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Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the
recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility
to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological
confirmation of the hypotheses that G6PD deficiency, a+ thalassemia, and hemoglobin C protect against malaria
mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have
been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental
murine models; and a growing number of reported associations with resistance and susceptibility to human malaria,
particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is
to build the global epidemiological infrastructure required for statistically robust genomewide association analysis,
as a way of discovering novel mechanisms of protective immunity that can be used in the development of an
effective malaria vaccine.

Introduction

One of the most important causes of child mortality
worldwide is the malaria parasite Plasmodium falcipa-
rum, which annually kills 11 million children in Africa
alone. This death toll is only one aspect of the global
burden of malaria. P. falciparum is estimated to cause
about half a billion episodes of disease each year (Snow
et al. 2005), and there are hundreds of millions of cases
due to other parasite species—Plasmodium vivax, Plas-
modium malariae, and Plasmodium ovale. In regions of
high malaria transmission, every member of the com-
munity might be chronically infected (Trape et al. 1994),
and, in one Gambian village, it was found that about
one-quarter of all children with severe complications of
the disease were admitted to the hospital during the first
10 years of life (Snow et al. 1997).

When malaria’s effect on child mortality is consid-
ered—and it was probably even greater before anti-
malarial drugs and other control measures were intro-
duced—it is not surprising that malaria is the strongest
known selective pressure in the recent history of the hu-
man genome. Malaria is the evolutionary driving force
behind sickle-cell disease, thalassemia, glucose-6-phos-
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phatase deficiency, and other erythrocyte defects that to-
gether comprise the most common Mendelian diseases
of humankind. HbS, the allele that gives rise to sickle
hemoglobin, is regarded as the classic paradigm of bal-
anced polymorphisms in human populations (Feng et
al. 2004; Hedrick 2004). It is a variant of the HBB gene
(which encodes b-globin) that has arisen independently
in different locations and is maintained at ∼10% fre-
quency in many malaria-endemic regions (Flint et al.
1998). HbS homozygotes suffer sickle-cell disease, but
heterozygotes have a 10-fold reduced risk of severe ma-
laria (Hill et al. 1991; Ackerman et al. 2005).

What is remarkable is the range of erythrocyte vari-
ants, apart from HbS, that have resulted from evolu-
tionary selection by malaria. They include other variants
of the HBB gene—namely, HbC and HbE (Agarwal et
al. 2000; Modiano et al. 2001b; Chotivanich et al. 2002;
Ohashi et al. 2004); regulatory defects of HBA and
HBB, which cause a and b thalassemia (Flint et al. 1986;
Williams et al. 1996; Allen et al. 1997), variation in the
structural protein SLC4A1, which causes ovalocytosis
(Foo et al. 1992; Genton et al. 1995; Allen et al. 1999);
variation in the chemokine receptor FY, which causes
the Duffy-negative blood group (Miller et al. 1976; Chit-
nis and Miller 1994; Tournamille et al. 1995; Hamblin
and Di Rienzo 2000); and polymorphisms of the red-
cell enzyme gene G6PD, which causes glucose-6-phos-
phate dehydrogenase deficiency (Bienzle et al. 1972; Gan-
czakowski et al. 1995; Ruwende and Hill 1998; Tishkoff
et al. 2001; Sabeti et al. 2002b).

This is probably only the tip of the iceberg. Surpris-
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ingly little is currently known about the effects of ma-
laria on the evolution of the human immune system,
possibly because the phenotypic consequences are more
subtle than those of the classic erythrocyte variants; for
example, alteration of a splenic dendritic cell receptor
is not as easy to visualize as a sickling red cell. However,
the last few years have seen a rapid growth in the num-
ber of reported genetic associations with susceptibility
and resistance to malaria, many of which involve im-
mune system and inflammatory genes.

The purpose of this review is to provide an overview
of what is currently known about genetic resistance to
malaria and to highlight directions that are likely to see
major advances in the next few years.

Evolutionary Selection by Malaria

Evolutionary selection by malaria (reviewed by Flint et
al. [1998] and Tishkoff and Williams [2002]) is remark-
able in two respects. First, the selective pressure is very
strong; this is evident from the fact that the HbS allele
has risen to high frequencies in malaria-exposed popula-
tions despite the fatal consequences for homozygotes.
Second, different populations have developed indepen-
dent evolutionary responses to malaria, and this is seen
at both the global and the local levels. The most striking
example is the HBB gene, in which three different coding
SNPs confer protection against malaria: Glu6Val (HbS),
Glu6Lys (HbC), and Glu26Lys (HbE). The HbS allele
is common in Africa but rare in Southeast Asia, whereas
the opposite is true for the HbE allele. However, a more
complex picture emerges at the local level, exemplified
by the Dogon people of Mali, who have a much lower
frequency of the HbS allele than do most other West
African groups and instead have a high frequency of the
HbC allele (Agarwal et al. 2000). A further level of com-
plexity is that, within Africa, the HbS allele is found in
four distinct haplotypes (Chebloune et al. 1988; Nagel
and Ranney 1990; Lapoumeroulie et al. 1992), a finding
that has been generally interpreted to imply that the
same mutation has arisen independently in four different
Africa populations, although it has been pointed out that
there may be other explanations (Flint et al. 1998). The
different geographic distributions of a thalassemia, G6PD
deficiency, ovalocytosis, and the Duffy-negative blood
group are further examples of the general principle that
different populations have evolved different genetic vari-
ants to protect against malaria.

The fact that different malaria-resistance alleles have
arisen in different places suggests that a great deal of
evolutionary selection by malaria has happened rela-
tively recently in human history and certainly since hu-
mans started to migrate out of Africa. This is supported
by analyses of recent positive selection in the human
genome. Haplotype analysis and statistical modeling of

an African malaria-resistance allele at the G6PD locus
suggests an origin within the last 10,000 years or so
(Tishkoff et al. 2001), whereas analysis of the Southeast
Asian HbE allele suggests that it originated within the
last 5,000 years (Ohashi et al. 2004). Studies of G6PD
and CD40L malaria-resistance alleles in West Africa that
made use of the long-range haplotype test are also con-
sistent with recent positive selection (Sabeti et al. 2002b).

Another line of evidence comes from population-
genetics analysis of malaria parasites. Malaria parasites
existed long before humans—there are different Plas-
modium species that infect birds, lizards, rodents, and
other primates—but what geneticists would like to know
is the timepoint at which the unusually virulent species
P. falciparum began to expand in human populations.
This has been addressed by a variety of approaches, with
conflicting results (reviewed by Conway [2003] and Hartl
[2004]), but the most persuasive evidence comes from
a detailed analysis of 100 mtDNA sequences sampled
from around the world (Joy et al. 2003). This suggests
that some forms of P. falciparum may have existed
100,000 years ago, but that the African malaria parasite
population suddenly increased ∼10,000 years ago and
subsequently spread to other regions. This observation,
together with analysis of the speciation of human ma-
laria vectors by polytene chromosome analysis (Coluzzi
1999; Coluzzi et al. 2002), is consistent with the hy-
pothesis that the emergence of P. falciparum as a major
human pathogen coincides with the beginnings of ag-
riculture, when human populations started to form resi-
dent communities that allowed the establishment of a
substantial reservoir of infection.

These findings are not just of historical interest, they
may also be of practical value in the search for novel
malaria-resistance loci. One of the major challenges con-
fronting genomewide association analysis is determining
how to select the most-efficient set of markers to ana-
lyze. In the case of malaria, we are particularly inter-
ested in alleles that show evidence of recent positive
selection in regions where malaria is endemic. P. falci-
parum seems to have emerged as a powerful selective
force subsequent to the divergence of African, Asian,
and European populations, so an obvious starting point
for genomewide analysis of malaria-resistance loci is to
screen alleles that show large differences in frequency
between major population groups.

