
LESSON 11.

1. Regular maps.

Let X, Y be quasi–projective varieties (or more generally locally closed sets). Let ϕ : X →
Y be a map.

Definition 1.1. ϕ is a regular map or a morphism if

(i) ϕ is continuous for the Zariski topology;

(ii) ϕ preserves regular functions, i.e. for all U ⊂ Y (U open and non–empty) and for all

f ∈ O(U), then f ◦ ϕ ∈ O(ϕ−1(U)):

X
ϕ−→ Y

↑ ↑
ϕ−1(U)

ϕ|−→ U
f→ K

Note that:

a) for all X the identity map 1X : X → X is regular;

b) for all X, Y , Z and regular maps X
ϕ→ Y , Y

ψ→ Z, the composite map ψ ◦ ϕ is regular.

An isomorphism of varieties is a regular map which possesses regular inverse, i.e. a regular

map ϕ : X → Y such that there exists a regular map ψ : Y → X verifying the conditions

ψ ◦ ϕ = 1X and ϕ ◦ ψ = 1Y . In this case X and Y are said to be isomorphic, and we write:

X ' Y .

If ϕ : X → Y is regular, there is a natural K–homomorphism ϕ∗ : O(Y )→ O(X), called

the comorphism associated to ϕ, defined by: f → ϕ∗(f) := f ◦ ϕ.

The construction of the comorphism is functorial, which means that:

a) 1∗X = 1O(X);

b) (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.
This implies that, if X ' Y , then O(X) ' O(Y ). In fact, if ϕ : X → Y is an isomorphism

and ψ is its inverse, then ϕ ◦ ψ = 1Y , so (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗ = (1Y )∗ = 1O(Y ) and similarly

ψ ◦ ϕ = 1X implies ϕ∗ ◦ ψ∗ = 1O(X).

Example 1.2.

1) The homeomorphism ϕi : Ui → An of Lesson 3, 1.6, is an isomorphism.

2) There exist homeomorphisms which are not isomorphisms. Let Y = V (x3 − y2) ⊂ A2.

We have seen (see Exercise 2, Lesson 8) that K[X] 6' K[A1], hence Y is not isomorphic to
1
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the affine line A1. Nevertheless, the map

ϕ : A1 → Y such that t→ (t2, t3)

is regular, bijective and also a homeomorphism (see Exercise 1, Lesson 8).

Its inverse ϕ−1 : Y → A1 is defined by

(x, y)→

{
y
x

if x 6= 0

0 if (x, y) = (0, 0).

Note that ϕ−1 cannot be regular at the point (0, 0).

Next Proposition tells us how a morphism is given in practice, when the codomain is

contained in an affine space.

Proposition 1.3. Let ϕ : X → Y ⊂ An be a map. Then ϕ is regular if and only if ϕi := ti◦ϕ
is a regular function on X, for all i = 1, . . . , n, where t1, . . . , tn are the coordinate functions

on Y .

Proof. If ϕ is regular, then ϕi = ϕ∗(ti) is regular by definition.

Conversely, assume that ϕi is a regular function on X for all i. Let Z ⊂ Y be a closed

subset and we have to prove that ϕ−1(Z) is closed in X. Since any closed subset of An is an

intersection of hypersurfaces, it is enough to consider ϕ−1(Y ∩V (F )) with F ∈ K[x1, . . . , xn]:

ϕ−1(Y ∩ V (F )) = {P ∈ X|F (ϕ(P )) = F (ϕ1, . . . , ϕn)(P ) = 0} = V (F (ϕ1, . . . , ϕn)).

But note that F (ϕ1, . . . , ϕn) ∈ O(X): it is the composition of F with the regular functions

ϕ1, . . . , ϕn. Hence ϕ−1(Y ∩ V (F )) is closed, so we can conclude that ϕ is continuous. If

U ⊂ Y and f ∈ O(U), for any point P of U choose an open neighbourhood UP such that

f = FP/GP on UP . So f ◦ ϕ = FP (ϕ1, . . . , ϕn)/GP (ϕ1, . . . , ϕn) on ϕ−1(UP ), hence it is

regular on each ϕ−1(UP ) and by consequence on ϕ−1(U). �

Remark. If ϕ : X → Y is a regular map and Y ⊂ An, by Proposition 1.3 we can represent

ϕ in the form ϕ = (ϕ1, . . . , ϕn), where ϕ1, . . . , ϕn ∈ O(X) and ϕi = ϕ∗(ti). ϕ1, . . . , ϕn are

not arbitrary in O(X) but such that Im ϕ ⊂ Y .

