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The hydroformylation of olefins is one of the most important
applications of homogeneous catalysis in industry, annually
producing millions of tons of aldehydes.[1] The selectivity
towards the desired linear aldehyde is usually achieved by
crafting the microenvironment of the catalytically active
metal species through the binding of appropriate ligand
architectures. Amongst the many ligands developed for this
process, bidentate phosphines with a wide bite angle such as
Xantphos (2 ; Scheme 1) are particularly effective because of

their high regioselectivity for the linear aldehyde (high n/iso
ratio).[2] Previously, we demonstrated that monodentate
phosphorus ligands possessing hydrogen-bond recognition
motifs are able to achieve levels of selectivity previously only
attained with bidentate ligands, together with outstanding
activities.[3,4] The most prominent example of such supra-
molecular self-assembling ligands is the 6-diphenylphosphi-
nopyridin-2-(1H)-one (6-DPPon; 3) system. Its exceptional

activity and selectivity in the hydroformylation of terminal
alkenes allows reactions to be carried out at room temper-
ature and ambient pressure.

This has enabled the development of tandem processes
such as a tandem hydroformylation/asymmetric organocata-
lytic cross-aldol reaction.[5] More recently, the utility of this
system was demonstrated by the devlopement of a highly
selective tandem hydroformylation/hydrogenation process.[6]

The hydrogen-bonding properties of this ligand system have
been intensively studied in a [Cl2Pt(3)2] complex.[7] However,
evidence that the proposed hydrogen-bonding interaction
occurs during the catalytic reaction was lacking. Herein, we
present a mechanistic investigation that proves the existence
of hydrogen bonding during the catalytic cycle, and demon-
strate its importance for catalyst activity and selectivity. We
were able to characterize an intermediate of the catalytic
cycle, the acyl complex [(COR)Rh(3)2(CO)2], and demon-
strate its catalytic competence.

Our investigation commenced with attempts to prepare
an analogue to the Wilkinson complex. Pleasingly, the
reaction of [Rh(CO)2(acac)] (acac = acetylacetanoate) with
ligand 3 under syngas pressure furnished [HRh(3)3CO] (4) in
80% yield as an orange crystalline compound. Thorough 1H,
31P, 103Rh NMR and IR spectroscopic studies indicated the
presence of hydrogen bonds between one ligand in the
hydroxypyridine form and one ligand in the pyridone form.
Furthermore, detailed analysis of variable-temperature NMR
spectra showed that the rhodium complex 4 exists as a dimer,
the structure of which could be determined by X-ray
diffraction (Figure 1).

By pressurizing complex 4 with CO (4 bar) we were able
to detect the formation of [HRh(3)2(CO)2] (5) by in situ IR
spectroscopy. DFT calculations enabled the vibrations of this
complex to be assigned to equatorial/equatorial (eqeq) and
axial/equatorial (axeq) conformers, and are in good agree-
ment with those observed experimentally. A broad absorption
between 2300 cm�1 and 3500 cm�1 corresponds to the O�
H···O and N�H···N vibrations of the hydrogen-bonding
network. The unusual shape of these vibrations is caused by
a fast double-proton transfer process, which is in accordance
with our previous studies on the [Cl2Pt(3)2] complex.[6]

Complex 5 was also produced by the reaction between
[Rh(CO)2(acac)] and 10 equiv 3 in a CO/H2 atmosphere and
was identified as the resting state of the catalytic trans-
formation through in situ IR spectroscopy.[8] This finding
indicates, in agreement with kinetic studies, which show a first
order dependency of the TOF on the alkene concentration, an
early rate-determining step in the catalytic cycle.[9] To gain

Scheme 1. Selectivity and activity observed in the rhodium-catalyzed
hydroformylation of 1-octene with various ligands. Conditions:
Rh/L/substrate = 1:20(10):7500, 80 8C, 10 bar, toluene.
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a deeper insight into the mechanism we performed a detailed
DFT study on the catalytic cycle (Figure 2).[10] Several
conformers (e.g. cis/trans and eqeq/axeq) and tautomers
were optimized for each intermediate and transition state
(TS). Propene was used as a model for the 1-octene used
experimentally. Despite the fact that many previous studies
have focused on the TS for hydrometalation,[11] less attention
has been paid to alkene coordination.[12] We were able to
locate and optimize transition states for alkene coordination,
but the hydrometalation remains rate-determining on the
computed DG surface (Figure 2).

