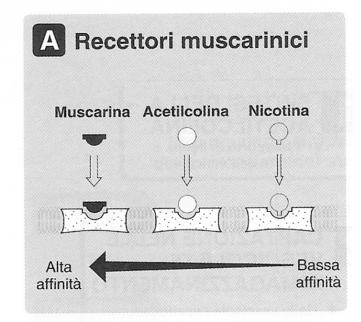
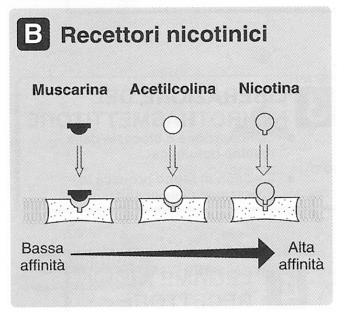
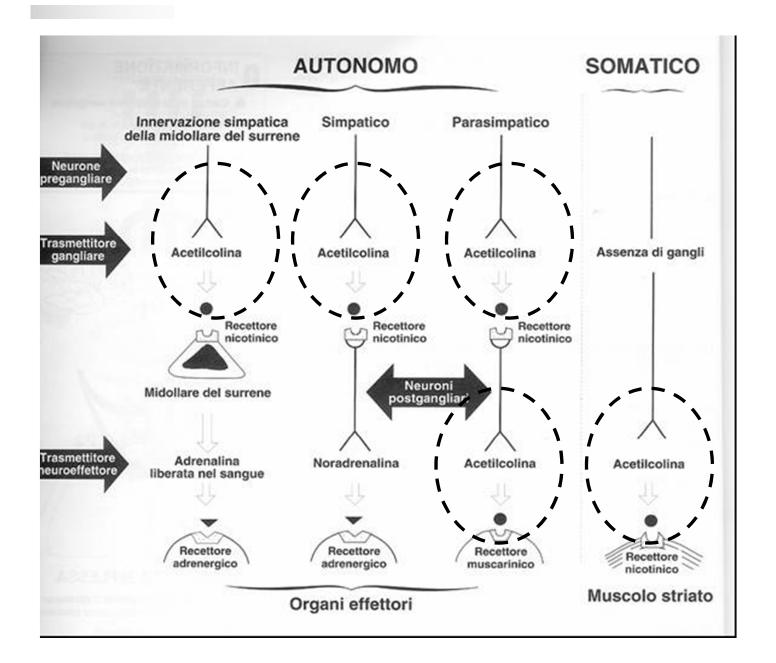

Trasmissione colinergica

Meccanismi di sintesi, rilascio e degradazione dell'acetilcolina, e azioni farmacologiche di alcuni composti


RECETTORI PER L'ACETILCOLINA


Acetilcolina

Muscarina


$$N = CH$$
 $N = CH$
 $N = CH$
 $N = CH$

Nicotina

AGONISTI COLINERGICI

Recettori Nicotinici

Ce ne sono 3 sottotipi: gangliari, muscolari, neuronali. Si tratta di eteropentameri che differiscono per la aggregazione di diverse subunità:

- · 9 tipi di a
- · 4 tipi di β
- · 1 tipo di y
- · 1 tipo di δ
- · 1 tipo di ε

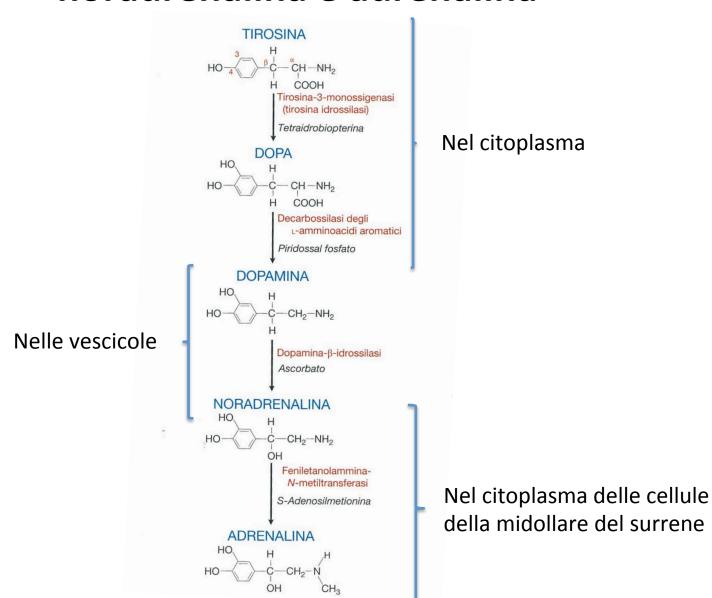
Il recettore nicotinico individua un canale ionico di membrana che controlla la permeabilità al Na+ e K+; il recettore (a7) neuronale controlla l'ingresso di Ca++.