If Y is closed in An, let us recall that t1, . . . , tn generate O(Y ), hence ϕ1, . . . , ϕn generate

ϕ∗(O(Y )) as K-algebra. This observation is the key for the following important result.

Theorem 1.4. Let X be a locally closed algebraic set and Y be an affine algebraic set. Let

Hom(X, Y ) denote the set of regular maps from X to Y and Hom(O(Y ),O(X)) denote the

set of K– homomorphisms from O(Y ) to O(X).
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Then the map Hom(X, Y ) → Hom(O(Y ),O(X)), such that ϕ : X → Y goes to ϕ∗ :

O(Y )→ O(X), is bijective.

Proof. Let Y ⊂ An and let t1, . . . , tn be the coordinate functions on Y , soO(Y ) = K[t1, . . . , tn].

Let u : O(Y )→ O(X) be a K–homomorphism: we want to define a morphism u] : X → Y

whose associated comorphism is u. By the previous Remark, if u] exists, its components

have to be u(t1), . . . , u(tn). So we define

u] : X → An

P → (u(t1)(P )), . . . , u(tn)(P )).

This is a morphism by Proposition 1.3. We claim that u](X) ⊂ Y . Let F ∈ I(Y ) and

P ∈ X: then

F (u](P )) = F (u(t1)(P ), . . . , u(tn)(P )) =

= F (u(t1), . . . , u(tn))(P ) =

= u(F (t1, . . . , tn))(P ) because u is K-homomorphism =

= u(0)(P ) =

= 0(P ) = 0.(1)

So u] is a regular map from X to Y .

We consider now (u])∗ : O(Y )→ O(X): it takes a function f to f◦u] = f(u(t1), . . . , u(tn)) =

u(f), so (u])∗ = u. Conversely, if ϕ : X → Y is regular, then (ϕ∗)] takes P to

(ϕ∗(t1)(P ), . . . , ϕ∗(tn)(P )) = (ϕ1(P ), . . . , ϕn(P )),

so (ϕ∗)] = ϕ. �

Note that, by definition, 1]O(X) = 1X , for all affine X; moreover (v ◦ u)] = u] ◦ v] for all

u : O(Z) → O(Y ), v : O(Y ) → O(X), K–homomorphisms of rings of regular functions of

affine algebraic sets: this means that also this construction is functorial.

The construction of the comorphism associated to a regular function and the result of

Theorem 1.4 can be rephrased using the language of categories. We will see it in Lesson 12.

If X and Y are quasi–projective varieties and ϕ : X → Y is a regular map, it is not

always possible to define a comorphism K(Y ) → K(X). If f is a rational function on

Y with domf = U , it can happen that ϕ(X) ∩ domf = ∅, in which case f ◦ ϕ does not

exist. Nevertheless, if we assume that ϕ is dominant, i.e. ϕ(X) = Y , then certainly

ϕ(X) ∩ U 6= ∅, hence 〈ϕ−1(U), f ◦ ϕ〉 ∈ K(X). We obtain a K–homomorphism, which is

necessarily injective, K(Y ) → K(X), also denoted by ϕ∗. Note that in this case, we have:
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dimX ≥ dimY . As above, it is possible to check that, if X ' Y , then K(X) ' K(Y ), hence

dimX = dimY . Moreover, if P ∈ X and Q = ϕ(P ), then ϕ∗ induces a map OQ,Y → OP,X ,

such that ϕ∗MQ,Y ⊂MP,X . Also in this case, if ϕ is an isomorphism, then OQ,Y ' OP,X .

We will see now how to express in practice a regular map when the target is contained in

a projective space. Let X ⊂ Pn be a quasi–projective variety and ϕ : X → Pm be a map.

Proposition 1.5. ϕ is a morphism if and only if, for any P ∈ X, there exist an open

neighbourhood UP of P and n + 1 homogeneous polynomials F0, . . . , Fm of the same degree

in K[x0, x1, . . . , xn], such that, if Q ∈ UP , then ϕ(Q) = [F0(Q), . . . , Fm(Q)]. In particular,

for any Q ∈ UP , there exists an index i such that Fi(Q) 6= 0.