Comparison of the DFT-optimized hydrogen-bond geo-
metries of the pentacoordinated [HRh(3)2(CO)2] (5) complex
(P-Rh-P: 1128) and the catalytically active species trans-
[HRh(3)2(CO)] (6 ; P-Rh-P: 1548) shows an elongation of the
N�H···N bond by 0.5 � in the latter (Figure 3). In contrast,
the O�H···O bond length remains unchanged. This observa-
tion indicates that the N�H···N bond corresponds to the
flexible part of the hydrogen-bonding network, whereas the
O�H···O bond is responsible for the chelating character of the
ligand backbone.[13] This synergism of flexibility and structural
integrity is likely to be a key for understanding the excep-
tional high activity of this ligand compared to covalently
bound bidentate ligands, since it facilitates the adoption of
different coordination geometries and bite angles without
severe energy penalties. In agreement with this assumption,

Figure 2. Free energy surface of the catalytic cycle (M06/6-311+ G(2d,p)[C,H,N,O,P] + SDD[Rh] using the PCM model for toluene on B3LYP/6-
31G(d,p)[C,H,N,O,P]+ LANL2DZ[Rh]-optimized structures. Thermodynamic corrections were obtained from a frequency calculation at the B3LYP
level).

Figure 1. X-ray structure of the [HRh(6-DPPon)3(CO)] (4) complex.
Selected bond lengths [�] and angles [8]: N�H···O: 2.880(3), 164(3);
O�H···O: 2.657(3), 170(4); N�H···N: 2.892(3), 169(3); P-Rh-P:
115.23(3).
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the reported lowest energy pathways for the Xantphos- and
Thixantphos-catalyzed hydroformylation involves cis-coordi-
nated hydride species.[2, 14]

Interestingly, the lowest TS for the prolinear hydrometa-
lation and the probranched hydrometalation do not start from
the same alkene complex, which was confirmed by IRC
calculations (Figure 2).[15] The prolinear alkene complex is
higher in energy, and therefore the resulting DGTS value is
smaller; this is an interesting example of the concept of
survival of the weakest.[16] The n/iso ratio, calculated from the
two different DGTS values, is in good agreement with the
experimental observations (Table 1).[17] The computed free
energy surface shows that the prolinear hydrometalation step
is exothermic (DGr =�6.18 kcalmol�1) whereas the pro-
branched hydrometalation is slightly endothermic (DGr =

1.35 kcal mol�1).

In agreement with the computed reaction enthalpies,
deuteroformylation experiments reveal that deuterium incor-
poration occurs only in the C1-position of the alkene after
20% conversion, thus indicating that the probranched hydro-
metalation is reversible.[18] However, it is likely that the
reversibility depends on the CO pressure since the dicarbonyl
species 9 is thermodynamically favored, which is reflected in
a lower regioselectivity at higher pressures.[19] Therefore, the
regioselectivity seems to be due to a combination of kinetic
and thermodynamic control. We then focused on the opti-
mization of several transition states for hydrometalation in
which hydrogen bonding is prevented by geometrical con-
straints (Figure 4). In these transition states the pyridone
tautomer is favored, which agrees with previous investiga-
tions.[7] However, M06 and B3LYP calculations predict that
hydrogen bonding stabilizes the rate-determining TS by at
least 7 kcalmol�1 (Figure 4).