Complex Genetic Basis of Resistance to Malaria

The genetic basis of resistance to malaria is complex at
several levels. It is likely that many different genes are
involved and that they interact with environmental vari-
ables and with parasite genetic factors. Here, we con-
sider some further complexities of studying genetic re-
sistance to malaria—namely, the range of phenotypes
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involved, the practical difficulties of studying families,
and the remarkable geographic and ethnic heterogeneity
of malaria-resistance factors.

Phenotypes

Susceptibility to and resistance to malaria can be mea-
sured in several ways. Usually, they are studied in regions
with high levels of malaria transmission. When everyone
is repeatedly bitten by infected mosquitoes, many chil-
dren and adults are likely to have parasitemia (parasites
in the blood), children may have two or three episodes
of malaria fever each year, and a small minority (e.g.,
1%) of malaria-fever episodes lead to severe malaria
(i.e., death or life-threatening complications due to ma-
laria). Different genetic factors may determine the risk
of an exposed person for developing parasitemia, the
risk of a parasitemic person for becoming ill with ma-
laria fever, and the risk of a person with malaria fever
for developing severe malaria. Parasitemia and fever can
be regarded as quantitative phenotypes that are ascer-
tained by repeated measurements within the community,
whereas severe malaria is a qualitative phenotype that
is typically ascertained in hospital-based studies. In prin-
ciple, studies of severe malaria would be expected to de-
tect genetic factors at each stage in the causal chain of
disease progression.

Severe malaria is the phenotype that matters most to
vaccine developers and to those interested in evolution-
ary selection. Severe malaria is composed of a number of
subphenotypes that may occur alone or in combination.
In African children, these are cerebral malaria, severe
malarial anemia, and respiratory distress (Marsh et al.
1995). When we recruit 100 children with severe malaria
who are in the hospital to a study, we are effectively
identifying those, of perhaps 10,000 children who live
in the hospital’s catchment area, with the lowest levels
of protection, and this tends to enrich the sample for
strong genetic effects. For example, HbS heterozygotes
have an ∼2-fold reduction in the risk of malaria-fever
episodes but a 10-fold reduction in the risk of severe
malaria (Hill et al. 1991).

Family Studies

It is difficult to get an accurate measure of the familial
component of resistance to severe malaria. Cases of se-
vere malaria are relatively easy to identify in hospitals,
but the transient nature of the illness makes it difficult
to ascertain the affected status of relatives, particularly
in communities that lack detailed medical records and
in which there are other infectious causes of child mor-
tality that can be confused with malaria. By careful ques-
tioning of families of affected individuals, a recent study
in Mali estimated a sibling risk (ls) of 2.5 for cerebral
malaria and 4.9 for severe malarial anemia (Ranque et

al. 2005). This, of course, does not distinguish genetic
effects from those of shared environment.

To do an accurate family study of malaria, it is neces-
sary to perform detailed longitudinal analysis, which, in
practice, means studying a relatively small number of
individuals, such as a set of twins or a village of a few
hundred people. Such studies lack power to investigate
severe malaria, which is a relatively rare event, but they
can evaluate quantitative traits such as the level of par-
asitemia or frequency of malaria-fever episodes. The fact
that the level of parasitemia and the frequency of malaria
fever both decline markedly with age must be factored
into the analysis. A longitudinal study of Gambian twins
showed that susceptibility to malaria-fever episodes is
determined partly by genetic factors (Jepson et al. 1995),
with linkage to the major histocompatibility complex
(MHC) region on chromosome 6 (Jepson et al. 1997).
A series of longitudinal family studies of parasitemia have
been performed in Cameroon and Burkina Faso. An ini-
tial segregation analysis suggested the involvement of a
major gene that controls blood infection levels (Abel et
al. 1992), and this hypothesis seemed to be supported
by a somewhat bimodal distribution of parasite density
levels among pregnant women, who are particularly sus-
ceptible to malaria (Cot et al. 1993). However, subse-
quent studies indicate that complex genetic factors are
involved (Garcia et al. 1998a; Rihet et al. 1998a) and
that there is linkage to the MHC and the 5q31-33 region
(Garcia et al. 1998b; Rihet et al. 1998b; Flori et al.
2003). A longitudinal family analysis in Sri Lanka con-
cluded that there were consistent individual differences
in susceptibility to clinical malaria episodes, of which
about one-half appeared to have a genetic basis (Mack-
innon et al. 2000).

It is also possible to estimate the genetic component
of individual variation in immunological responses. A
twin study in Liberia found evidence of heritability in
antimalarial antibody responses that did not appear to
be determined by HLA class II genes (Sjoberg et al. 1992).
Familial segregation analysis of immunological responses
to malaria antigens in Papua New Guinea has suggested
that Mendelian effects might govern specific antigen re-
sponses, but the overall picture is complex (Stirnadel et
al. 1999a, 2000a, 2000b).

Ethnic Differences

One of the most striking examples of differential dis-
ease susceptibility among human populations is the com-
plete resistance of most of the population of sub-Saharan
Africa to P. vivax infection, whereas all other human
populations are vulnerable to this species of malaria
parasite. This resistance is due to a SNP in the FY gene
that results in the Duffy blood group–negative pheno-
type (Miller et al. 1976; Tournamille et al. 1995); the
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precise protective mechanism is discussed below (see the
“Malaria and the Red Cell” section). Thus, whereas P.
vivax infection is common in Asia and South America
and used to be widely distributed throughout Europe,
it is extremely rare in most of sub-Saharan Africa, al-
though all the right environmental conditions exist for
it to be transmitted there.

Striking differences in resistance to malaria have also
been observed among ethnic groups who live in the same
area. The Tharu people, who inhabit the malarious Terai
region of Nepal, have a much lower prevalence of ma-
laria than do other ethnic groups in the same region (Ter-
renato et al. 1988), and this may possibly be explained
by the extremely high frequency of a thalassemia in the
Tharu population (Modiano et al. 1991).

The Fulani people are traditionally nomadic pastoral
people who are found across West Africa, often settled
in close proximity to other ethnic groups. Studies in
Burkina Faso (Modiano et al. 1996) and, more recently,
in Mali (Dolo et al. 2005) have documented a significantly
lower prevalence of malaria parasitemia and fewer clinical
attacks of malaria among the Fulani than among other
ethnic groups who live in neighboring villages. The Fu-
lani have a distinctive culture, but detailed epidemio-
logical investigations indicate that their resistance to ma-
laria arises primarily from genetic factors. Importantly,
it has also been observed that the Fulani have high levels
of antimalarial antibodies (Modiano et al. 1998, 1999)
and a low frequency of protective globin variants and
other classic malaria-resistance factors (Modiano et al.
2001a). There is therefore much interest in discovering
the genetic factors that determine the high antibody re-
sponses seen in the Fulani; the possible role of the IL4
gene is discussed below (see the “Antibody Response”
section) (Luoni et al. 2001; Farouk et al. 2005).

Malaria and the Red Cell

Erythrocyte Surface

Many important things happen at the erythrocyte sur-
face in malaria (table 1). The parasite binds to erythro-
cyte surface molecules as the first stage in a complex and
marvelous series of events—still poorly understood—
that gets the parasite into the erythrocyte without de-
stroying it (Sibley 2004). Once inside the erythrocyte,
the parasite manufactures a set of proteins that it sends
to the cell surface (Kyes et al. 2001). Some of these
parasite-derived erythrocyte-membrane proteins bind to
endothelial adhesion molecules and thereby cause para-
sitized erythrocytes to sequester in small blood vessels;
this is thought to be a strategy for immune evasion, since
it prevents the parasites from having to circulate through
the spleen. But these parasite-derived molecules on the
erythrocyte surface are themselves targets for immuno-

logical attack, which they counter with an extraordinary
capacity for antigenic variation. We discuss in the “Cyto-
adherence, a Major Factor in Malaria Pathogenesis” sec-
tion how human genetic variation influences endothelial
cytoadherence; here, we focus on how it affects erythro-
cyte invasion.