Proof. “⇒” Let P ∈ X, Q = ϕ(P ) and assume that Q ∈ U0. Then U := ϕ−1(U0) is an open

neighbourhood of P and we can consider the restriction ϕ|U : U → U0, which is regular.

Possibly after restricting U , using non–homogeneous coordinates on U0, we can assume

that ϕ|U = (F1/G1, . . . , Fm/Gm), where (F1, G1), . . ., (Fm, Gm) are pairs of homogeneous

polynomials of the same degree such that VP (Gi)∩U = ∅ for all index i. We can reduce the

fractions Fi/Gi to a common denominator F0, so that degF0 = degF1 = · · · = degFm and

ϕ|U = (F1/F0, . . . , Fm/F0) = [F0, F1, . . . , Fm], with F0(Q) 6= 0 for Q ∈ U .

“⇐” Possibly after restricting UP , we can assume Fi(Q) 6= 0 for all Q ∈ UP and suitable

i. Let i = 0: then ϕ|UP
: UP → U0 operates as follows:

ϕ|UP
(Q) = (F1(Q)/F0(Q), . . . , Fm(Q)/F0(Q)),

so it is a morphism by Proposition 1.3. From this remark, one deduces that also ϕ is a

morphism. �

Example 1.6.

Let X ⊂ P2, X = VP (x21 + x22− x20), the projective closure of the unitary circle. We define

ϕ : X → P1 by

[x0, x1, x2]→

{
[x0 − x2, x1] if (x0 − x2, x1) 6= (0, 0)

[x1, x0 + x2] if (x1, x0 + x2) 6= (0, 0).

ϕ is well–defined because, on X, x21 = (x0 − x2)(x0 + x2). Moreover

(x1, x0 − x2) 6= (0, 0)⇔ [x0, x1, x2] ∈ X \ {[1, 0, 1]},

(x0 + x2, x1) 6= (0, 0)⇔ [x0, x1, x2] ∈ X \ {[1, 0,−1]}.
The map ϕ is the natural extension of the rational function f : X \ {[1, 0, 1]} → K such

that [x0, x1, x2] → x1/(x0 − x2) (Lesson 10, Example 1.11, 2). Now the point P [1, 0, 1], the

centre of the stereographic projection, goes to the point at infinity of the line VP (x2).
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By geometric reasons ϕ is invertible and ϕ−1 : P1 → X takes [λ, µ] to [λ2+µ2, 2λµ, λ2−µ2]

(note the connection with the Pitagorean triples!).

Indeed: the line through P and [λ, µ, 0] has equation: µx0−λx1−µx2 = 0. Its intersections

with X are represented by the system:{
µx0 − λx1 − µx2 = 0

x21 + x22 − x20 = 0

Assuming µ 6= 0 this system is equivalent to the following:{
µx0 − λx1 − µx2 = 0

µ2x20 = µ2(x21 + x22) = (λx1 + µx2)
2

Therefore, either x1 = 0 and x0 = x2, or{
(µ2 − λ2)x1 − 2λµx2 = 0

µx0 = λx1 + µx2

which gives the required expression.

Example 1.7. Affine transformations.

Let A = (aij) be a n × n matrix with entries in K, let B = (b1, . . . , bn) ∈ An be a point.

The map τA : An → An defined by (x1, . . . , xn)→ (y1, . . . , yn), such that

{yi =
∑
j

aijxj + bi, i = 1, . . . , n,

is a regular map called an affine transformation of An. In matrix notation τA is Y = AX+B.

If A is of rank n, then τA is said non–degenerate and is an isomorphism: the inverse map

τ−1A is represented by X = A−1Y − A−1B. More in general, an affine transformation from

An to Am is a map represented in matrix form by Y = AX +B, where A is a m× n matrix

and B ∈ Am. It is injective if and only if rkA = n and surjective if and only if rkA = m.

The isomorphisms of an algebraic set X in itself are called automorphisms of X: they

form a group for the usual composition of maps, denoted by Aut X. If X = An, the

non–degenerate affine transformations form a subgroup of Aut An.

