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Abstract

CASP (critical assessment of structure prediction) assesses the state of the art in

modeling protein structure from amino acid sequence. The most recent experiment

(CASP13 held in 2018) saw dramatic progress in structure modeling without use of

structural templates (historically “ab initio” modeling). Progress was driven by the suc-

cessful application of deep learning techniques to predict inter-residue distances. In

turn, these results drove dramatic improvements in three-dimensional structure accu-

racy: With the proviso that there are an adequate number of sequences known for

the protein family, the new methods essentially solve the long-standing problem of

predicting the fold topology of monomeric proteins. Further, the number of

sequences required in the alignment has fallen substantially. There is also substantial

improvement in the accuracy of template-based models. Other areas—model refine-

ment, accuracy estimation, and the structure of protein assemblies—have again

yielded interesting results. CASP13 placed increased emphasis on the use of sparse

data together with modeling and chemical crosslinking, SAXS, and NMR all yielded

more mature results. This paper summarizes the key outcomes of CASP13. The spe-

cial issue of PROTEINS contains papers describing the CASP13 assessments in each

modeling category and contributions from the participants.

K E YWORD S
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1 | INTRODUCTION

CASP (critical assessment of structure prediction) is a biennial commu-

nity experiment to determine the state of the art in modeling protein

structure. Participants are provided with amino acid sequences of tar-

get proteins, and build models of the corresponding three-dimensional

structures. Submissions are compared with experiment by indepen-

dent assessors. The experiment is double blinded—participants have

no access to the experimental structures and assessors do not know

the identity of those making the submissions. In addition to structure

models, a number of other aspects of protein modeling are assessed

as well: refinement of an approximate structure closer to the

experimental one, estimates of the accuracy of an overall structure

model and of each residue, modeling the structure of protein oligo-

mers, the ability to improve models using a variety of sparse data

types, and the accuracy of protein structure features related to deduc-

ing aspects of function. Here, we summarize the current state of the

art in each of these areas as determined in the CASP13 experiment

(2018). Papers in this special issue of PROTEINS provide detailed

analysis by the independent assessors in each modeling area and con-

tributions from some of the more successful participants.

In CASP13, a total of 98 research groups from 21 countries tested

185 modeling methods and submitted over 57 000 predictions in six

prediction categories, maintaining the previous high level of
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participation. There were 90 modeling targets for tertiary structure

prediction (80 assessed), and 45 for quaternary structure prediction

(42 assessed), including 13 hetero-complexes (12 assessed). The

80 tertiary structure modeling targets were parsed into 111 evaluation

units, which were assessed as separate targets.1 Models are solicited

in two initial stages. First on a short (72 hour) time scale, intended for

automated model building servers, then on a 3-week time scale, all-

owing time for more complex procedures and human input (though

the latter now appears to be rare). Relatively easy targets are only

released for the server phase. For evaluation, targets are divided into

two main categories: template based (TBM), for those where one or

more structural templates can be identified by sequence search, and

template free (FM), for targets with no sequence detectable template.

Some targets fall into a gray area between these categories, and are

labeled TBM/FM. One significant change in target composition in

CASP13 was from the ongoing revolution in high resolution cryo elec-

tron microscopy (EM).2 There are EM targets for a total of six com-

plexes (four heteromeric) and one protein monomer. These targets

tend to be considerably larger than typical in CASP, but once parsed

into evaluation domains are less unusual.3 A fuller account of the pro-

cedures used in CASP is available in Reference 4.

2 | PROGRESS IN CASP13

The overall accuracy of models improved dramatically in CASP13,

especially for the more difficult targets where comparative modeling

cannot be used. Figure 1 shows the trends in backbone accuracy for

the best models received in each CASP, as a function of target diffi-

culty (the extent to which a target or target domain is related to the

sequence and structure of other proteins with already known

structures5—Figure S1 gives more data on target difficulty). The verti-

cal axis shows backbone accuracy in terms of GDT_TS6,7). With this

measure, 100% is exact agreement of the Cα co-ordinates of a model

with those of the experimental structure, and a random model typi-

cally has a GDT_TS of between 20% and 30%. As a rule of thumb,

models with values greater than about 50% have correct overall

topology, and models with values greater than ~75% have many cor-

rect atomic level details. As the trend lines show, early CASPs saw

rapid improvement, but started from very low accuracy. Until

CASP13, most recent CASPs have shown very limited overall

improvement by this measure (though more fine-grained analysis

shows improvement in specific areas4). Dramatically, the CASP13

trend line, instead of plunging downwards, continues horizontally to

the most difficult targets, with a sustained GDT_TS greater than 60.