The study of human genetics uncovered a key step in
the molecular process of erythrocyte invasion by P. vi-
vax. The Duffy antigen, encoded by the FY gene, is a
chemokine receptor that is expressed in various cell types.
The Duffy antigen is expressed in erythrocytes in most
populations (but not in sub-Saharan Africa) that have a
promoter SNP that disrupts a binding site for the ery-
throid transcription factor GATA-1 (Tournamille et al.
1995). This completely prevents P. vivax from invading
erythrocytes, and it accounts for the remarkable absence
of P. vivax in parts of Africa in which other species of
malaria parasite are extremely common (Miller et al.
1976). It was this genetic discovery that led to the dis-
covery of the P. vivax Duffy-binding protein, a parasite
molecule that is critical for erythrocyte invasion by P.
vivax (Chitnis and Miller 1994) and is now undergoing
clinical trials as a candidate agent for a vaccine against
this species of parasite (Yazdani et al. 2004). The African
Duffy-negative allele, denoted “FY*O,” has the highest
FST value observed in humans and has other features that
are strongly suggestive of recent positive selection (Ham-
blin and Di Rienzo 2000; Hamblin et al. 2002). There
is further support for selective pressure at this locus,
from the observation of an entirely independent FY poly-
morphism, which has emerged in Papua New Guinea,
that decreases Duffy-antigen expression and acts to re-
duce P. vivax invasion efficiency (Zimmerman et al. 1999;
Michon et al. 2001). The apparent strength of selection
at the FY locus is somewhat puzzling for malariologists,
since P. vivax infection is not generally lethal, and it has
even been proposed that P. vivax infection may protect
against the much more lethal parasite P. falciparum (Wil-
liams et al. 1996).

The study of human genetic polymorphisms has also
been informative about how P. falciparum invades eryth-
rocytes, but, in contrast to P. vivax, the available data
suggest multiple invasion pathways with considerable re-
dundancy (Hadley et al. 1987). A lot of attention has
focused on GYPA, GYPB, and GYPC, the genes encod-
ing glycophorins A, B, and C, respectively.

Various blood groups are determined by the erythro-
cyte-membrane sialoglycoproteins glycophorin A and B,
and genetic deficiency of glycophorin A or B expression
makes erythrocytes relatively resistant to invasion by P.
falciparum (Facer 1983). Specific sialic-acid residues on
the glycophorin A molecule are recognized by a Duffy-
binding–like domain of P. falciparum erythrocyte-bind-
ing antigen 175 (Orlandi et al. 1992; Mayor et al. 2005).
Sequence analysis shows evidence of strong evolutionary



Table 1

Common Erythrocyte Variants That Affect Resistance to Malaria

Gene Protein Function Reported Genetic Associations with Malaria

FY Duffy antigen Chemokine receptor FY*O allele completely protects against P. vivax infection.
G6PD Glucose-6-phosphatase dehydogenase Enzyme that protects against oxidative stress G6PD deficiency protects against severe malaria.
GYPA Glycophorin A Sialoglycoprotein GYPA-deficient erythrocytes are resistant to invasion by P. falciparum.
GYPB Glycophorin B Sialoglycoprotein GYPB-deficient erythrocytes are resistant to invasion by P. falciparum.
GYPC Glycophorin C Sialoglycoprotein GYPC-deficient erythrocytes are resistant to invasion by P. falciparum.
HBA a-Globin Component of hemoglobin a� Thalassemia protects against severe malaria but appears to enhance

mild malaria episodes in some environments.
HBB b-Globin Component of hemoglobin HbS and HbC alleles protect against severe malaria. HbE allele reduces parasite

invasion.
HP Haptoglobin Hemoglobin-binding protein present in plasma

(not erythrocyte)
Haptoglobin 1-1 genotype is associated with susceptibility to severe

malaria in Sudan and Ghana.
SCL4A1 CD233, erythrocyte band 3 protein Chloride/bicarbonate exchanger Deletion causes ovalocytosis but protects against cerebral malaria.
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selection, not only for GYPA and GYPB in the human
host (Baum et al. 2002; Wang et al. 2003), but also for
EBA-175 in the P. falciparum parasite, which implies an
ongoing evolutionary struggle between the parasite li-
gand and the host receptor (Wang et al. 2003).

Glycophorin C is a minor component of the erythro-
cyte membrane that serves as a receptor for the P. fal-
ciparum erythrocyte-binding antigen 140 (EBA140). The
Gerbich-negative blood group, caused by a deletion of
GYPC exon 3, is common in coastal areas of Papua New
Guinea and results in reduced invasion by P. falciparum
(Maier et al. 2003). Epidemiological studies indicate that
this GYPC deletion does not alter the prevalence or den-
sity of asymptomatic malaria infection, but so far there
has been no study of how it affects the clinical severity
of infection (Patel et al. 2001, 2004).

Another erythrocyte-membrane protein that has been
implicated in malaria resistance is an anion exchanger
known as “band 3 protein,” encoded by SLC4A1. A 27-
bp deletion in this gene results in a form of ovalocytosis
that is common in parts of Southeast Asia. It appears
to be protective both against malaria infection (Cattani
et al. 1987; Foo et al. 1992) and against cerebral malaria
(Genton et al. 1995; Allen et al. 1999). The mechanism
of protection is not yet known. It may relate to the
involvement of band 3 protein in endothelial cytoad-
herence or to some inhibitory effect on parasite invasion
or growth.

Structural Variation of Globin Genes

Erythrocytes are essentially bags filled with hemoglo-
bin, and the malaria parasite has developed a lifestyle that
is hugely dependent on its hemoglobin environment. Al-
terations in hemoglobin may affect the biochemical and
cellular machinery of parasite development, and they
may affect the ability of the spleen and other immune
mechanisms to recognize parasites, by affecting the mor-
phology, mechanical properties, or surface structure of
the parasitized erythrocyte. The biological importance
of these dependencies is highlighted by the huge selective
pressure that malaria has exerted on the structure and
regulation of a globin (encoded by the identical HBA1
and HBA2 genes) and b globin (encoded by HBB) that
together comprise the tetrameric protein backbone of
adult hemoglobin.

HBB has three different coding SNPs that each confer
resistance against malaria and that have risen to high
frequency in different populations. The HbS allele is a
glutamic acidrvaline substitution at codon 6 of the b

globin chain, HbC is a glutaminerlysine substitution at
codon 6, and HbE allele is a glutamic acidrlysine sub-
stitution at codon 26. The corresponding proteins are
known as “hemoglobin S” (or “sickle hemoglobin”), “he-
moglobin C,” and “hemoglobin E.”