L'attivazione del recettore avviene quando 2 molecole di ACh si legano a 2 subunità a del recettore Recettori Muscarinici

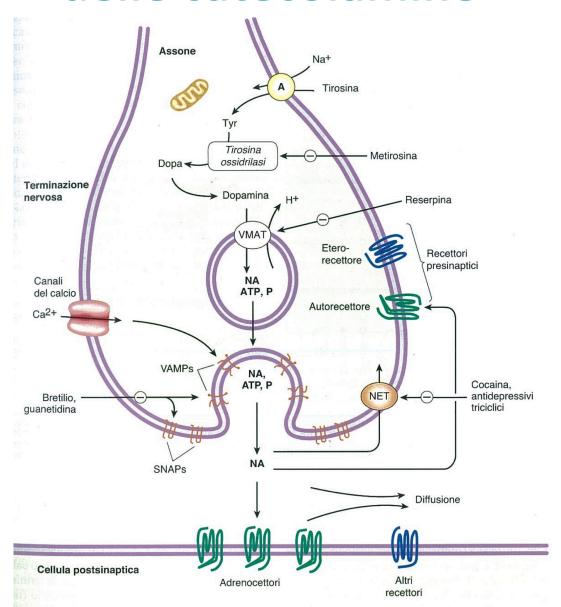
Sono localizzati in strutture effettrici autonome e nel SNC.

Sono stati clonati 5 sottotipi di recettore muscarinico (m1-m5), però la caratterizzazione farmacologica è buona solo per 3 sottotipi (M1-M3).

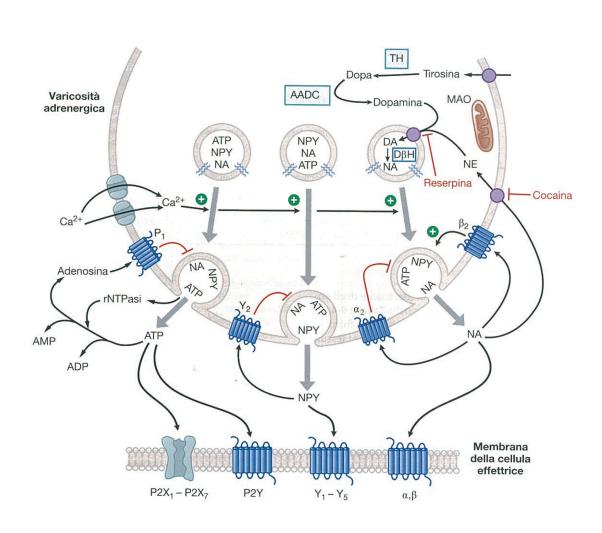
- o Gli M1 aumentano la secrezione gastrica
- o Gli M2 mediano gli effetti vagali sul cuore e fungono da autorecettori sulle terminazioni colinergiche
- o Gli M3 hanno funzioni eccitatorie su ghiandole e fibre muscolari
- o La funzione di M4 ed M5 (presenti soprattutto nel cervello) è oggetto di studio.
- \circ M1, M3 e M5 si accoppiano con proteine $Gq \rightarrow PLC$ e PLA_2
- M2 e M4 interagiscono con proteine Gi e Go → inibizione adenil-ciclasi