If n = 1 and the characteristic of K is 0, then Aut A1 coincides with this subgroup. In

fact, let ϕ : A1 → A1 be an automorphism: it is represented by a polynomial F (x) such that

there exists G(x) satisfying the condition G(F (t)) = t for all t ∈ A1, i.e. G(F (x)) = x in the

polynomial ring K[x]. Then, taking derivatives, we get G′(F (x))F ′(x) = 1, which implies

F ′(t) 6= 0 for all t ∈ K, so F ′(x) is a non–zero constant. Hence, F is linear and G is linear

too.
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If n ≥ 2, then Aut An is not completely described. There exist non–linear automorphisms

of degree d, for all d. For example, for n = 2: let ϕ : A2 → A2 be given by (x, y) →
(x, y + P (x)), where P is any polynomial of K[x]. Then ϕ−1 : (x′, y′) → (x′, y′ − P (x′)). A

very important and difficult open problem in Algebraic Geometry is the Jacobian conjecture,

stating that, in characteristic zero, a regular map ϕ : An → An is an automorphism if and

only if the Jacobian determinant | J(ϕ) | is a non-zero constant.

Example 1.8. Projective transformations.

Let A be a (n + 1) × (n + 1)–matrix with entries in K. Let P [x0, . . . , xn] ∈ Pn: then

[a00x0 + · · · + a0nxn, . . . , an0x0 + · · · + annxn] is a point of Pn if and only if it is different

from [0, . . . , 0]. So A defines a regular map τ : Pn → Pn if and only if rkA = n + 1. If

rkA = r < n+ 1, then A defines a regular map whose domain is the quasi–projective variety

Pn \ P(kerA). If rkA = n+ 1, then τ is an isomorphism, called a projective transformation.

Note that the matrices λA, λ ∈ K∗, all define the same projective transformation. So

PGL(n+ 1, K) := GL(n+ 1, K)/K∗ acts on Pn as the group of projective transformations.

If X, Y ⊂ Pn, they are called projectively equivalent if there exists a projective trans-

formation τ : Pn → Pn such that τ(X) = Y .

Theorem 1.9. Fundamental theorem on projective transformations.

Let two (n + 2)–tuples of points of Pn in general position be fixed: P0, . . . , Pn+1 and

Q0, . . . , Qn+1. Then there exists one, and only one, isomorphic projective transformation

τ of Pn in itself, such that τ(Pi) = Qi for all index i.

Proof. Put Pi = [vi], Qi = [wi], i = 0, . . . , n + 1. So {v0, . . . , vn} and {w0, . . . , wn} are two

bases of Kn+1, hence there exist scalars λ0, . . . , λn, µ0, . . . , µn such that

vn+1 = λ0v0 + · · ·+ λnvn, wn+1 = µ0w0 + · · ·+ µnwn,

where the coefficients are all different from 0, because of the general position assumption.

We replace vi with λivi and wi with µiwi and get two new bases, so there exists a unique

automorphism of Kn+1 transforming the first basis in the second one and, by consequence,

also vn+1 in wn+1. This automorphism induces the required projective transformation on Pn.

�

An immediate consequence of the above theorem is that projective subspaces of the same

dimension are projectively equivalent. Also two subsets of Pn formed both by k points in

general position are projectively equivalent if k ≤ n+ 2. If k > n+ 2, this is no longer true,

already in the case of four points on a projective line. The problem of describing the classes

of projective equivalence of k–tuples of points of Pn, for k > n+ 2, is one the first problems
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of classical Invariant Theory. The solution in the case k = 4, n = 1 is given by the notion of

cross–ratio.

Example 1.10.

Let X ⊂ An be an affine variety, then XF := X \ V (F ) is isomorphic to a closed subset

of An+1, i.e. to Y = V (xn+1F − 1, G1, . . . , Gr), where I(X) = 〈G1, . . . , Gr〉. Indeed, the

following regular maps are inverse each other:

- ϕ : XF → Y such that (x1, . . . , xn)→ (x1, . . . , xn, 1/F (x1, . . . , xn)),

- ψ : Y → XF such that (x1, . . . , xn, xn+1)→ (x1, . . . , xn).

Hence, XF is a quasi–projective variety contained in An, not closed in An, but isomorphic

to a closed subset of another affine space.

From now on, the term affine variety will denote a locally closed subset of a projective

space isomorphic to some affine closed set.

If X is an affine variety and precisely X ' Y , with Y ⊂ An closed, then O(X) ' O(Y ) =

K[t1, . . . , tn] is a finitely generated K–algebra. In particular, if K is algebraically closed

and α is an ideal strictly contained in O(X), then V (α) ⊂ X is non–empty, by the relative

form of the Nullstellensatz. From this observation, we can deduce that the quasi–projective

variety of next example is not affine.

