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INVARIANT MEASURES AND STEADY STATE

INVARIANT MEASURE

Consider a CTMC with rate matrix Q and finite state space S.
An invariant measure for the CTMC is a probability distribution
n satisfying

7Q=0.

If Qis irreducible (has a strongly connected graph), then it has
a unique invariant measure.

STEADY STATE BEHAVIOUR

Consider an irreducible CTMC with rate matrix Q and finite
state space S, and let = be its invariant probability distribution.
Then, for each s;, s; € S,

lim Py(t) = ;.

Notice that aperiodicity is not required. Why?
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EXAMPLE: BIRTH-DEATH PROCESS

A birth-death process is a CTMC on S = N with birth rate 2;
(from i to i + 1) and death rate u; (fromito i —1). J




CTMC 21/54

EXAMPLE: BIRTH-DEATH PROCESS

A birth-death process is a CTMC on S = N with birth rate 2;
(from i to i + 1) and death rate u; (fromito i —1). }

To derive the steady state x, we can use the fact that the net
flow along each cut must be zero (why?):

Tidj = M1 1it

Hence we get:

ilm 4 )‘1

k= | | =——mo; ﬂo—(1+
; k=1 i=p Mi+1
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EXAMPLE: BIRTH-DEATH PROCESS

Consider a birth-death process with constant birth rate 1 and
constant death rate u. It is the model of an M/M/c queue.
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o If A >y, then ngp = 0 = nk. No state is positive recurrent,
there is no invariant measure. The chain escapes to
infinity.

~ kq_
o If 1 <y, then rg = ;_%z and mx = (ﬁ) ;—%Z
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PRELIMINARIES CTMC PCTMC SIMULATION

EXAMPLE: BIRTH-DEATH PROCESS

kK 1_
If A < g, then mo = 3=4% and my = (4)" ;414

Assume A =1,u=2.

23/54
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MATRIX EXPONENTIAL

The solution of the forward Kolmogorov equation dP(t) = P(1)Q,
for a generic CTMC, can be given in terms of the matnx
exponential

However, numerical computation of the series expansion is
numerically unstable.
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UNIFORMIZATION

A more efficient strategy is to solve the uniformized CTMC.
Let 1 > max;{—q;}.
Then one considers a CTMC with jump chain Y(n) with matrix

1
HZH_EQ’

and uniform exit rate A.
The number of fires of this CTMC up to time t is a Poisson
process N, (0, t), and so

X(t) = Yneo. = Yy

It follows that "
= e tan
P(t)= ) ———T",
n=0
which can be truncated above (and below) by bounding the
Poisson r.v.
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A SIMPLE EXAMPLE: THE MOOD CHAIN

@ Upper bound on exit rate: 2
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OUTLINE

© ConNTINUOUS TIME MARKOV CHAINS

@ Time-inhomogeneous rates
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TIME-INHOMOGENEOUS EXPONENTIAL

DEFINITION

A exponential random variable T ~ Exp(1) has time inhomogeneous rate iff
A= A(t) is a function A : [0, co[—> RT.

@ Cumulative rate is A(t) :fot A(s)ds
@ CdfisP(T<t)=1-e"®
@ Survival probability is P(T > t) = e\

INVERSION METHOD

One can simulate unidimensional random variables by sampling a uniform r.v.
U € [0, 1], and then finding t* such that t* = inf, P(T < t) = U.

For a time-inhomogeneous Exp(A(t)), one has to solve e = U, iff

A(t) = —log U = ¢, with £ ~ Exp(1).

If A is constant, then A(t) = At, and one has t = -1 log(U).

In general, one can either integrate A(t) or the equwalent ODE d" ’) = A1),
and check for the root of A(t) + log(U) along the solution.
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TIME-INHOMOGENEOUS POISSON PROCESS

A time-inhomogeneous Poisson process N;(0, t), 1 = A(t), is a
Poisson process with time-varying rate.

060"

It can be shown (same generating function argument as above)
that the distribution of N,(0, t) is Poisson(A(t)), i.e. itis the r.v.

Y(\(t)) = y(j: /l(s)ds).
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TIME-INHOMOGENEOUS CTMC

TIME-INHOMOGENEOUS CTMC

In general, if the rate matrix Q of a CTMC depends on time,

Q = Q(t), then the CTMC is time inhomogeneous.

The probability semigroup depends now also on the initial time:
P,'j(l‘1, b) =P{X(k) = Sj | X(t) = si}.

FORWARD KOLMOGOROV EQUATION
oP(t, )

o P(t, )Q(t)

BACKWARD KOLMOGOROV EQUATION
oP(ty, 1)

o -Q(t)P(t, t2)




