
Statistical Machine Learning
Bayesian Linear Classification

Luca Bortolussi

Data Science and Scientific Computing

1 Linear Classifiers
• Data: xi, ti. Output are discrete, either binary or multiclass (K classes), and are

also denoted by yi. Classes are denoted by C1, . . . ,CK .

• Discriminant function: we construct a function f (x) ∈ {1, . . . ,K} associating
with each input a class.

• Generative approach: We consider a prior over classes, p(Ck), and the class-
conditional densities p(x|Ck), from a parametric family. We learn class-conditional
densities from data, and then compute the class posterior.

p(Ck |x) =
p(x|Ck)p(Ck)

p(x)

• Discriminative approach: we learn directly a model for the class posteriori p(Ck |x),
typically as p(Ck |x) = f (wφ(x)).
f is called an activation function (and f −1 a link function).

1.1 Encoding of the output and Multi-class strategies
• For a binary classification problem, usually we choose tn ∈ {0, 1}. The interpre-

tation is that of a “probability” to belong to class C1.

• In some circumstances (perceptron, SVM), we will prefer the encoding tn ∈
{−1, 1}.

• For a multiclass problem, we usually stick to a boolean encoding: tn = (tn,1, . . . , tn,K),
with tn, j ∈ {0, 1}, and tn is in class k if and only if tn,k = 1 and tn, j = 0, for j , k.

• Assume we have a binary classifier. We can train K classifiers, one-versus-the-
rest strategy, class Ck versus all other points (unbalanced).

• Alternatively, there is the one-versus-one classifier, trains K(K − 1)/2 for each
pair of classes, decode by majority voting. Both are ambiguous.

1

• One can train K linear discriminants yk(x) = wk
T x + bk and decode to j such that

y j(x) > yi(x) for each i , j. 4.1. Discriminant Functions 183

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class Ck from points not in class Ck. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes Ck and Cj .

example involving three classes where this approach leads to regions of input space
that are ambiguously classified.

An alternative is to introduce K(K − 1)/2 binary discriminant functions, one
for every possible pair of classes. This is known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant func-
tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2.

We can avoid these difficulties by considering a single K-class discriminant
comprising K linear functions of the form

yk(x) = wT
k x + wk0 (4.9)

and then assigning a point x to class Ck if yk(x) > yj(x) for all j ̸= k. The decision
boundary between class Ck and class Cj is therefore given by yk(x) = yj(x) and
hence corresponds to a (D − 1)-dimensional hyperplane defined by

(wk − wj)
Tx + (wk0 − wj0) = 0. (4.10)

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points xA and xB both of which lie inside decision
region Rk, as illustrated in Figure 4.3. Any point x̂ that lies on the line connecting
xA and xB can be expressed in the form

x̂ = λxA + (1 − λ)xB (4.11)

2 Logistic Regression

2.1 Logit and Probit
• We model directly the conditional class probabilities p(C1|x) = f (wTφ(x)), after

a (nonlinear) mapping of the features φ(x) = φ1(x), . . . , φm(x).

• Common choices for f are the logistic or logit function σ(a) = 1
1+e−a and the

probit function ψ(a) =
∫ a
−∞
N(θ|0, 1)dθ.

• We will focus on logistic regression.

• The non-linear embedding is an important step204 4. LINEAR MODELS FOR CLASSIFICATION

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1

Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions φ1(x) and φ2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(φ1, φ2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions φ(x). The resulting decision boundaries will be linear in
the feature space φ, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space φ(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the

2.2 Logistic regression
• We assume p(C1|φ) = y(φ) = σ(wTφ) where φ = φ(x) and φi = φ(xi).

• As y = y(φ(x)) ∈ [0, 1] we interpret is as the probability of assigning input x to
class 1, so that the likelihood is

p(t|w) =

N∏
i=1

yti
i (1 − yi)1−ti

2

where yi = σ(wTφi).

• We need to minimise minus the log-likelihood, i.e.

E(w) = − log p(t|w) = −

N∑
i=1

ti log yi + (1 − ti) log(1 − yi)

2.3 Numerical optimisation
• The gradient of E(w) is ∇E(w) =

∑N
i=1(yi − ti)φi. The equation ∇E(w) = 0 has

no closed form solution, so we need to solve it numerically.