Figure S2 shows a similar (though not quite so pronounced) CASP13

trend for average GDT_TS over the six best performing groups on

each target, indicating that multiple groups have improved substan-

tially. Below, we discuss the methodological advances that drove this

progress.

3 | PREDICTING CONTACTS IN PROTEIN
STRUCTURES

For a quarter of a century,8 attempts have been made to predict

three-dimensional contacts between residues in proteins, based on

correlations in amino-acid substitutions found in protein family pro-

tein sequence alignments.9

For many years, the precision of these methods as measured in

CASP was stalled at 20% or a little higher. Figure 2 summarizes pro-

gress in recent CASPs. Starting in CASP11 (2014), and much more

successfully in CASP12, statistical methods that consider all pairs of

residues simultaneously to address transitivity effects9 began to

improve accuracy, resulting in a best overall precision of 47% in

CASP12—almost doubling in one CASP round—one of the biggest sin-

gle improvements in any metric seen in any CASP. Some predictors

combined the statistical models with machine learning, for

F IGURE 1 Trend lines of backbone
accuracy for the best models in each of
the 13 CASP experiments. Individual
target points are shown for the two most
recent experiments. The accuracy metric,
GDT_TS, is a multiscale indicator of the
closeness of the Cα atoms in a model to
those in the corresponding experimental
structure. Target difficulty is based on
sequence and structure similarity to other
proteins with known experimental
structures (see Reference 5 for details).
There is a striking improvement in model
accuracy in CASP13 (top black line),
particularly for the more difficult targets
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instance.10,11 But the key algorithmic advance appears to be the

proper treatment of transitivity. A limitation of those methods is that

at least several hundred appropriate sequences are needed to produce

accurate predictions.

In CASP13, there is another large advance in precision, to 70%,

again with several groups delivering similar performance. This time it

is clear the improvement came from the use of deep neural network

methods (discussed further in a CASP13 special issue paper12).

These techniques have of course been very effective in other areas,

particularly image analysis13,14 and speech recognition.15 Contact

prediction uses a similar methodology, treating the contact matrix

(an L by L matrix for a sequence length L, with 1 for elements rep-

resenting contacting residues pairs and 0 for non-contacting ones)

as an image. The network is trained on a large set of known struc-

tures, typically with multiple sequence alignment information, sec-

ondary structure prediction, coevolution analysis, and related

features as input and the contact matrices as output. Input of infor-

mation for a new protein then generates an approximate contact

map. These methods were already being tested in CASP12 and

promising benchmarking has since been published.16 But as is often

the case, they took some time to mature to the point where

improvements in performance are clearly measurable (very clearly in

this instance!).

Although the data representation in the advanced statistical

methods and deep learning approaches are very different, both rely

on correlations in amino acid substitutions for contacting residue

pairs. As a result, a limitation of both is the need for a substantial

depth of sequence alignment. The effect of this can be seen in

Figure 3, where trend lines for contact precision slope upwards as a

function of normalized alignment depth. But this dependency is

greatly reduced with the CASP13 deep learning methods, resulting in

higher accuracy over a wide range of alignment depths. In CASP13,

inclusion of metagenomics sequence data increased alignment depth

for some targets. For example, metagenomics data as described in

References 17 and 18 increases alignment depth for two free model-

ing targets from marginally adequate (less than 1 L) to greater than

2 L. But generally, addition of these data has had only a modest

impact so far.

4 | TEMPLATE FREE MODELING

In CASP13, the largest improvement in model accuracy is for the most

difficult, free modeling, targets (Figure 1, right hand side) where no

structural template could be detected using sequence. Figure 4 shows

an example for a free modeling target where a number of groups pro-

duced good models.

