process N�(0, t), � = �(t), is a
Poisson process with time-varying rate.

0 1 2 3 . . .
�(t) �(t) �(t) �(t)

It can be shown (same generating function argument as above)
that the distribution of N�(0, t) is Poisson(⇤(t)), i.e. it is the r.v.

Y(⇤(t)) = Y
 Z t

0
�(s)ds

!
.
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TIME-INHOMOGENEOUS CTMC

TIME-INHOMOGENEOUS CTMC
In general, if the rate matrix Q of a CTMC depends on time,
Q = Q(t), then the CTMC is time inhomogeneous.
The probability semigroup depends now also on the initial time:
Pij(t1, t2) = P{X (t2) = sj | X (t1) = si }.

FORWARD KOLMOGOROV EQUATION

@P(t1, t2)
@t2

= P(t1, t2)Q(t2)

BACKWARD KOLMOGOROV EQUATION

@P(t1, t2)
@t1

= �Q(t1)P(t1, t2)