The HbS allele is found across a large part of sub-
Saharan African as well as parts of the Middle East. It
has the distinction of being one of the first human genetic
variants to be associated with a specific molecular defect
(Pauling et al. 1949). Hemoglobin S tends to polymer-
ize at low oxygen concentrations, which causes the
erythrocyte to deform into a sickle-like shape (Britten-
ham et al. 1985). HbS homozygotes have sickle-cell dis-
ease, a debilitating and often fatal disorder caused by
these red-cell deformities. The heterozygous state (de-
noted “HbAS”) is not generally associated with any clin-
ical abnormality and confers ∼10-fold increase in pro-
tection from life-threatening forms of malaria, with a
lesser degree of protection against milder forms of the
disease (Allison 1954; Gilles et al. 1967; Hill et al. 1991;
Allen et al. 1992; Stirnadel et al. 1999b; Sokhna et al.
2000; Ackerman et al. 2005). It is still not known pre-
cisely how HbAS protects against malaria. Two plausible
mechanisms, which are not mutually exclusive, are sup-
pression of parasite growth in red cells (Pasvol et al.
1978) and enhanced splenic clearance of parasitized
erythrocytes (Shear et al. 1993). A study of Kenyan chil-
dren found that the protective effect of HbAS against
malaria increased from 20% to 56% between the ages
of 2 and 10 years, which implies that it enhances or acts
in synergy with the acquired immune response (Williams
et al. 2005a). The trade-off between risks and benefits
acts to maintain the HbS polymorphism at allele fre-
quencies of ∼10% in many parts of Africa, despite the
lethal consequences for homozygotes, which provides
the most striking known example of heterozygote ad-
vantage in human genetics.

Hemoglobin C is found in several parts of West Africa,
although less commonly than is HbS. It results in a much-
less-damaging clinical phenotype than sickle-cell disease:
homozygotes have a relatively mild hemolytic anemia,
and heterozygotes do not experience a significant reduc-
tion in hemoglobin levels (Diallo et al. 2004). Both hetero-
zygotes and homozygotes of HbC are protected against
severe malaria (Agarwal et al. 2000; Mockenhaupt et
al. 2004a; Rihet et al. 2004), but the protective effect
appears to be substantially greater in homozygotes (Mo-
diano et al. 2001b). It has been proposed that the pro-
tective effect of HbC may operate by increasing immune
clearance of infected erythrocytes. This is based on ob-
servations of reduced parasite cytoadherence, abnormal
PfEMP1 expression, clustering of erythrocyte band 3 pro-
tein, and altered surface topography of the erythrocyte
membrane in the presence of hemoglobin C (Arie et al.
2005; Fairhurst et al. 2005; Tokumasu et al. 2005).

Hemoglobin E is common in Southeast Asia, with car-
rier rates of 50% in some places, and analysis of hap-
lotype structure suggests that the mutation is relatively
recent and has risen rapidly in allele frequency (Ohashi
et al. 2004). Homozygotes generally have symptom-
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less anemia. Although it has not been epidemiologically
proven that HbE protects against severe malaria, this is
assumed to be the case, and it has been observed that
erythrocytes from HbE-heterozygous individuals are rela-
tively resistant to invasion by P. falciparum (Chotivanich
et al. 2002).

Regulatory Variation of Globin Genes

The thalassemias are the most common Mendelian
diseases of humans and constitute a major global health
problem (Weatherall and Clegg 2001). They comprise a
group of clinical disorders that result from defective pro-
duction of a- or b-globin chains, which arise from de-
letions or other disruptions of the globin gene clusters
on chromosomes 11 and 16. There is a broad spectrum
of clinical phenotypes, reflecting the range of different
genetic variants that exist and given greater complexity
by the fact that a-globin is produced by two identical
genes, HBA1 and HBA2. Broadly speaking, homozygous
thalassemia results in severe disease or is fatal, whereas
heterozygotes are healthy apart from mild anemia. An
exception to this general rule arises when either the
HBA1 or the HBA2 gene, but not both, is disrupted, so
that some a-globin production is possible. This condi-
tion is known as “a� thalassemia,” and a� thalassemia
homozygotes are only mildly anemic.

Over half a century ago, J. B. S. Haldane proposed
balanced polymorphism as the explanation for why thal-
assemia had risen to high frequencies—approaching fix-
ation—in certain populations (Haldane 1949). He ar-
gued that heterozygotes might be protected against some
important disease, and malaria was the obvious candi-
date, since the global distribution of thalassemia encom-
passes the major malarious regions of Africa and Asia
and Mediterranean regions where malaria was once com-
mon. There are many other circumstantial lines of evi-
dence to support this concept; for example, the Tharu
people have both a much higher allele frequency of a

thalassemia, of ∼0.8, and a much lower incidence of
malarial illness than do other ethnic groups that inhabit
the same region of Nepal (Modiano et al. 1991). Argu-
ably the strongest population-genetic evidence comes
from a detailed survey in Melanesia that showed that
the frequency of a� thalassemia varied according to both
altitude and latitude in a manner that was highly cor-
related with malaria endemicity, whereas haplotypic an-
alysis seemed to rule out the possibility that this could
have arisen because of founder effects (Flint et al. 1986).

Although the population-genetic evidence seems over-
whelming, it is only relatively recently that direct evidence
that thalassemia protects against malaria has emerged,
and the case is still not absolutely clear-cut. A study of
Kenyan children found that both heterozygous and ho-
mozygous a� thalassemia was protective against severe

malaria (Williams et al. 2005b), whereas a study of
Ghanaian children found that heterozygotes were pro-
tected (Mockenhaupt et al. 2004b). In Papua New
Guinea, the risk of severe malaria was found to be re-
duced by 60% in children who were homozygous for
a� thalassemia and to a lesser degree in heterozygotes,
but the result did not seem to be malaria-specific, since
a protective effect was also observed for other childhood
infections (Allen et al. 1997).

The protective mechanism of thalassemia is unknown.
Flow-cytometry studies in vitro have shown that erythro-
cytes with the a thalassemia phenotype show reduced
parasite growth (Pattanapanyasat et al. 1999) and in-
creased binding of antibodies from malaria-immune sera
(Williams et al. 2002). Enhanced splenic clearance of
malaria-infected cells is a further possibility but is dif-
ficult to test in vivo. However, much more complex ex-
planations are also possible, as illustrated by findings of
data from Vanuatu which are unusual in two respects:
first, both P. falciparum and P. vivax infection are com-
mon, but severe malaria is remarkably uncommon in
this population; and, second, young children with a�

thalassemia have a significantly higher incidence of ma-
laria than do nonthalassemic children (Williams et al.
1996). This latter result is exactly the opposite of what
Williams et al. (1996) set out to prove, but they came
up with a possible explanation that was based on the
further observation that P. vivax infection, which does
not cause severe disease, is acquired at an earlier age in
this population than is P. falciparum infection. The pro-
posal is that, in this particular epidemiological scenario,
a� thalassemia may enhance early exposure to P. vivax
infection, thereby in some way protecting against severe
disease from later exposure to P. falciparum.

Oxidative Stress

Malaria parasites need to break down hemoglobin to
make room to grow, quite apart from any nutritional
benefit they may derive from this. This process releases
by-products that are potentially toxic—particularly iron,
which is a source of oxidative stress.

An important form of defense against oxidative stress
within the erythrocyte is production of the electron do-
nor nicotinamide adenine dinucleotide phosphate by the
enzyme glucose-6-phosphate dehydrogenase (G6PD), en-
coded by G6PD on chromosome X. There are many
different variants of G6PD, and those that markedly
compromise enzyme activity result in hemolytic anemia.
The geographical distribution of G6PD deficiency is con-
sistent with evolutionary selection by malaria (Gancza-
kowski et al. 1995), and analysis of haplotypic structure
at the G6PD locus supports the hypothesis of recent
positive selection (Tishkoff et al. 2001; Sabeti et al.
2002b). Deficient G6PD enzyme activity has been shown



178 Am. J. Hum. Genet. 77:171–190, 2005

to correlate with protection against severe malaria in
Nigerian children (Gilles et al. 1967). A study of 12,000
Gambian and Kenyan children found that the common
African form of G6PD deficiency (G6PD A�) is associ-
ated with ∼50% reduced risk of severe malaria in female
heterozygotes and in male hemizygotes (Ruwende et al.
1995). Reduced parasite replication in G6PD-deficient
erythrocytes is thought to be the mechanism of protec-
tion (Luzzatto et al. 1969), but the parasite appears to
counter this by manufacturing G6PD itself (Usanga and
Luzzatto 1985).