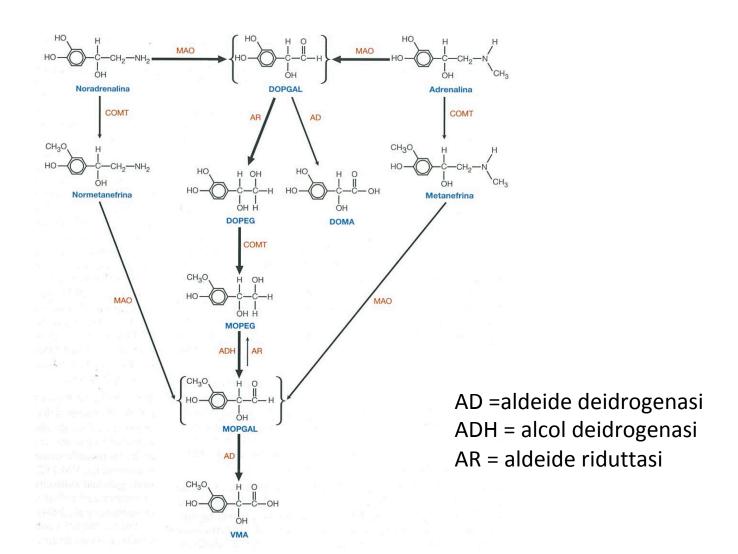

· Occhio: iride (sfintere della pupilla) miosi. Muscolo ciliare contrazione, visione vicina, riduzione pressione endooculare Ghiandole salivari, lacrimali, sudoripare Aumentata secrezione Bronchi Costrizione. aumento secrezione Cuore Effetto cronotropo, dromotropo e isotropo negativo Albero vascolare Liberazione di NO da endotelio, vasodilatazione Stomaco e intestino Aumento secrezioni e tono, rilassamento sfinteri Vescica urinaria Contrazione detrusore, rilassamento sfinteri Sistema riproduttivo maschile Erezione Muscoli scheletrici Contrazione Liberazione adrenalina Ghiandole surrenali Gangli periferici Attivazione di gangli simpatici e parasimpatici

Trasmissione adrenergica

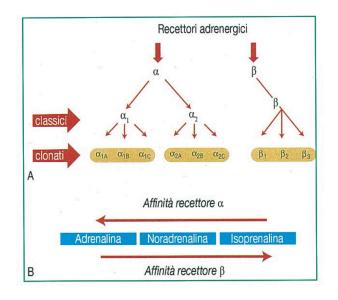

Catecolamine:

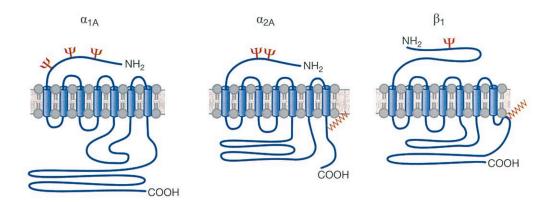
- Noradrenalina (NA): trasmettitore nella maggior parte delle fibre simpatiche post-gangliari e in certi tratti del SNC
- Dopamina: trasmettitore principale del sistema extrapiramidale e di diverse vie neuronali mesocorticali e mesolimbiche
- Adrenalina: principale ormone secreto dalla midollare del surrene


Tappe della sintesi enzimatica di dopamina, noradrenalina e adrenalina


Sintesi, immagazzinamento e rilascio delle catecolamine

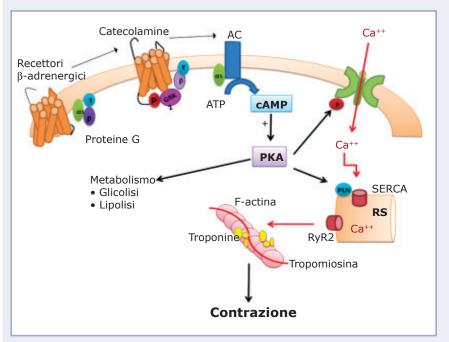
Regolazione pre-giunzionale del rilascio di noradrenalina




Tappe della degradazione metabolica delle catacolamine

Classificazione dei recettori adrenergici

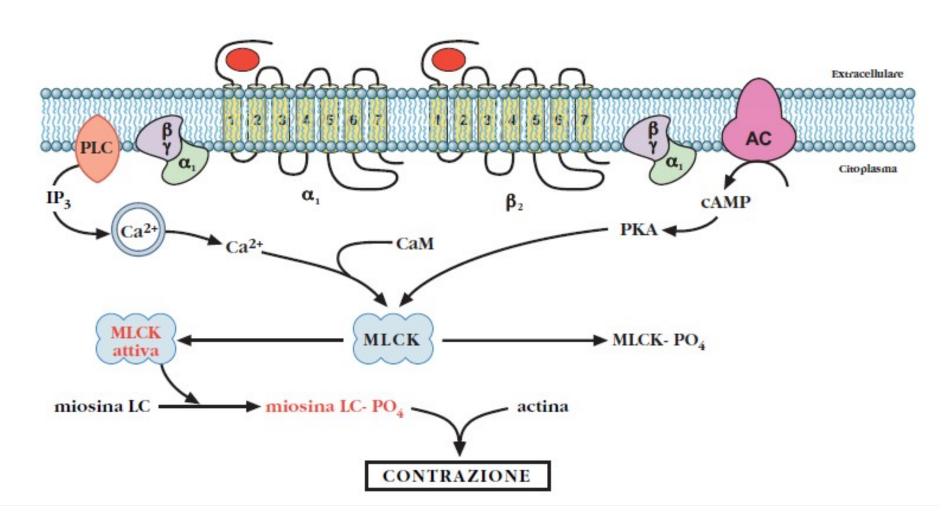
- Recettori α-adrenergici: adrenalina ≥ NA >> isoproterenolo
 - $-\alpha 1 \rightarrow post-sinaptici eccitatori$
 - α2 → pre-sinaptici ma anche a livello post-giunzionale o non giunzionale
- Recettori β-adrenergici: isoproterenolo > adrenalina ≥ NA
 - $-\beta1 \rightarrow miocardio$
 - β2 → muscolo liscio e altri siti
 - $-\beta 3 \rightarrow$ tessuto adiposo