• One possibility is gradient descend. We initialise w0 to any value and then update
it by

wn+1 = wn − η∇E(wn)

where the method converges for η small.

• We can also use stochastic gradient descent for online training, using the update
rule for w:

wn+1 = wn − η∇n+1E(wn),

with ∇nE(w) = (yn − tn)φn

2.4 Newton-Rapson method
• As an alternative optimisation, we can use the Newton-Rapson method, which

has better convergence properties.

• The update rule reads:

wnew = wold − ηH−1∇E(wold)

where H is the Hessian of E(w), and η the learning rate.

• For logistic regression, we have ∇E(w) = ΦT (y − t) and H = ΦT RΦ, with R
diagonal matrix with elements Rnn = yn(1 − yn).

• It is easy to check that the Hessian is positive definite, hence the function E(w)
is convex and has a unique minimum.

2.5 Overfitting
• If we allocate each point x to the class with highest probability, i.e. maximising
σ(wTφ(x)), then the separating surface is an hyperplane in the feature space and
is given by the equation wTφ(x) = 0.

• If the data is linearly separable in the feature space, then any separable hyper-
plane is a solution, and the magnitude of w tends to go to infinity during optimi-
sation. In this case, the logistic function converges to the Heaviside function.

• To avoid this issue, we can add a regularisation term to E(w), thus minimising
E(w) + αwT w.

3

2.6 Multi-class logistic regression
• We can model directly the multiclass conditional probability, using the soft-max

function:

p(Ck |x) = yk(x) =
exp(ak)∑
j exp(a j)

with ak = wkφ(x). It holds ∂yk(x)
∂a j

= yk(δk j − y j)

• Using the boolean encoding of the outputs, the likelihood is

p(T|w1, . . . ,wK) =

N∏
n=1

K∏
k=1

p(Ck |φn)tnk =

N∏
n=1

K∏
k=1

ytnk
nk

• Hence we need to minimise

E(w1, . . . ,wK) = −

N∑
n=1

K∑
k=1

tnk log ynk

• E(w1, . . . ,wK) has gradient

∇wj E(w1, . . . ,wK) =

N∑
n=1

(yn j − tn j)φn

• and Hessian with blocks given by

∇wk∇wj E(w1, . . . ,wK) = −

N∑
n=1

ynk(Ik j − yn j)φnφ
T
n

• Also in this case the Hessian is positive definite, and we can use the Newton-
Rapson algorithm for optimisation

3 Laplace Approximation

3.1 One dimensional case
• It is a general technique to locally approximate a general distribution around a

mode with a Gaussian.

• Consider a 1d distribution p(z) = 1
Z f (z) where Z =

∫
f (z)dz is the normalisation

constant.

• Pick a mode z0 of f (z), i.e. a point such that d
dz f (z0) = 0.

4

• As the logarithm of the Gaussian density is quadratic, we consider a Taylor ex-
pansion of log f (z) around z0:

log f (z) ≈ log f (z0) −
1
2

A(z − z0)2

with A = − d2

dz2 log f (z0)

• Hence we have f (z) ≈ f (z0) exp(− 1
2 A(z − z0)2). Now, we seek the best Gaussian

q(z) approximating p(z) around the model z0, requiring A > 0. This is clearly
given by

q(z) =

(A
2π

) 1
2

exp(−
1
2

A(z − z0)2)

• We also have that Z ≈ f (z0)
(

A
2π

)− 1
2 4.4. The Laplace Approximation 215

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

−2 −1 0 1 2 3 4
0

10

20

30

40

Figure 4.14 Illustration of the Laplace approximation applied to the distribution p(z) ∝ exp(−z2/2)σ(20z + 4)
where σ(z) is the logistic sigmoid function defined by σ(z) = (1 + e−z)−1. The left plot shows the normalized
distribution p(z) in yellow, together with the Laplace approximation centred on the mode z0 of p(z) in red. The
right plot shows the negative logarithms of the corresponding curves.