Example 1.11. A2 \ {(0, 0)} is not affine.

Set X = A2 \ {(0, 0)}: first of all we will prove that O(X) ' K[x, y] = O(A2), i.e. any

regular function on X can be extended to a regular function on the whole plane.

Indeed: let f ∈ O(X): if P 6= Q are points of X, then there exist polynomials F,G, F ′, G′

such that f = F/G on a neighbourhood UP of P and f = F ′/G′ on a neighbourhood UQ
of Q. So F ′G = FG′ on UP ∩ UQ 6= ∅, which is open also in A2, hence dense. Therefore

F ′G = FG′ in K[x, y]. We can clearly assume that F and G are coprime and similarly for

F ′ and G′. So by the unique factorization property, it follows that F ′ = F and G′ = G.

In particular f admits a unique representation as F/G on X and G(P ) 6= 0 for all P ∈ X.

Hence G has no zeros on A2, so G = c ∈ K∗ and f ∈ O(X).

Now, the ideal 〈x, y〉 has no zeros in X and is proper: this proves that X is not affine.

We have exploited the fact that a polynomial in more than one variables has infinitely

many zeros, a fact that allows to generalise the previous observation.

On the other hand, the following property holds:

Proposition 1.12. Let X ⊂ Pn be quasi–projective. Then X admits an open covering by

affine varieties.



8 LESSON 11.

Proof. Let X = X0 ∪ · · · ∪ Xn be the open covering of X where Xi = Ui ∩ X = {P ∈
X | P [a0, . . . , an], ai 6= 0}. So, fixed P , there exists an index i such that P ∈ Xi. We can

assume that P ∈ X0: X0 is open in some affine variety Y of An (identified with U0); set

X0 = Y \ Y ′, where Y , Y ′ are both closed. Since P 6∈ Y ′, there exists F such that F (P ) 6= 0

and V (F ) ⊃ Y ′. So P ∈ Y \ V (F ) ⊂ Y \ Y ′ and Y \ V (F ) is an affine open neighbourhood

of P in Y \ Y ′ = X0 ⊂ X. �

Example 1.13. The Veronese maps.

Let n, d be positive integers; put N(n, d) =
(
n+d
d

)
− 1. Note that

(
n+d
d

)
is equal to the

number of (monic) monomials of degree d in the variables x0, . . . , xn, that is equal to the

number of (n+1)–tuples (i0, . . . , in) such that i0+· · ·+in = d, ij ≥ 0. Then in PN(n,d) we can

use coordinates {vi0...in}, where i0, . . . , in ≥ 0 and i0 + · · · + in = d. For example: if n = 2,

d = 2, then N(2, 2) =
(
4
2

)
−1 = 5. In P5 we can use coordinates v200, v110, v101, v020, v011, v002.

For all n, d we define the map vn,d : Pn → PN(n,d) such that

[x0, . . . , xn]→ [vd00...0, vd−1,10...0, . . . , v0...00d]

where vi0...in = xi00 x
i1
1 . . . x

in
n : vn,d is clearly a morphism, its image is denoted by Vn,d and is

called the Veronese variety of type (n, d). It is in fact the projective variety of equations:

(2) {vi0...invj0...jn − vh0...hnvk0...kn ,∀i0 + j0 = h0 + k0, i1 + j1 = h1 + k1, . . .

We prove this statement in the particular case n = d = 2; the general case is similar.

First of all, it is clear that the points of vn,d(Pn) satisfy the system (2). Conversely, assume

that P [v200, v110, . . .] ∈ P5 satisfies equations (2), which become:

v200v020 = v2110
v200v002 = v2101
v002v020 = v2011
v200v011 = v110v101

v020v101 = v110v011

v110v002 = v011v101

Then, at least one of the coordinates v200, v020, v002 is different from 0.

Therefore, if v200 6= 0, then P = v2,2([v200, v110, v101]); if v020 6= 0, then P = v2,2([v110, v020, v011]);

if v002 6= 0, then P = v2,2([v101, v011, v002]). Note that, if two of these three coordinates are

different from 0, then the points of P2 found in this way have proportional coordinates, so

they coincide.

We have also proved in this way that v2,2 is an isomorphism between P2 and V2,2, called

the Veronese surface of P5. The same happens in the general case.
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If n = 1, v1,d : P1 → Pd takes [x0, x1] to [xd0, x
d−1
0 x1, . . . , x

d
1]: the image is called the rational

normal curve of degree d, it is isomorphic to P1. If d = 3, we find the skew cubic.