Haptoglobin, encoded by HP, is not an erythrocyte
protein but is mentioned here because it is a hemoglobin-
binding protein that is present in plasma. It could act
to defend the malaria-infected individual in several ways:
by trapping free hemoglobin, it helps to prevent he-
moglobin-induced oxidative tissue damage; it has been
shown to inhibit the development of malaria parasites
in vitro (Imrie et al. 2004); and it appears to reduce
parasite load, as determined by murine gene knockout
studies (Hunt et al. 2001). The haptoglobin 1-1 geno-
type, characterized by protein electrophoresis, has been
associated with susceptibility to severe P. falciparum ma-
laria (Elagib et al. 1998; Quaye et al. 2000), although
a DNA-based study of haptoglobin polymorphisms in
the Gambia failed to detect such an association (Aucan
et al. 2002)

Cytoadherence, a Major Factor in Malaria
Pathogenesis

A critical event in the pathogenesis of severe malaria is
the sequestration of P. falciparum–infected erythrocytes
in small blood vessels (Taylor et al. 2004). A range of
receptor-ligand interactions causes parasitized erythro-
cytes to stick to endothelium, platelets, and other eryth-
rocytes; this is thought to be an immune-evasion strategy
that allows the parasite to stay within the vascular com-
partment but to avoid circulating through the spleen.
On the parasite side, the major ligand is P. falciparum
erythrocyte-membrane protein-1 (PfEMP-1)—encoded
by a gene family called “var” because each parasite con-
tains many different copies of the gene—and, by switch-
ing expression between the copies, it is able to cause a
remarkable degree of antigenic variation (Kyes et al.
2001). On the host side, a range of different adhesion
molecules expressed on endothelium, platelets, macro-
phages, and other erythrocytes serves as binding recep-
tors for different forms of PfEMP-1.

A number of associations have been reported between
severe malaria and polymorphisms of host receptors for
cytoadherence by P. falciparum–infected erythrocytes (ta-
ble 2). When the same polymorphism has been tested
in different geographical locations, the results have been
variable—not simply failure to replicate but, in some

cases, the association of the same polymorphism with
susceptibility to severe malaria in one study and with
resistance in another. As with all genetic association
studies, it is possible that these results are statistical
artifacts that will ultimately be resolved by larger sam-
ple sizes and by finer-scale genetic mapping of these loci.
However, in this particular area of genetic analysis, it
is not out of the question that the functional conse-
quences of a single polymorphism could vary between
locations and might even vary over time at a single
location. As outlined above, the biological phenomenon
of parasite cytoadherence to endothelium and to other
cells is driven by the parasite, not by the host. The para-
site varies its pattern of sequestration in different or-
gans by constantly switching between different forms
of PfEMP-1 that bind to different host receptors (and
different parts of the same receptor) in a promiscuous
and opportunistic manner (Roberts et al. 1992).

Many isolates of P. falciparum bind to endothelium
via the CD36 antigen (Barnwell et al. 1989). Encoded
by CD36, this is a receptor for a range of different
molecules, including thrombospondin and long-chain
fatty acids, and is expressed by platelets and dendritic
cells as well as endothelium. It is a molecule of consid-
erable interest to malaria immunologists because, as well
as being a mediator of parasite sequestration, CD36 acts
to bind parasitized erythrocytes to dendritic cells, an
event that seems to incapacitate the dendritic cell when
it comes to presenting parasite antigens (Urban et al.
1999, 2001). Several CD36 polymorphisms have been
described in malarious regions (Aitman et al. 2000; Omi
et al. 2003), but the results of disease-association studies
are confusing. A study of both Gambian and Kenyan
case-control samples found that homozygotes for a non-
sense polymorphism, the CD36�1264G allele, were sus-
ceptible to cerebral malaria (Aitman et al. 2000), but a
study of the same allele in Kenya alone found that het-
erozygosity was associated with protection against se-
vere malaria (Pain et al. 2001). In Thailand, a dinucleo-
tide repeat sequence in intron 3, implicated in alterna-
tive splicing, has been associated with protection against
cerebral malaria (Omi et al. 2003).

Some isolates of P. falciparum bind strongly to endo-
thelium via intercellular adhesion molecule-1 (Berendt
et al. 1989). This is encoded by ICAM1, and its normal
function is to serve as an endothelial- and immune-cell
adhesion receptor for integrin-expressing leukocytes. A
polymorphism in the N-terminal domain, present at
high frequencies in African populations, acts to reduce
binding (Fernandez-Reyes et al. 1997). A study in Ga-
bon found that the low-binding allele was associated
with reduced susceptibility to severe malaria (Kun et al.
1999), but a study in Kenya found increased suscepti-
bility (Fernandez-Reyes et al. 1997), and another in the
Gambia found no significant effect (Bellamy et al. 1998a).



Table 2

Host Molecules That Mediate Cytoadherence by P. falciparum–Infected Erythrocytes and That Have Been Reported to Show Association with Resistance or Susceptibility to Malaria

Gene Protein Interaction with Parasitized Erythrocytea Reported Genetic Associations with Malaria

CD36 CD36 antigen, thrombospondin receptor PE-binding receptor on endothelium and
dendritic cells

CD36 polymorphisms show variable associations with severe malaria in the
Gambia, Kenya, and Thailand.

CR1 CR1, complement receptor 1 PE-binding receptor on erythrocytes CR1 polymorphisms show variable associations with severe malaria in the
Gambia, Thailand, and Papua New Guinea.

ICAM1 CD54, intercellular adhesion molecule-1 PE-binding receptor on endothelium ICAM1 polymorphisms show variable associations with severe malaria in
Kenya, Gabon, and the Gambia.

PECAM1 CD31, platelet-endothelial cell–adhesion molecule PE-binding receptor on endothelium PECAM1 polymorphisms show variable associations with severe malaria in
Thailand, Kenya, and Papua New Guinea.

a PE p parasitized erythrocyte.
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A survey of different ethnic groups in India found a num-
ber of novel ICAM1 variants that merit analysis in dis-
ease-association studies (Sengupta et al. 2004).

Another endothelial-binding receptor for P. falcipa-
rum is the platelet–endothelial cell adhesion molecule,
encoded by PECAM1 (Treutiger et al. 1997). A com-
mon coding variant (LeurVal at codon 125) was ana-
lyzed in case-control studies of severe malaria in Papua
New Guinea and Kenya, but no significant association
was identified (Casals-Pascual et al. 2001). A study from
Thailand has reported a PECAM1 haplotype that is more
common in cerebral malaria than in other forms of se-
vere malaria (Kikuchi et al. 2001).

Parasite sequestration is not due only to endothelial
binding. Some P. falciparum isolates show a phenome-
non known as rosetting, where a parasitized erythrocyte
binds to other erythrocytes. One mechanism for roset-
ting is through PfEMP-1 binding to erythrocyte–com-
plement receptor 1, encoded by CR1 (Rowe et al. 1997).
Up to 80% of the population of a malarious region of
Papua New Guinea have erythrocyte CR1 deficiency,
which has been associated both with polymorphisms in
the CR1 gene and with a� thalassemia, which is also
common in this population (Cockburn et al. 2004). In
the same study, it was found that both CR1 polymor-
phisms and a thalassemia were independently associated
with resistance to severe malaria. However, studies of
CR1 polymorphisms in the Gambia found no evidence
of association with disease severity (Bellamy et al. 1998a;
Zimmerman et al. 2003). In Thailand, an RFLP that is
associated with reduced expression of CR1 on erythro-
cytes has been associated (in homozygotes) with suscep-
tibility to severe malaria (Nagayasu et al. 2001).