If a sufficiently reliable set of contacts are predicted, these can

be used as restraints to obtain more accurate three-dimensional

models. Figure 5 shows the relationship between main chain accu-

racy and normalized alignment depth for template free modeling tar-

gets in the most recent CASPs. There is a strong dependency of

accuracy on alignment depth, consistent with the major jumps in

F IGURE 2 Best contact prediction precision in recent CASPs.
CASPs 9 and 10 continued a long trend of low precision. CASP11
shows a small advance, while the two most recent, CASP12 and
13, show dramatic improvements. In CASPs 11 and 12 progress is the
result of more sophisticated statistical models, together with largely
conventional machine learning. The further jump in CASP13 is the
result of the effective deployment of deep learning methods.
(Average fraction of correctly predicted contacts for the most
confidently predicted L/5 contacts 24 or more residues apart in the
sequence, where L is target length. Free modeling targets, average for
the best performing group in each CASP. Contacting residue pairs
defined as those with less than 8 Angstroms between Cβ atoms)

F IGURE 3 Contact prediction precision trend lines as a function
of sequence alignment depth and target length. In CASP13, there is a
reduced dependency on alignment depth, resulting in more accurate
results for shallow alignments as well as higher precision overall.
Strikingly, for 10 out of the 31 free modeling targets, the best

predictions achieved 100% precision for this subset of contacts (see
Figure 2 for definitions). The effective alignment depth, Neff, includes
metagenomic sequences compiled as described in References 17
and 18. Neff was calculated using a 90% sequence identity cutoff and
a minimum of 60% sequence coverage (details in Reference 19)
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contact performance driving the 3D improvement for free modeling

targets. The trend line for CASP13 is well above that for CASP12,

consistent with the more accurate contact predictions from deep

learning. In CASP13, all FM targets with Neff/L greater than 1 (effec-

tive sequence alignment depth equal or greater than the length of

the target) have a GDT_TS greater than 50, indicating a correct

topology. The majority of targets with Neff/L > 0.1 also have

GDT_TS >50. As discussed later, a number of the less accurate

models are affected by intermolecular protein interactions, some-

thing current methods are not able to handle. (Earlier CASPs already

showed a link between contacts and 3D structure accuracy,4 but not

nearly to this extent).

Part of the three-dimensional accuracy improvement in CASP13

comes from not only more accurate prediction of contacts but also

prediction of inter-residue distances at a range of thresholds, some-

thing deep neural networks are capable of and the statistical methods

are not. Approaches vary,20,21 but in essence, “contact” maps are

predicted for each of a set of inter-residue distances—say atoms

within 6, 8, 10…20… Angstroms. Properly normalized, these

predictions allow an effective potential of mean force to be derived

between every pair of residues in a structure (ie, up to L*L/2 - L

potentials for an L residue long sequence). These potentials can then

be used to drive a structure folding procedure. One group, A7D from

DeepMind,21 appear to have very successfully deployed this tech-

nique, and had the most accurate results overall. It is not fully clear

what current deep learning procedures are “learning” about protein

architecture. The ability to predict inter-residue distance probabilities

as well as contacts suggests that the topology of helices and beta-

sheets and inter-secondary structure packing are captured in some

form. But so far there is no published analysis and indeed such an

analysis may not be meaningfully possible. There are many potential

variations on the type of residual networks currently being deployed,

as well as other variables that have yet to be evaluated, such as the

best use of dilation and dropout.22 This and other aspects of the

methods will likely be further developed and refined by the next CASP

and it will very interesting to see how much further improvement can

be made.

By definition, all free modeling targets are cases where no tem-

plate structure can be easily detected from sequence. But there may

nevertheless be similar folds already known. An alternative approach

to using predicted contacts as restraints is to survey a library of

known structures, assessing which, if any, are most compatible with

the contact set. Figure S3 shows the dependency of backbone accu-

racy on the nearness of structural templates. Both CASP 12 and

13 show clear dependency, but it is substantially reduced in CASP13,

suggesting that template searches were less competitive with folding

algorithms, probably because greater contact accuracy and the use of

more general inter-residue distance prediction made the latter

approach more effective.