We can extend the Laplace method to approximate a distribution p(z) = f(z)/Z
defined over an M -dimensional space z. At a stationary point z0 the gradient ∇f(z)
will vanish. Expanding around this stationary point we have

ln f(z) ≃ ln f(z0) − 1

2
(z − z0)

TA(z − z0) (4.131)

where the M × M Hessian matrix A is defined by

A = − ∇∇ ln f(z)|z=z0
(4.132)

and ∇ is the gradient operator. Taking the exponential of both sides we obtain

f(z) ≃ f(z0) exp

{
−1

2
(z − z0)

TA(z − z0)

}
. (4.133)

The distribution q(z) is proportional to f(z) and the appropriate normalization coef-
ficient can be found by inspection, using the standard result (2.43) for a normalized
multivariate Gaussian, giving

q(z) =
|A|1/2

(2π)M/2
exp

{
−1

2
(z − z0)

TA(z − z0)

}
= N (z|z0,A

−1) (4.134)

where |A| denotes the determinant of A. This Gaussian distribution will be well
defined provided its precision matrix, given by A, is positive definite, which implies
that the stationary point z0 must be a local maximum, not a minimum or a saddle
point.

In order to apply the Laplace approximation we first need to find the mode z0,
and then evaluate the Hessian matrix at that mode. In practice a mode will typi-
cally be found by running some form of numerical optimization algorithm (Bishop

3.2 n dimensional case
• In n dimensions, we proceed in the same way. Given a density p(z) = 1

Z f (z), we
find a mode z0 (so that ∇ log f (z0) = 0, and approximate log f (z) around z0 by
Taylor expansion, obtaining

log f (z) = log f (z0) −
1
2

(z − z0)T A(z − z0)

where A = −∇∇ log f (z0).

• This gives a Gaussian approximation around z0 by

q(z) = N(z|z0,A−1)

• Furthermore Z ≈ (2π)n/2

|A|1/2 f (z0)

5

3.3 Model comparison and BIC
• We can use Laplace approximation for the marginal likelihood in a model com-

parison framework.

• Consider dataD and a modelM depending on parameters θ. We fix a prior P(θ)
over θ and compute the posterior by Bayes theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)

• Here p(D) =
∫

p(D|θ)p(θ)dθ is the marginal likelihood. It fits in the previous
framework by setting Z = p(D), and f = p(D|θ)p(θ).

• By Laplace approximation around the maximum a-posteriori estimate θMAP:

log p(D) ≈ log p(D|θMAP) + log p(θMAP) +
M
2

log(2π) −
1
2

log |A|

where A = −∇∇p(D|θMAP)p(θMAP). The last three terms in the sum penalise the
log likelihood in terms of model complexity.

• A crude approximation of them is

logp(D) ≈ log p(D|θMAP) −
1
2

M log N

which is known as Bayesian Information Content, and can be used to penalise
log likelihood w.r.t. model complexity, to compare different models.

4 Bayesian Logistic Regression

4.1 The Bayesian way
• To recast logistic regression in a Bayesian framework, we need to put a prior on p(w)

of the coefficients w of σ(wTφ(x)) and compute the posterior distribution on w by Bayes
theorem. Then we can make predictions by integrating out the parameters.

• Assume a Gaussian prior p(w) = N(w|m0,S0). The posterior is p(w|t) ∝ p(w)p(t|w), and
the log-posterior is

log p(w|t) = −
1
2

(w −m0)T S −1
0 (w −m0) +

N∑
i=1

[ti log yi + (1 − ti) log(1 − yi)] + c

where yi = σ(wφ(xi)).

• Computing the marginal likelihood and the normalisation constant is analytically in-
tractable, due to quadratic and logistic terms. Hence we do a Laplace approximation
of the posterior.

6

4.2 Laplace approximation of the posterior
• Given log p(w|t), we first find the maximum a-posteriori wMAP, by running a numerical

optimisation, and then obtain the Laplace approximation computing the Hessian matrix
at wMAP and inverting it, obtaining

SN = −∇∇ log p(w|t) = S0
−1 +

N∑
n=1

yn(1 − yn)φ(xn)φ(xn)T

evaluated at w = wMAP.