To get additional experimental proof for the importance
of the hydrogen-bond network for the outstanding selectivity

and activity, we synthesized O- and N-methylated derivatives
of 3 (12 and 13) so as to prevent the possibility of hydrogen
bonding and then evaluated them in the hydroformylation of
1-octene under identical conditions (Scheme 2).[20] Indeed 12
and 13 showed selectivities comparable to classical mono-

dentate ligands such as PPh3 (1). Furthermore, the reactions
with 12 and 13 were significantly slower than with the 6-
DPPon (3) catalyst, thus highlighting the importance of the
hydrogen bonds for the outstanding activity.

To further validate the presence of hydrogen bonds during
the catalytic reaction, we performed in situ IR experiments
starting from isolated 4. After pressurizing this complex with
CO (4 bar) the spectrum of complex [HRh(3)2(CO)2] (5) was
substracted. The formation of an intermediate was observed
upon addition of 1.5 equiv 1-octene under CO pressure
(4 bar). This intermediate shows a strong absorption at
1663 cm�1, which indicates the formation of a rhodium–acyl
complex (Figure 5).[21] DFT computations were performed to
assign the emerging vibrations (Table 2).

After correction for anharmonicity, the computed vibra-
tions were found to be in good agreement with the exper-
imental observations (Table 2). This finding suggests that the
complex formed is a rhodium–acyl complex bearing two 6-
DPPon (3) ligands. To validate that a catalytically active
intermediate was formed, not a thermodynamically stable,
unreactive complex, we then pressurized the solution with
CO/H2 (4 bar), which immediately resulted in the formation
of nonanal, as indicated by the appearance of its CO

Figure 3. B3LYP-optimized structures and hydrogen-bond lengths of
the resting state (5) and the actually catalytic active species, the
trans-[HRh(3)2(CO)] (6) complex.

Table 1: Comparison of the computed selectivity and the experimentaly
obtained selectivity.

B3LYP[a] M06[b] Expt.

DDGTS [kcalmol�1] 1.17 1.75 –
n/iso 88:12 95:5 96:4

[a] 6-31G(d,p)[C,H,N,O,P]+LANL2DZ[Rh]. [b] 6-311+ G(2d,p)-
[C,H,N,O,P] + SDD[Rh] (PCM for toluene).

Figure 4. B3LYP-optimized structures for the TS of the prolinear hydro-
metalation with hydrogen bonds (left), and a conformer where hydro-
gen bonding is prevented for geometrical reasons (right).

Scheme 2. Selectivity observed in the rhodium-catalyzed hydroformyla-
tion of 1-octene with various ligands. Conditions: Rh/L/substrate=

1:20:7500, 80 8C, 10 bar, toluene.
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stretching vibration (1734 cm�1, Figure 5).[22, 23] To investigate
the presence of hydrogen bonding in this intermediate by
NMR spectroscopy, we performed the experiment described
previously with 13C-labeled CO in [D8]toluene. After the same
IR spectroscopic signature was observed (taking into account
the frequency shift of the CO vibrations because of the
isotopic labeling[8]), a sample was removed for low-temper-
ature NMR experiments.[24] The 13C NMR spectrum shows
signals at 250.1 ppm and 230.6 ppm, which can be assigned to
the acyl carbon atoms of the eqeq-(14) and axeq-coordinated
(15) rhodium–acyl complexes (C1 in Figure 6).

The computed chemical shifts for 14 and 15 are in
excellent agreement with the experimental value (Tables 3
and 4). The 31P NMR spectrum recorded at 193 K shows five
signals corresponding to a rhodium-bound ligand and one
signal for the free ligand 3, which is present as one equivalent
of 3 was replaced by CO when starting from 4.[8] As expected,
the signals assigned to the acyl carbon atoms show HMBC
cross-peaks to the neighboring CH2 signals (Figure 7).