As always in CASP, care is needed to make sure that apparent pro-

gress is not an artifact of different target difficulty in successive

rounds. The insert in Figure S1 shows only very small differences in

average free modeling (FM) target difficulty in the most recent three

CASPs. Additionally, Figure S3 shows that the average similarities of

CASP 12 and 13 FM targets to structural templates are also nearly

identical. The figure also shows the underlying CASP12 and 13 distri-

butions of target/template similarity values are close, further

supporting similar target difficulty.

F IGURE 4 Crystal structure of a
354 residue domain of a free modeling
target (T0969-D1), ESKIMO 1, a probable
xylan acetyltransferase, PDB 6CCI (left
panel) and the most accurate CASP
model (right panel). Most of the structure
core is modeled to a Cα accuracy of
better than 1 (cyan) or 2 Angstroms
(green). Irregular loop regions are less
accurate (yellow, better than 4 Angstroms
or orange, up to 8 Angstroms error).
Some residues (red) in external loops
have larger errors

F IGURE 5 Best model main chain accuracy (GDT_TS) as a
function of sequence alignment depth and target length for CASPs
12 and 13. Accuracy depends on alignment depth, as is expected if
the result is dominated by contact prediction accuracy and related
advances. Across all alignment depths, CASP13 models are on
average more accurate than those in CASP12
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5 | TEMPLATE BASED MODELING

As the number of experimentally determined structures grows, so

does the number of sequences for which it is possible to directly use

structural templates to build a model, using comparative modeling

techniques. Figure 6 shows the relationship between backbone accu-

racy of best models received for the template-based modeling cate-

gory in the three most recent CASPs. For the easiest targets (left hand

side) with a high level of sequence identity to a known structure there

is no apparent improvement by this measure. For harder targets,

CASP12 is improved over CASP11, and CASP13 is substantially fur-

ther improved. Given the major accuracy advance in template-free

modeling from improved inter-residue distance predictions, an obvi-

ous question is whether those methods are contributing here too.

Figure S4 shows the relationship between backbone accuracy and

alignment depth for the template-based targets. CASP13 shows a mild

dependence of accuracy on alignment depth, suggesting that contacts

are also playing some role in this regime. However, as expected for

these targets, almost all the alignments are deep enough for good

contact prediction, which may obscure a larger signal. Conversely,

there may be a tendency for targets with deeper alignment to have

more useful templates, which would also tend to contribute to the sig-

nal seen in the figure. Further support for contact prediction contrib-

uting to the TBM improvement comes from a post-CASP analysis

comparing the performance of one method with and without contact

prediction included—contact information leads to higher accuracy for

a number of targets (Yang Zhang, personal communication).

Typically, structure templates do not provide complete coverage

of a target structure, and overall accuracy depends not only on the

appropriateness of the templates but also on modeling of regions with

no template. As Figure 7 shows, by this measure, there was modest

improvement between CASP5 in 2002 and CASP12, but a much

larger improvement between CASP12 and CASP13. As we have dis-

cussed before,4 earlier improvements resulted from two principal

modeling strategies: identification of other templates with the correct

structure in these regions or in some sense building these substruc-

tures from scratch. Note that one would not expect the improvement

to come from better contact prediction: by definition these are

regions that are not structurally conserved within the protein family,

and contact prediction generally relies on such conservation. Though

it is possible that more accurate modeling of the structurally con-

served regions creates a more accurate context for modeling non-

template regions.

6 | REFINEMENT

Models generated in both the template-free and template-based

modeling sections of CASP are approximate, and there is an end-game

problem of further improving agreement with experiment. To address

this challenge, CASP includes a section on refinement, where partici-

pants are provided with an initial model and asked to submit a more

accurate version. Performance has improved enormously over the

succession of experiments, from initial attempts that marginally

F IGURE 6 Best model backbone accuracy (GDT_TS) as a function
of target difficult for template-based models in recent CASPs.
CASP13 shows a marked improvement in accuracy compared to
previous CASPs. Targets are those where there is clear sequence
relationship to a known structure (termed TBM) and those with a
marginal relationship (TBM/FM)