• Hence, the Laplace approximation of the posterior is

q(w) = N(w|wMAP,SN)

4.3 Predictive distribution
• The predictive distribution for class C1 is given by

p(C1|φ, t) =

∫
p(C1|φ,w, t)q(w)dw =

∫
σ(wTφ(x))q(w)dw

• This multi-dimensional integral can be simplified by noting that it depends on w only on
the 1-dim projection a = wTφ(x), and that q restricted to this direction is still a Gaussian
distribution q(a) with mean and variance

µa = wMAP
Tφ(x) σ2

a = φ(x)T SNφ(x)

• Hence we have
p(C1|φ, t) =

∫
σ(a)q(a)da

4.4 Probit approximation
• The integral p(C1|φ, t) =

∫
σ(a)q(a)da can be approximated by approximating the logistic

function by the probit: σ(a) = Ψ(λa), where λ is obtained by matching derivatives at zero
and is λ2 = π/8.

• We then use ∫
Ψ(a)N(a|µ, σ2) = Ψ

(
µ

(λ−2 + σ2)1/2

)
and approximate back to the logistic to get

p(C1|φ, t) ≈ σ(κ(σ2
a)µa)

with κ(σ2
a) = (1 + πσ2

a/8)−1/2

5 Constrained Optimisation
5.1 Lagrange Multipliers

• Suppose we want to maximise f (x) subject to the constraint g(x) = 0.

• g(x) = 0 defines a surface and ∇g(x) is always orthogonal to it.

7

• In a point of this surface in which f (x) is optimal, it must hold that ∇ f (x) = λ∇g(x), i.e.
the projection of ∇ f (x) on the tangent space of the surface is zero, otherwise we could
increment the value of f by moving along the surface g(x) = 0.

• We can then do an unconstrained optimisation

max
x

inf
λ

L(x, λ)

of the Lagrangian function
L(x, λ) = f (x) + λg(x)708 E. LAGRANGE MULTIPLIERS

Figure E.1 A geometrical picture of the technique of La-
grange multipliers in which we seek to maximize a
function f(x), subject to the constraint g(x) = 0.
If x is D dimensional, the constraint g(x) = 0 cor-
responds to a subspace of dimensionality D − 1,
indicated by the red curve. The problem can
be solved by optimizing the Lagrangian function
L(x, λ) = f(x) + λg(x).

∇f(x)

∇g(x)

xA

g(x) = 0

then parallel to the constraint surface g(x) = 0, we see that the vector ∇g is normal
to the surface.

Next we seek a point x⋆ on the constraint surface such that f(x) is maximized.
Such a point must have the property that the vector ∇f(x) is also orthogonal to the
constraint surface, as illustrated in Figure E.1, because otherwise we could increase
the value of f(x) by moving a short distance along the constraint surface. Thus ∇f
and ∇g are parallel (or anti-parallel) vectors, and so there must exist a parameter λ
such that

∇f + λ∇g = 0 (E.3)

where λ ̸= 0 is known as a Lagrange multiplier. Note that λ can have either sign.
At this point, it is convenient to introduce the Lagrangian function defined by

L(x, λ) ≡ f(x) + λg(x). (E.4)

The constrained stationarity condition (E.3) is obtained by setting ∇xL = 0. Fur-
thermore, the condition ∂L/∂λ = 0 leads to the constraint equation g(x) = 0.

Thus to find the maximum of a function f(x) subject to the constraint g(x) = 0,
we define the Lagrangian function given by (E.4) and we then find the stationary
point of L(x, λ) with respect to both x and λ. For a D-dimensional vector x, this
gives D +1 equations that determine both the stationary point x⋆ and the value of λ.
If we are only interested in x⋆, then we can eliminate λ from the stationarity equa-
tions without needing to find its value (hence the term ‘undetermined multiplier’).

As a simple example, suppose we wish to find the stationary point of the function
f(x1, x2) = 1 − x2

1 − x2
2 subject to the constraint g(x1, x2) = x1 + x2 − 1 = 0, as

illustrated in Figure E.2. The corresponding Lagrangian function is given by

L(x, λ) = 1 − x2
1 − x2

2 + λ(x1 + x2 − 1). (E.5)

The conditions for this Lagrangian to be stationary with respect to x1, x2, and λ give
the following coupled equations:

−2x1 + λ = 0 (E.6)
−2x2 + λ = 0 (E.7)

x1 + x2 − 1 = 0. (E.8)

• In fact, if g(x) , 0, then infλ L(x, λ) = −∞, hence the Lagrangian optimization problem
takes finite values only on {g(x) = 0}.