Ψ = sito di N-glicosilazione VVVVV = sito per la tioacetilazione

- Sono tutti GPCR
- Recettore $\alpha 1 \rightarrow$ proteina Gq
- Recettore $\alpha 2 \rightarrow$ proteina Gi
- Recettore $\beta \rightarrow$ proteina Gs

Sottotipo	Effettori principali	Localizzazione tissutale	Effetti principali
β1	Attivazione AC ↑ cAMP ↑ Attivazione PKA Attivazione canali del Ca ²⁺	Cuore Rene Adipociti Muscolo scheletrico Nucleo olfattorio Corteccia Nuclei cerebrali Tronco cerebrale Midollo spinale	 Principale recettore nel cuore, produce effetti inotropi e cronotropi positivi
β2	Attivazione AC ↑ cAMP ↑ Attivazione PKA Attivazione canali del Ca ²⁺	Cuore Polmone Vasi sanguigni Muscolatura liscia bronchiale e Gl Rene Muscolo scheletrico Bulbo olfattorio Corteccia piriforme Ippocampo	 Principale recettore per il rilassamento della muscolatura liscia Ipertrofia della muscolatura scheletrica
β3	Attivazione AC ↑ cAMP ↑ Attivazione PKA Attivazione canali del Ca ²⁺	Tessuto adiposo Tratto GI Cuore	 Principale recettore che produce effetti metabolici


Ruolo del recettore \beta1-adrenergico nella modulazione della funzione cardiaca

Abbreviazioni: <u>GRK</u>: chinasi di recettori accoppiati alle proteine G; <u>AC</u>: adenilato ciclasi; <u>ATP</u>: adenosina trifosfato; <u>cAMP</u>: adenosina monofosfato ciclico; <u>PKA</u>: proteina chinasi cAMP-dipendente; <u>RS</u>: reticolo sarcoplasmatico; <u>SERCA</u>: Ca⁺⁺- ATPasi del reticolo sarcoplasmatico ; <u>PLN</u>: fosfolambano; <u>RyR2</u>: recettore della rianodina di tipo 2.

Figura 1. Segnalazione intracellulare mediata dai recettori β-adrenergici (βAR). Schema rappresentativo degli eventi che si verificano in seguito all'attivazione dei βAR e responsabili della contrazione miocardica. Quando le catecolamine interagiscono con i βAR, si verificano modificazioni delle proteine G che inducono un'attivazione dell'AC e la formazione di cAMP; quest'ultimo attraverso la PKA stimola il metabolismo (a sinistra) e la fosforilazione di proteine coinvolte nella regolazione del Ca^{++} intracellulare (a destra), che è indispensabile per la contrazione dei cardiomiociti.

Effetti della stimolazione catecolaminergica nella cellula muscolare liscia

Sottotipo	Effettori principali	Localizzazione tissutale	Effetti principali
$lpha_{ extsf{1A}}$	 ↑ PLC, ↑ PLA₂ ↑ Canali del Ca²⁺ ↑ Scambiatore Na⁺/H⁺ Modulazione dei canali del K⁺ ↑ Via delle MAPK 	Cuore Fegato Muscolo liscio Vasi sanguigni Polmone Vasi deferenti Prostata Cervelletto Corteccia Ippocampo	 Principale recettore che causa la contrazione della muscolatura liscia dei vasi Promuove la crescita e la struttura cardiaca Vasocostrizione di arteriole nel muscolo scheletrico
α_{1B}	 ↑ PLC, ↑ PLA₂ ↑ Canali del Ca²⁺ ↑ Scambiatore Na⁺/H⁺ Modulazione dei canali del K⁺ ↑ Via delle MAPK 	Rene Milza Polmone Vasi sanguigni Corteccia Tronco cerebrale	 Sottotipo più abbondante nel cuore Promuove la crescita e la struttura cardiaca
α_{1D}	 ↑ PLC, ↑ PLA₂ ↑ Canali del Ca²⁺ ↑ Scambiatore Na⁺/H⁺ Modulazione dei canali del K⁺ ↑ Via delle MAPK 	Piastrine Prostata Aorta Arterie coronarie Corteccia Ippocampo	 Principale recettore che causa vasocostrizione nell'aorta e nelle arterie coronarie