Malaria and the Immune System

The genetic interaction between malaria and the immune
system is potentially of huge practical interest, for two
distinct reasons. First, although there is a vast literature
on immunological responses to malaria in humans and
in experimental model systems, there is still surprisingly
little concrete evidence about precisely which immuno-
logical responses are causal mechanisms of protective
immunity in naturally exposed populations, and this is
a fundamental roadblock in the development of an ef-
fective malaria vaccine. One way to establish causality
is to obtain clear-cut evidence that functional variation
in a specific immune gene affects the clinical outcome
of infection. Second, just as the selective pressure of ma-
laria on the erythrocyte has led to common hematologi-
cal disorders, such as sickle-cell disease and thalassemia,
it is possible that we might learn a great deal about mech-
anisms of chronic immunological and inflammatory dis-
orders if we had a better understanding of the selective
pressure that malaria has exerted on the immune system.

Here, we consider a number of immune gene asso-
ciations with malaria resistance and susceptibility that
have emerged over the past 15 years (table 3). The same
caveats, discussed above for adhesion molecules, apply
here. Few of these associations have been tested in sev-
eral different studies and, when this has been done, the
results have been variable. Thus, much of this section
should be regarded as indicative of ongoing research
activity rather than definitive results. However, it is im-
portant to bear in mind that there potentially are bio-
logical reasons why the same immune gene polymor-
phism might have different consequences in different ma-
larious regions. For example, HLA associations might
vary according to the local prevalence of critical para-
site-antigen polymorphisms. And associations with in-
flammatory cytokines and other immune genes may be
affected by regional differences in the intensity of ma-
laria transmission, which have complex consequences
for the development of acquired immunity and the pat-
tern of severe disease (Snow et al. 1997). These are issues
that may have far-reaching implications for vaccine ef-
ficacy, and, to tackle them robustly, we need much larger
sample sizes and more fine-grained genetic association
maps than we have at present.

Antigen Recognition

In malaria, the opportunities for antigen presentation
are limited by the fact that erythrocytes do not express
MHC molecules. Liver cells, however, express MHC
class I molecules and therefore provide a potential target
for cytotoxic T cell (CTL) responses during the first
phase of malaria infection, when parasites replicate in
the liver prior to invading erythrocytes. HLA-B is an
exceptionally polymorphic gene that encodes an MHC
class I heavy chain that, together with b2 microglobulin,
makes up the HLA-B antigen–presentation complex.
The HLA-B53 allele is extremely common in West Af-
rica, compared with other parts of the world, and is
associated with a significantly reduced risk of severe ma-
laria in Gambian children (Hill et al. 1991). In view of
the fact that HLA-B is expressed by liver cells but not
by erythrocytes, this genetic association implies that liver-
stage parasites provide a significant target for naturally
acquired protective immunity. This has boosted efforts
to develop a liver-stage malaria vaccine, and it has been
proposed that T cell epitope targets for malaria-vaccine
development may be obtained by analyzing the peptides
that bind to HLA-B53 (Hill et al. 1992).

But when a polymorphic parasite antigen interacts with
a polymorphic host antigen–presenting system, there are
many opportunities for complexity. For example, within
a single fragment of the P. falciparum circumsporozoite
protein (CSP), it has been observed that the Gambian
parasite population has two different variants (cp26 and



Table 3

Immune Genes Reported to Be Associated with Different Malaria Phenotypes

Gene Protein Function Reported Genetic Associations with Malaria

FCGR2A CD32, low affinity receptor for Fc fragment of IgG Clearance of antigen-antibody complexes Association with severe malaria in the Gambia
HLA-B HLA-B, a component of MHC class I Antigen presentation that leads to cytotoxic T cells HLA-B53 association with severe malaria in the Gambia
HLA-DR HLA-DR, a component of MHC class II Antigen presentation that leads to antibody production HLA-DRB1 association with severe malaria in the Gambia
IFNAR1 Interferon a receptor component Cytokine receptor Association with severe malaria in the Gambia
IFNG Interferon g Cytokine with antiparasitic and proinflammatory properties Weak associations with severe malaria in the Gambia
IFNGR1 Interferon g receptor component Cytokine receptor Association with severe malaria in Mandinka people of the Gambia
IL1A/IL1B Interleukin-1a and -1b Proinflammatory cytokines Marginal associations with severe malaria in the Gambia
IL10 Interleukin-10 Anti-inflammatory cytokine Haplotypic association with severe malaria in the Gambia
IL12B Interleukin-12 b subunit Promotes development of Th1 cells Association with severe malaria in Tanzania
IL4 Interleukin-4 Promotes antibody-producing B cells Association with antimalarial antibody levels in Fulani people of

Burkina Faso
MBL2 Mannose-binding protein Activates classic complement Association with severe malaria in Gabon
NOS2A Inducible NO synthase Generates NO, a free radical Various associations with severe malaria in Gabon, the Gambia,

and Tanzania
TNF Tumor necrosis factor Cytokine with antiparasitic and proinflammatory properties Various associations with severe malaria and reinfection risk in the

Gambia, Kenya, Gabon, and Sri Lanka
TNFSF5 CD40 ligand T cell–B cell interactions leading to immunoglobulin class switching Association with severe malaria in the Gambia
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cp29) that bind to HLA-B53, and these two variants are
found together in the same individual more frequently
than expected by chance. Although both cp26 and cp29
are effective targets for CTLs at the individual level, they
appear to show immunological antagonism such that
each acts to suppress the CTL response to the other, and
it has been postulated that this is an immune-evasion
strategy on the part of the parasite (Gilbert et al. 1998).

HLA-DRB1 encodes an HLA class II b chain that, to-
gether with an a chain, comprise the HLA-DR antigen–
presenting complex. This is expressed in B lymphocytes,
dendritic cells, and macrophages and is crucial for an-
tibody production. HLA DRB1*1302-DQB1*0501 has
been associated with resistance to severe malaria in Gam-
bian children (Hill et al. 1991), and the incidence of
malaria-fever episodes in Gambian children is reported
to show an overall association with distribution of MHC
class II haplotypes (Bennett et al. 1993).

The Antibody Response

Interleukin-4, encoded by IL4, is produced by acti-
vated T cells and promotes proliferation and differentia-
tion of antibody-producing B cells. A study of the Fulani
of Burkina Faso, who have both fewer malaria attacks
and higher levels of antimalarial antibodies than do neigh-
boring ethnic groups, found that the IL4-524 T allele
was associated with elevated antibody levels against ma-
laria antigens, which raises the possibility that this might
be a factor in increased resistance to malaria (Luoni et
al. 2001).

CD40 ligand, encoded by the X chromosome gene
TNFSF5, is expressed in T cells and binds to CD40 in
B cells, which acts to regulate immunoglobulin class
switching and other aspects of B cell function. In a Gam-
bian case-control study, the TNFSF5-726C allele was
associated with protection against severe malaria (Sabeti
et al. 2002a), and long-range haplotype analysis of this
allele suggests that it has recently undergone positive
evolutionary selection (Sabeti et al. 2002b).

Many leukocytes express receptors for the Fc portion
of IgG, which are used to engage and remove antigen-
antibody complexes. A HisrArg substitution at codon
131 of FCGR2A, which encodes low-affinity IIa receptor
for the Fc fragment of IgG, results in failure to bind to
IgG2 and has been associated with protection against
high levels of P. falciparum parasitemia in Kenya (Shi
et al. 2001). Follow-up studies in Thailand and the Gam-
bia found that homozygotes for the 131His genotype
are susceptible to cerebral malaria (Omi et al. 2002;
Cooke et al. 2003). In the Thai study, the FCGR2A
association involved interaction with an FCGR3B gene
polymorphism.