• Deriving w.r.t x gives the condition on gradients, deriving w.r.t λ the constraint: setting
the derivative to zero, we enforce the constraint and look for an optimal point.

5.2 Karush-Kuhn-Tucker conditions
• Suppose we want to optimise f (x) subject to the constraint g(x) ≥ 0.

• If an optimum x satisfies g(x) > 0 (inactive constraint), then ∇ f (x) = 0 and λ = 0, if
instead g(x) = 0 (active constraint), then ∇ f (x) = −λ∇g(x), λ > 0 because an increase of
f cannot bring inside the feasible region.

E. LAGRANGE MULTIPLIERS 709

Figure E.2 A simple example of the use of Lagrange multipli-
ers in which the aim is to maximize f(x1, x2) =
1 − x2

1 − x2
2 subject to the constraint g(x1, x2) = 0

where g(x1, x2) = x1 + x2 − 1. The circles show
contours of the function f(x1, x2), and the diagonal
line shows the constraint surface g(x1, x2) = 0.

g(x1, x2) = 0

x1

x2

(x⋆
1, x

⋆
2)

Solution of these equations then gives the stationary point as (x⋆
1, x

⋆
2) = (1

2
, 1

2
), and

the corresponding value for the Lagrange multiplier is λ = 1.
So far, we have considered the problem of maximizing a function subject to an

equality constraint of the form g(x) = 0. We now consider the problem of maxi-
mizing f(x) subject to an inequality constraint of the form g(x) ! 0, as illustrated
in Figure E.3.

There are now two kinds of solution possible, according to whether the con-
strained stationary point lies in the region where g(x) > 0, in which case the con-
straint is inactive, or whether it lies on the boundary g(x) = 0, in which case the
constraint is said to be active. In the former case, the function g(x) plays no role
and so the stationary condition is simply ∇f(x) = 0. This again corresponds to
a stationary point of the Lagrange function (E.4) but this time with λ = 0. The
latter case, where the solution lies on the boundary, is analogous to the equality con-
straint discussed previously and corresponds to a stationary point of the Lagrange
function (E.4) with λ ̸= 0. Now, however, the sign of the Lagrange multiplier is
crucial, because the function f(x) will only be at a maximum if its gradient is ori-
ented away from the region g(x) > 0, as illustrated in Figure E.3. We therefore have
∇f(x) = −λ∇g(x) for some value of λ > 0.

For either of these two cases, the product λg(x) = 0. Thus the solution to the

Figure E.3 Illustration of the problem of maximizing
f(x) subject to the inequality constraint
g(x) ! 0.

∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0

• In any case λg(x) = 0 for an optimum point.

8

• We can then optimise the Lagrangian function L(x, λ) = f (x) + λg(x) subject to λ ≥ 0,
g(x) ≥ 0, λg(x) = 0, known as the Karush-Kuhn-Tucker (KKT) conditions.

• Also in this case, we can then solve the unconstrained optimisation

max
x

inf
λ≥0

L(x, λ)

of the Lagrangian function
L(x, λ) = f (x) + λg(x)

• In fact, if g(x) > 0, then the inner optimization is solved by λ = 0, otherwise, if g(x) < 0,
it is solved by λ = +∞ and the Lagrangian is −∞. On the boundary g(x) = 0 , λ can take
finite values.

• To minimise f (x), we optimise minx supλ≥0 f (x) − λg(x)

• Lagrange and KKT multipliers can be combined to solved constrained problems with both
equalities and inequalities.

5.3 The dual formulation
• The dual formulation of the constrained minimisation problem with Lagrangian L(x, λ) =

f (x) −
∑

j λ jg j(x) is given by
L̃(λ) = inf

x∈D
L(x, λ)

• L̃(λ) is a lower bound on f (x). The dual optimisation problem is to maximise L̃(λ) subject
to KKT conditions.

• If the original problem is convex (single global optimum), and under regularity conditions
on the constraints (e.g. linear), then the solution of the dual gives exactly the minimum of
the primal.

• For non-convex problems, there can be a duality gap.