Let now X ⊂ Pn be a hypersurface of degree d: X = VP (F ), with

F =
∑

i0+···+in=d

ai0...inx
i0
0 . . . x

in
n .

Then vn,d(X) ' X: it is the set of points

{vi0...in ∈ PN(n,d)|
∑

i0+···+in=d

ai0...invi0...in = 0 and [vi0...in ] ∈ Vn,d}.

It coincides with Vn,d ∩ H, where H is a hyperplane of PN(n,d): a hyperplane section of

the Veronese variety. This is called the linearisation process, allowing to “ transform” a

hypersurface in a hyperplane, modulo the Veronese isomorphism.

The Veronese surface V = V2,2 of P5 enjoys a lot of interesting properties. Most of them

follow from its property of being covered by a 2-dimensional family of conics, which are

precisely the images via v2,2 of the lines of the plane.

To see this, we will change notation and will use as coordinates in P5 w00, w01, w02, w11, w12, w22,

so that v2,2 sends [x0, x1, x2] to the point of coordinates wij = xixj. With this choice of coor-

dinates, the equations of V are obtained by annihilating the 2× 2 minors of the symmetric

matrix:

M =

 w00 w01 w02

w01 w11 w12

w02 w12 w22

 .

Let ` be a line of P2 of equation b0x0 + b1x1 + b2x2 = 0. Its image is the set of points

of P5 with coordinates wij = xixj, such that there exists a non-zero triple [x0, x1, x2] with

b0x0 + b1x1 + b2x2 = 0. But this last equation is equivalent to the system:
b0x

2
0 + b1x0x1 + b2x0x2 = 0

b0x0x1 + b1x
2
1 + b2x1x2 = 0

b0x0x2 + b1x1x2 + b2x
2
2 = 0

It represents the intersection of V with the plane

(3)


b0w00 + b1w01 + b2w02 = 0

b0w01 + b1w11 + b2w12 = 0

b0w02 + b1w12 + b2w22 = 0

so v2,2(`) is a plane curve. Its degree is the number of points in its intersection with a general

hyperplane in P5: this corresponds to the intersection in P2 of ` with a conic (a hypersurface

of degree 2). Therefore v2,2(`) is a conic.
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So the isomorphism v2,2 transforms the geometry of the lines in the plane in the geometry

of the conics in the Veronese surface. In particular, given two distinct points on V , there is

exactly one conic contained in V and passing through them.

From this observation it is easy to deduce that the secant lines of V , i.e. the lines meeting

V at two points, are precisely the lines of the planes generated by the conics contained in V ,

so that the (closure of the) union of these secant lines coincides with the union of the planes

of the conics of V . This union results to be the cubic hypersurface defined by the equation

detM = det

 w00 w01 w02

w01 w11 w12

w02 w12 w22

 = 0.

Indeed a point in P5, of coordinates [wij] belongs to the plane of a conic contained in V

if and only if there exists a non-zero triple [b0, b1, b2] which is solution of the homogeneous

system (3).

Exercises 1.14. 1. Let X, Y be closed subsets of An. Consider X×Y ⊂ A2n and the linear

subspace, called the diagonal, ∆ ⊂ A2n defined by the equations xi − yi = 0, i = 1, . . . , n.

Prove that (X × Y ) ∩∆ is isomorphic to X ∩ Y , constructing an explicit regular map with

regular inverse.

2. Let f : A2 → A2 be the map defined by f(x, y) = (x, xy). Check that f is regular and

find the image f(A2): is it open in A2? Dense? Closed? Locally closed? Irreducible?

3. Let v1,d : P1 → Pd be the d-tuple Veronese map, such that v1,d([x0, x1]) = [xd0, x
d−1
0 x1, . . . , x

d
1]).

a) Check that the image of v1,d is Cd, the projective algebraic set defined by the 2 × 2

minors of the matrix

A =

(
x0 x1 . . . xd−1
x1 x2 . . . xd

)
.

Cd is called the rational normal curve of degree d.

b) Prove that v1,d : P1 → Cd is an isomorphism, by explicitly constructing its inverse

morphism.

c) Prove that any d+ 1 points on Cd are linearly independent in Pd (Hint: Vandermonde).