Sottotipo	Effettori principali	Localizzazione tissutale	Effetti principali
α_{2A}	Inibizione AC	Piastrine Neuroni simpatici Gangli autonomi Pancreas Coronarie/vasi del SNC Locus coeruleus Tronco cerebrale Midollo spinale	 Principale recettore con attività inibitoria sui neuroni simpatici Vasocostrizione di piccoli vasi precapillari nel muscolo scheletrico
α_{2B}	Inibizione AC	Fegato Rene Vasi sanguigni Coronarie/vasi del SNC Diencefalo Pancreas Piastrine	\circ Principale recettore che media la vasocostrizione indotta da α_2
α_{2C}	Inibizione AC	Gangli della base Corteccia Cervelletto Ippocampo	 Principale recettore che modula la neurotrasmissione dopaminergica Principale recettore che inibisce il rilascio di ormoni dalla midollare del surrene

DISTRIBUZIONE E FUNZIONE DEI RECETTORI 02

TERMINALI NERVOSI Catecolaminergici

Gangli intramurali dello stomaco

MUSCOLATURA LISCIA VASALE

Arteriole: coronarie, pelle e mucose, renali

MUSCOLATURA LISCIA ORGANI Stomaco

Intestino

RENE Tubuli prossimali

PANCREAS CELLULE β

contrazione

rilassamento

rilassamento

diminuzione escrezione Na⁺, K⁺, Cl⁻

inibizione liberazione NA

inibizione liberazione ACh

diminuzione secrezione insulina

aggregazione

PIASTRINE

Localizzazione dei recettori adrenergici

- α2 e β2 pre-sinaptici: regolazione del rilascio del neurotrasmettitore
- α2 post-sinaptico:
 - Cellule della muscolatura liscia vasale
 - Adipociti
 - Cellule epiteliali secretrici
- β2 post-sinaptici:
 - Mucolatura liscia vasale
 - Muscolo scheletrico
 - Miocardio
- α2 e β2 extra-giunzionali:
 - Cellule del sangue
 - Cellule muscolatura liscia vasale
- α1 e β1 principalmente nelle immediate vicinanze dei terminali nervosi adrenergici
- α2 ampiamenti distribuiti nel cervello

Altri neurotrasmettitori del SNA

- Altri messaggeri chimici come le purine, gli eicosanoidi, l'NO e i peptidi modulano o mediano le risposta che fanno seguito alla stimolazione dei neuroni pregangliari del SNA:
 - Alcuni nervi parasimpatici post-gangliari utilizzano NO come neurotrasmettitore
 - ATP e ACh coesistono nelle vescicole colinergiche
 - ATP, NPY e catecolamine sono presenti nei granuli di immagazzinamento, nei nervi e nella midollare del surrene
 - Peptidi come encefaline, sostanza P, somatostatina, ormone di rilascio delle gonadotropine, colecistochinina, peptide correlato al gene della calcitonina, VIP e NPY, si trovano nella midollare del surrene, nelle fibre nervose o nei gangli del SNA

Co-trasmissione nel SNA:

 ATP: ruolo di co-trasmettitore nel sistema simpatico insieme alla NA

- NPY:

- 1. Effetto contrattile post-giunzionale diretto
- Potenziamento effetto contrattile degli altri cotrasmettitori
- Modulazione inibitoria del rilascio di tutti tre i cotrasmettitori simpatici

Trasmissione non adrenergica e non colinergica (NANC):

- Trasmissione purinergica nel tratto GI, genitourinario, in alcuni vasi sanguigni (ATP)
- Adenosina esercita feedback negativo sul rilascio di trasmettitore

Considerazioni farmacologiche

- I farmaci agiscono sul sistema nervoso periferico e i suoi organi effettori a diversi livelli della neurotrasmissione:
 - Interferenza con la sintesi o il rilascio del trasmettitore
 - Induzione del rilascio del trasmettitore
 - Agonisti e antagonisti recettoriali
 - Interferenza con la degradazione del trasmettitore