• For quadratic objective functions and linear constraints, the dual objective can be com-
puted easily, because ∂L(x, λ)/∂x gives a linear system that can be solved to express x as
a function of λ’s

6 Support Vector Machines
6.1 Kernel trick for classification

• The trick works similarly as for regression. Consider class conditionals p(C1|x) = σ(wTφ(x)).

• We can make the assumption that w =
∑N

n=1 anφ(xn) (this is consistent, as the ML solution
will belong to the space spanned by φ(xn)), thus getting

p(C1|x) = σ

 N∑
n=1

αnk(x, xn)

where we define the kernel function k(x, x′) = φ(x)Tφ(x′)

• We can write also p(C1|x) = σ(aT k(x)). The maximum likelihood solution can be found
using gradient based methods.

9

6.2 Maximum margin classifiers
• We have 2-class data xn, tn, with tn ∈ {−1, 1}. We assume for the moment that the data is

linearly separable in a feature space after applying the non-linear mapping φ(x).

• There may be many hyperplanes separating the data. An effective choice is to select the
one maximising the margin, i.e. the smallest distance between the separating hyperplane
and the data points.

• Only closest data points are needed to determine it.
7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/∥w∥.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)

∥w∥ =
tn(wTφ(xn) + b)

∥w∥ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because w

• Write y(x) = wTφ(x) + b.

• The distance between a point and the separating hyperplane wTφ + b is |y(x)|/||w||.

• As we want to classify correctly all points, it will hold that tny(xn) ≥ 0, by the choice of
tn encoding.

• Hence, to find the maximum margin, we need to find w and b such that:

max
w,b

[
1
||w||

min
n
{tnwTφ(xn) + tnb}

]
• The solution is defined up to an arbitrary rescaling of w and b, so we can set to 1 the

margin, obtaining the constraint

tnwTφ(xn) + tnb ≥ 1, n = 1, . . . ,N

• The constraints tnwTφ(xn) + tnb ≥ 1 known as the canonical representation. Points for
which equality to 1 holds are called active, the others inactive.

• The maximisation above is equivalent to minimise ||w||2:

min
w,b

1
2
||w||2

subject to canonical constraints. b will be set via the constraints.

• To solve this quadratic program, we introduce a Langrange multiplier an for each con-
straint, resulting in the following Lagrangian

L(w, b, a) =
1
2
||w||2 −

N∑
n=1

an[tnwTφ(xn) + tnb − 1]

which has to be minimised w.r.t w and b, and maximised w.r.t a.

10

6.3 The dual formulation of the maximum margin problem
• Starting from the Lagrangian L(w, b, a) we compute derivatives w.r.t. w and b and set

them to zero, obtaining constraints

w =
∑

n

antnφ(xn) 0 =
∑

n

antn

• By substituting them in the Lagrangian, we obtain the dual representation

L̃(a) =

N∑
n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm)

subject to the constraints

an ≥ 0, n = 1, . . . ,N;
∑

n

antn = 0

• k(xn, xm) = φ(xn)Tφ(xm) is the kernel function.

6.3.1 The dual formulation of the maximum margin problem

• This optimisation problem can be solved in O(N3) time. Its main advantage is that it
depends on the kernel, not on basis functions, hence it can be applied to more general
kernels.

• The prediction for a new point x is obtained by using the dual formulation of w, giving

y(x) =
∑

n

antnk(x, xn) + b

6.3.2 Sparsity of the solution

• The optimisation problem satisfies the KKT conditions:

an ≥ 0; tny(xn) − 1 ≥ 0; an[tny(xn) − 1] = 0

• This implies that either tny(xn) = 1 (the vector xn is at minimum distance from the margin)
or an = 0 (it does not contribute to the predictions).

• Let us indicate with S the set of support vectors.

6.3.3 Determining b

• From any xn ∈ S, by using tny(xn) = 1, we can determine b by solving

tn

∑
m∈S

amtmk(xn, xm) + tnb = 1

• To have a more stable solution, one multiplies by tn, uses t2
n = 1, and averages for the

different support vectors:

b =
1

NS

∑
n∈S

tn −
∑
m∈S

amtmk(xn, xm))

11

6.4 Example of SVM
• Example of data linearly separable in the space defined by the Gaussian kernel function.

• Sparsity: only support vectors define the maximum margin hyperplane: moving the other
is irrelevant, as far as they remain on the same side.7.1. Maximum Margin Classifiers 331

Figure 7.2 Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.

form (6.23). Although the data set is not linearly separable in the two-dimensional
data space x, it is linearly separable in the nonlinear feature space defined implicitly
by the nonlinear kernel function. Thus the training data points are perfectly separated
in the original data space.