The Proinflammatory Response

Tumor necrosis factor is encoded by the TNF gene
located in the MHC class III region, flanked by the MHC
class I and II regions. It is a proinflammatory cytokine
that is critical for innate immunity against malaria par-
asites but has also been implicated in the pathogenesis
of severe malaria (reviewed by Kwiatkowski [1995] and
Clark et al. [2004]). Two longitudinal family studies, in
the Gambia and Burkina Faso, have identified linkage
between the MHC region and susceptibility to malaria-
fever episodes, and TNF is at the center of the linkage
peaks (Jepson et al. 1997; Flori et al. 2003). Several
TNF-promoter polymorphisms have been independently
associated with severe malaria. Gambian children who
are homozygous for the TNF-308A allele have been ob-
served to have increased susceptibility to cerebral ma-
laria (McGuire et al. 1994), and, in Gabon, it was found
that those who carried this allele were more likely to
encounter symptomatic reinfections with P. falciparum
(Meyer et al. 2002). A study in Sri Lanka found that
the carriers of the TNF-308A allele had increased risk
of severe infectious diseases in general (Wattavidanage
et al. 1999), whereas a study in Kenya found an increase
in infant mortality and malaria morbidity (Aidoo et al.
2001). TNF-376A confers allele-specific binding of the
transcription factor OCT-1 and has been associated with
susceptibility to cerebral malaria (Knight et al. 1999),
whereas the TNF-238A allele has been associated with
susceptibility to severe malarial anemia (McGuire et al.
1999). A longitudinal study in Burkina Faso suggests
that several different TNF-promoter SNPs are involved
in the regulation of parasite density (Flori et al. 2005).
The functional role of TNF-308 and other TNF poly-
morphisms remains open to question (Abraham and
Kroeger 1999; Knight et al. 2003; Bayley et al. 2004),
but the surrounding MHC class III region has many
other interesting immunological genes and complex pat-
terns of linkage disequilibrium (Ackerman et al. 2003).
Thus, although TNF is unquestionably an important me-
diator of both immunity and pathogenesis for malaria,
it remains possible that the observed genetic associations
with TNF polymorphisms arise from functional varia-
tion in neighboring genes.

Inducible nitric oxide (NO) synthase, encoded by
NOS2A, generates NO. This is a free radical, with an-
tiparasitic properties, but it also has a potential immu-
nosuppressive role and has been proposed as a factor in
cerebral malaria because of its role in neurotransmission
(reviewed by Clark and Rockett [1996]). The NOS2A-
954C allele has been associated with elevated NO syn-
thase activity in cells from Gabonese individuals, and,
in that population, it has been associated with protection
from severe malaria and resistance to reinfection (Kun
et al. 1998, 2001), but studies in the Gambia and Tan-
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zania failed to detect such a disease association (Lev-
esque et al. 1999; Burgner et al. 2003). The NOS2A-
1173T allele—which appears, on the basis of measure-
ments in urine and plasma, to be associated with high
NO production in Tanzanian children—is associated with
protection from malarial illness in Tanzania and from
severe malarial anemia in Kenya (Hobbs et al. 2002),
but no protective effect against severe malaria was de-
tected in the Gambia (Burgner et al. 2003). In Gambian
children, an NOS2A microsatellite polymorphism has
been associated with susceptibility to fatal malaria (Burg-
ner et al. 1998), and a haplotype uniquely defined by
the NOS2A-1659T allele was associated with cerebral
malaria by both the transmission/disequilibrium test
(TDT) and case-control analysis (Burgner et al. 2003).

Interferon-g, encoded by IFNG, is a key immunologi-
cal mediator that is believed to play both a protective
and a pathological role in malaria (Stevenson and Riley
2004). Analysis of SNPs in the region of IFNG and the
neighboring IL22 gene found several weak associations
with severe malaria in Gambian children but no clear-
cut effect (Koch et al. 2005). A study of IFNGR1, which
encodes the ligand-binding a chain of the interferon-g
receptor, found that in Mandinka, the major Gambian
ethnic group, heterozygotes for the IFNGR1-56 poly-
morphism were protected against cerebral malaria (Koch
et al. 2002). Reporter-gene analysis suggests that the mi-
nor allele acts to reduce levels of IFNGR1 gene expres-
sion (Juliger et al. 2003).

IFNAR1 encodes interferon a receptor 1, a type I
membrane protein that forms one of the two chains of
a receptor for interferons a and b. In a murine malaria
model, it has been observed that interferona inhibits
parasite development within erythrocytes (Vigario et al.
2001). A Gambian case-control study found two
IFNAR1 SNPs that were associated with protection
against severe malaria, and a resistance haplotype was
identified (Aucan et al. 2003).

IL12B encodes a subunit of interleukin-12, a cytokine
produced by activated macrophages that is essential for
the development of Th1 cells. Homozygotes for an
IL12B-promoter polymorphism were found to have de-
creased NO production when measured in blood sam-
ples, and this genotype has been associated with a fatal
outcome in cerebral malaria in Tanzanian but not in
Kenyan children (Morahan et al. 2002)

The interleukin-1 family of cytokines, produced mainly
by macrophages, are important mediators of the inflam-
matory response to infection and of fever. In a Gambian
case-control study, a SNP in IL1A (encoding interleukin-
1a) and another in IL1B (encoding interleukin-1b)
showed a marginal association with susceptibility to ma-
laria (Walley et al. 2004).

Interleukin-10, encoded by IL10, is a crucial anti-in-
flammatory cytokine. Several lines of evidence indicate

that IL10 is protective against severe malaria and that
IL10 production is genetically determined. An analysis
of IL10 SNPs in Gambian children found a common
haplotype that was strongly associated with protection
against severe malaria by case-control analysis but not
by TDT analysis of the same population (Wilson et al.
2005). Since the case-control analysis was ethnically
matched, this raises the question of whether IL10 as-
sociations with severe malaria might be confounded by
fetal survival rates or other sources of transmission bias,
since genetic variation at the IL10 locus has been im-
plicated as a determinant of fertility (Westendorp et al.
2001).

Other Serum Factors

MBL2 encodes a serum mannose-binding lectin (MBL)
protein that recognizes mannose and N-acetylglucosa-
mine on bacterial pathogens and can activate the classic
complement pathway. MBL2 polymorphisms have been
associated with susceptibility to various infectious dis-
eases. A study in Gabon found that children with severe
malaria had low serum MBL levels compared with those
of children with mild malaria and that mutations in co-
dons 54 and 57 of MBL2 (which lead to low protein
levels) were present at a higher frequency in those with
severe malaria (Luty et al. 1998). However, a study in
the Gambia failed to replicate this association with se-
vere malaria (Bellamy et al. 1998b).

Differences in Resistance to Infection among Inbred
Mouse Strains

Inbred strains of mice show marked and consistent dif-
ferences in their response to malaria infection (Greenberg
et al. 1954; Greenberg and Kendrick 1959; Rest 1982;
Stevenson et al. 1982; Stevenson and Skamene 1985).
Put simply, some mouse strains are more resistant to
malaria than are others, but the details are somewhat
more complex, since mice that are relatively resistant to
one parasite strain may be relatively susceptible to a
different parasite strain. For example, some strains of
mice are resistant to nonlethal strains but highly sus-
ceptible to lethal strains of Plasmodium yoelii, whereas
other mouse strains show the opposite pattern (Sayles
and Wassom 1988). This confirms that both host and
parasite genes—and the specific way in which they are
combined—are important determinants of resistance or
susceptibility to malaria.