If, as assumed, hydrogen bonding occurs in acyl complexes
14 and 15, hydrogen-bond signals (10–15 ppm) should be
observable in a 1:2 ratio relative to the CH2 group. Indeed,
four signals in the hydrogen-bond region could be detected
and assigned by DFT calculations to the N�H···N and O�
H···O hydrogen bonds of 14 and 15 (Figure 8). The broad
signal at 12.6 ppm corresponds to the N�H···O proton of 3,
which forms symmetrical pyridone dimers. Interestingly,

integration of the CH2 group of the acyl residue suggests
that the axeq complex is slightly preferred. This preference is
in agreement with M06 single-point calculations (DE =

0.9 kcalmol�1) on the B3LYP-optimized structures.
In summary, we have demonstrated that the hydrogen-

bonding network of the 6-DPPon (3) system enhances the
activity and selectivity of the hydroformylation of 1-octene.
To ensure that hydrogen bonding is not only present in the
resting state but throughout the catalytic cycle, a catalytically
competent intermediate (proven by in situ IR studies) was
characterized. The existence of hydrogen bonds was verified
unambiguously through correlation of 1H and 13C NMR
spectroscopy supported by DFT calculations. These results
show that the outstanding activity and selectivity of the 6-
DPPon (3) self-assembly catalyst is a direct consequence of

Figure 5. Difference in situ IR spectra obtained after the addition of
1.5 equiv 1-octene under CO pressure to the solution of the
[HRh(3)2(CO)2] complex (10�2

m in toluene). The orange line marks the
addition of H2.

Table 2: Vibrations of the intermediate observed by in situ IR spectros-
copy and computed vibrations for an axeq- and eqeq-coordinated acyl
complex.

Expt. [cm�1][a] eqeq [cm�1][b] axeq [cm�1][b]

COeq 2040 2031 (2113) –
COeq-eq 2004 1987(2067)
COax 1969 1968 (2048) –
COeq+eq 1956 – 1949 (2028)
COacyl 1663 1667 (1734) 1704 (1773)

[a] Si-comp, toluene [10�2
m] . [b] B3LYP/6-31G(d,p)[C,H,N,O,P]

+LANL2DZ[Rh], the values in italics are obtained by anharmonic
correction.

Table 3: Comparison of the experimentally observed 13C NMR shifts of
the intermediate and the computed shielding.

Expt. [ppm] eqeq [ppm][a] axeq [ppm][a]

C3axeq 195.7 – 188.9
C2axeq/eqeq 197.6 192.2 192.4
C3eqeq 201.3 196.0 –
C1axeq 230.6 – 234.9
C1eqeq 250.1 248.5 –

[a] M06/6-311+ G(2d,p)[C,H,N,O,P]+ SDD[Rh] on B3LYP/6-31G(d,p)
[C,H,N,O,P] + LANL2DZ[Rh] optimized structures referenced to
[HRh(PPh3)3(CO)] (d= 206.8 ppm).[25]

Table 4: Comparison of the experimentally observed 1H NMR spectro-
scopic shifts of the intermediate and the computed shielding.

Expt. [ppm] eqeq [ppm][a] axeq [ppm][a]

H2axeq 13.79 – 13.71
H1eqeq 13.45 13.33 –
H1axeq 13.05 – 12.91
H2eqeq 12.90 12.71 –

[a] M06/6-311+ G(2d,p)[C,H,N,O,P]+ SDD[Rh] on B3LYP/6-31G(d,p)
[C,H,N,O,P] + LANL2DZ[Rh] optimized structures referenced to tetra-
methylsilane (d = 0.00 ppm).

Figure 6. 13C NMR spectrum of the intermediate (193 K, 500 MHz).
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the hydrogen-bonding interaction of the ligand. The hydrogen
bonding provides a synergism of flexibility and structural
integrity which facilitates the adoption of different coordina-
tion geometries without a significant energy penalty whilst
maintaining the regiodiscriminating properties of a chelating
ligand. The findings reported herein should assist in the
rational design of future supramolecular catalysts.
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