This example also provides a geometrical insight into the origin of sparsity in
the SVM. The maximum margin hyperplane is defined by the location of the support
vectors. Other data points can be moved around freely (so long as they remain out-
side the margin region) without changing the decision boundary, and so the solution
will be independent of such data points.

7.1.1 Overlapping class distributions
So far, we have assumed that the training data points are linearly separable in the

feature space φ(x). The resulting support vector machine will give exact separation
of the training data in the original input space x, although the corresponding decision
boundary will be nonlinear. In practice, however, the class-conditional distributions
may overlap, in which case exact separation of the training data can lead to poor
generalization.

We therefore need a way to modify the support vector machine so as to allow
some of the training points to be misclassified. From (7.19) we see that in the case
of separable classes, we implicitly used an error function that gave infinite error
if a data point was misclassified and zero error if it was classified correctly, and
then optimized the model parameters to maximize the margin. We now modify this
approach so that data points are allowed to be on the ‘wrong side’ of the margin
boundary, but with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty a linear
function of this distance. To do this, we introduce slack variables, ξn ! 0 where
n = 1, . . . , N , with one slack variable for each training data point (Bennett, 1992;
Cortes and Vapnik, 1995). These are defined by ξn = 0 for data points that are on or
inside the correct margin boundary and ξn = |tn − y(xn)| for other points. Thus a
data point that is on the decision boundary y(xn) = 0 will have ξn = 1, and points

6.5 Soft margin SVM
• If class conditionals overlap, then an exact (non-linear) separation of training data may

result in poor generalisation. It is better to allow some training points to be misclassified,
by relaxing the constraint tny(xn) ≥ 1

• We will do this by introducing N new slack variables ξn ≥ 0, rewriting constraint as
tny(xn) ≥ 1 − ξn.

• For points correctly classified and inside the margin, we have ξn = 0, while for other
points we have ξn = |tn−y(xn)|. It follows that misclassified points will have ξn > 1, while
ξn = 1 only if a point lies in the separating hyperplane.

• ∑
n ξn is an upper bound on misclassified training points.

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C

N∑

n=1

ξn +
1

2
∥w∥2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w, b,a) =
1

2
∥w∥2 +C

N∑

n=1

ξn −
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

• The primal objective function is modified to penalise the number of misclassified points:

C
N∑

n=1

ξn +
1
2
||w||2

12

• C is a regularisation term: it controls the trade-off between correct classification of train-
ing points and model complexity. For C → ∞, we recover the previous SVM.

• The Lagrangian L(w, b, a, µ) is now given by

C
N∑

n−1

ξn +
1
2
||w||2 −

N∑
n=1

an[tnwTφ(xn) + tnb − 1 + ξn] −
N∑

n=1

µnξn

with an, µn Lagrange multipliers. We omit the KKT conditions.

6.5.1 Dual formulation

• By taking partial derivatives w.r.t w, b, and ξn, we obtain the dual formulation:

L̃(a) =

N∑
n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm)

which has to satisfy the following box constraints

0 ≤ an ≤ C, n = 1, . . . ,N;
∑

n

antn = 0

• In the solution, we can have an = 0 (points inside the margin , for which ξn = 0), 0 <

an < C (points on the margin, for which ξn = 0), or an = C (points on the wrong side of
the margin, ξn > 0).

• b can be determined as for the hard margin case, by restricting to support vectors on the
margin.

6.6 SVM: comments
• The quadratic problem is convex, hence has a unique minimum, but a classic optimisation

can be challenging for large problems (N large). Specialised methods have been devel-
oped, that try to decompose the problem into simpler pieces. E.g. Sequential minimal
optimisation works by optimising two an’s at time.

• SVM are hard to generalise to multi-class problems (one-versus-the-rest approach being
the typical approach)

• SVM do not have a probabilistic interpretation, and some ad-hoc processing is required.

• SVM can be quite sensitive to outliers (misclassified points deeply inside the other’s class
region).

13