Plasmodium chabaudi Infection: A Model of How
the Parasite Population Is Controlled

P. chabaudi infection is controlled and cleared by some
inbred strains of mice (e.g., C57BL/6J, C57L/J, DBA/2J,
CBA/J, and B10.A/SgSn) much more effectively than by
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others (e.g., A/J, DBA/1J, BALB/c, C3H/HeJ, AKR/J, and
SJL/J) (Stevenson et al. 1982). At least some of these
interstrain differences show classic Mendelian patterns
of segregation in crossbreeding experiments and that
show resistance is generally dominant over susceptibility.
When susceptible A/J and resistant C57BL mice were
crossbred, it was found that the degree of splenic en-
largement after infection was genetically linked to the
ability to suppress parasitemia (Stevenson and Skamene
1985).

Genomewide linkage screens have been performed af-
ter crossbreeding susceptible mice (C3H, SJL, or A/J)
with resistant mice (C57BL/6J). A locus on chromosome
9 (Char1) determines death or survival (Foote et al. 1997).
A well-characterized locus on chromosome 8 (Char2)
determines the control of parasite density (Foote et al.
1997; Fortin et al. 1997; Burt et al. 2002). A locus in
the MHC region of chromosome 17 (Char3) influences
parasite clearance rates at the time immediately after
peak parasitemia (Burt et al. 1999).

A further resistance locus (Char4) was identified after
deriving recombinant congenic strains from susceptible
A/J and resistant C57BL/6J mice. The Char4 locus maps
to a small congenic B6 fragment on chromosome 3 (Fortin
et al. 2001). Sequencing of candidate genes across this
region has identified a plausible functional mutation—
namely, a loss-of-function coding variant of the pyruvate
kinase gene (Pklr). In uninfected animals, this mutation
causes hemolytic anemia that is compensated by con-
stitutive reticulocytosis and splenomegaly (Min-Oo et al.
2003, 2004). It is possible that the malaria-protective
effect is a direct consequence of impaired viability and
increasing splenic clearance of host erythrocytes.

An advanced intercross line population derived from
susceptible A/J and resistant C57BL/6J mice was used
to identify QTLs for control of parasitemia (Hernandez-
Valladares et al. 2004a). Of particular interest was a
novel QTL (Char 8) in the chromosome 11 region that
is homologous to the human 5q31-q33 region discussed
above, which is rich in Th2 cytokine genes (Hernandez-
Valladares et al. 2004b).

Plasmodium berghei ANKA Infection: A Model
of Inflammatory Pathology

The ANKA strain of P. berghei causes more-severe
pathology than do most other experimental murine para-
sites. A curious feature of P. berghei ANKA (PBA) in-
fection in some inbred mouse strains (e.g., A/J and
C57BL/6) is that 100% of the mice die after 5–8 d, with
cerebral hemorrhages as a terminal event (Rest 1982).
Cloned lines of PBA differ in their tendency to cause
these cerebral changes, which indicates that pathology
is determined by a specific combination of host and para-
site genotype (Amani et al. 1998).

PBA-induced cerebral pathology is not a reliable model
of human cerebral malaria. In particular, parasite se-
questration in cerebral capillaries, a hallmark of human
cerebral malaria (Taylor et al. 2004), is notable by its
absence in the PBA experimental model. The pathologi-
cal features of PBA in susceptible mouse strains include
mononuclear cell adhesion to endothelium, which is ab-
sent in human cerebral malaria, together with hemor-
rhage and cerebral endothelial cell damage, with break-
down of the blood-brain barrier and cerebral edema
(Thumwood et al. 1988; Neill and Hunt 1992; Neill et
al. 1993). However, PBA has provided an interesting
experimental system in which to study how immuno-
pathological processes are affected by different interven-
tions (e.g., Grau et al. [1987a, 1987b, 1989], Kremsner
et al. [1991], Hunt et al. [1993], Engwerda et al. [2002],
and Schofield et al. [2002]).

To search for genetic factors that determine PBA-in-
duced cerebral pathology, one approach has been to en-
large the pool of genetic diversity by deriving new inbred
mouse strains from wild-mouse populations (Bagot et
al. 2002b). When a resistant wild-derived inbred strain
(WLA) was crossed with a susceptible laboratory strain
(C57BL/6J), all of the F1 progeny and 97% of the F2

progeny displayed resistance. A genomewide screen, per-
formed after backcrossing the resistant wild strain onto
the susceptible laboratory strain, found that resistance
was linked to loci on chromosome 1 (Berr1) and chro-
mosome 11 (Berr2) (Bagot et al. 2002a).

Recent analysis of the F2 progeny of WLA and C57BL/
6 strains has revealed a fascinating combinatorial effect:
it seems that the WLA allele at the Berr1 locus confers
resistance to early death from cerebral pathology, whereas
the C57Bl/6 allele at a locus on chromosome 9 (Berr3)
increases the ability of the mouse to clear the infection.
Thus, the progeny have greater resistance to malaria
than either of the parental strains (Campino et al. 2005).

A study that crossbred susceptible C57BL/6 mice with
resistant DBA/2 mice identified a major resistance locus
on chromosome 18 (Nagayasu et al. 2002). Another
study that crossed susceptible CBA mice with resistant
DBA/2 mice identified a susceptibility locus at the MHC
region on chromosome 17 (Ohno and Nishimura 2004).

Conclusions

As geneticists brace themselves to perform genomewide
association analysis of common diseases—a task that is
going to require massive investment both in epidemio-
logical infrastructure and in genotyping technology—
malaria stands out as a target for which this approach
is feasible and potentially of huge importance for disease
prevention. In terms of feasibility, malaria is the most
powerful known force for recent selection of human ge-
netic variants, so malaria-protective polymorphisms are
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likely to be at high frequencies in affected populations,
and, if recently selected, they may also show strong link-
age disequilibrium with neighboring genetic markers.

In terms of practical importance for disease prevention,
genetic studies of malaria have already yielded results:
the observation that Duffy antigen–negative individuals
are resistant to infection with P. vivax was the starting
point of a chain of molecular discovery that led to a
candidate vaccine against P. vivax that is now under-
going trials. A major impetus for researchers working
in this area is the hope that large-scale genomic epide-
miology will be a way of getting at basic questions that
decades of immunological research have failed to re-
solve, such as how infected individuals clear parasites
from the bloodstream or why malaria causes cerebral
complications in some people but not others. The holy
grail of this field is to discover novel molecular path-
ways for protective immunity that will provide critical
insights for the development of a vaccine to reduce the
massive global burden of disease due to P. falciparum.

Malaria research groups across the world have col-
lected DNA samples and detailed clinical data from
thousands of individuals with severe malaria, as well as
from parents and population controls. Until recently,
the resource has been fragmented, with different groups
pursuing relatively small studies of their own samples,
but there is a growing impetus to link these independent
studies to form a global infrastructure for genomic epi-
demiology of malaria. One such initiative is Malaria Ge-
nomic Epidemiology Network (MalariaGEN), which
brings together research groups in 15 different malaria-
endemic countries. Large-scale epidemiological studies
are needed for the sample sizes required to detect modest
effects while testing perhaps a million SNP markers
(Risch 2000). And once the genome-screening phase has
been completed, data from different populations are
needed to analyze gene-environment interactions and
are needed because haplotypic diversity provides the
means to dissect functional polymorphisms from non-
functional genetic markers.

Finally, it should not be forgotten that, as recently as
a century ago, malaria was found in parts of Europe
and North America, in addition to its current distribu-
tion across most of Africa and large parts of Asia and
South America. Sickle-cell disease and thalassemia are
two classic examples of how the historical effects of
malaria have left an imprint on the pattern of disease
in contemporary populations. It remains an open ques-
tion as to whether any of the immunological, inflam-
matory, and other chronic diseases that are found in
modern societies are, in part, due to the evolutionary
pressure that malaria exerted on our ancestors.
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