F IGURE 7 Trend lines for the fraction of non-principal template
(“loop”) residues correctly modeled. There is a substantial
improvement in CASP13. (Best models received for each target, 3.8
Angstrom Cα atom agreement or better considered correct, TBM and
TBM/FM targets)

KRYSHTAFOVYCH ET AL. 1015



improved some of the targets23 to impressive examples of structure

correction in recent rounds.24-26 But it is still the case that no single

method improves every target. In the three most recent CASPs,24-26

the best groups have returned improvements for 60% to 70% of the

targets. One probable reason for limited performance is that the area

suffers from a serious Red Queen problem. Refinement methods that

have been shown to be useful are increasingly incorporated in initial

modeling pipelines so that the starting point structures supplied are

already partly refined. Thus, methods must improve every round just

to appear as effective as previously. This particularly affects those

who participate in both initial structure modeling and refinement, as

their models may be selected as starting structures for refinement. As

a consequence, metrics of improved structure accuracy may not be

very useful for measuring refinement performance. Nevertheless, the

three groups who have been consistently successful in recent CASPs

do show modest improvement in performance over successive

rounds.26 A more qualitative judgment of progress is to analyze the

type of structural features that are corrected. A few CASPs ago, suc-

cess with minor repositioning of secondary structure elements

became common, for example.27 More recently, and especially in this

CASP,26 larger range corrections (eg, a 7.5 Angstrom helix shift in tar-

get R0981-D4) and significant repacking (eg, in R0974s1) have been

achieved.

A persistent feature of refinement performance is that some tar-

gets are more refine-able than others, and there are always some for

which no group achieves a significant improvement (10% to 15% of

targets in recent CASPs). This has been a puzzle. The most recent

assessment provides partial insight into that phenomenon, with clear

examples where the noninclusion of interactions with other protein

domains or binding partners limits accuracy.26 As will be apparent

again later, the modeling field has now advanced to the point where

there is a critical need for methods that effectively include the full

molecular environment.

As in previous CASPs, there are differences among the most suc-

cessful refinement methods. These range from a major focus on

molecular dynamics28 to hybrid Monte Carlo/sampling methods,29 to

methods dominated by sampling.30 But overall, there is an increasing

emphasis on the importance of conformational sampling.

7 | ACCURACY ESTIMATION

Although modeling methods have improved enormously, models still

greatly vary in accuracy, both globally and in different parts of a struc-

ture. For any application, it is critical to know the accuracy of a model,

and so CASP includes a section on estimating model accuracy. As

detailed in Reference 31, these predictions are very useful, and have

been for some rounds of CASP. The methods roughly fall into two

categories—consensus methods that rely on the degree to which a

model is similar both overall and in detail to others, and so-called “sin-

gle model” methods that use some form of structure-based scoring

function, often together with machine learning. Both approaches have

performed well and comparably in recent CASPs. In CASP13, the

assessor observed a relationship between the reliability of single

model accuracy estimates and the methods used to generate a model,

particularly for models created with high reliance on contact predic-

tion related methods,32 apparently because of method-specific char-

acteristics of the models. To address this, some groups are now

developing method-specific accuracy estimation approaches. CASP

already requires that models are accompanied by detailed accuracy

estimates, and in future, more emphasis may be placed on these.

8 | PROTEIN ASSEMBLIES

As noted earlier, the enormous progress in domain and monomeric

protein structure modeling has highlighted the next bottleneck—

limitations on initial model accuracy and on refinement imposed by no

or inadequate inclusion of the larger molecular environment. More

generally, most proteins exist as part of complexes, and function is

often dependent on the assembly. One aspect of the problem, the

ability to dock subunits of proteins to each other, has been evaluated

by CASP's sister organization, CAPRI (http://www.capri-docking.org/)

since 2001. In the three most recent CASPs, CAPRI and CASP have

worked together to engage both communities in the broader problem

of protein assembly, including the use of protein models. Assessment

papers from both organizations are included33,34 in the CASP13 spe-

cial issue. Participation from both communities increased over

CASP12, showing growing interest in this important problem. The

CASP13 assessor found evidence of some improvement compared to

CASP12.34

Assembly is most successful when there is a template for the com-

plex, presenting an assembly comparative modeling problem,35 and

that was again demonstrated in this CASP, where the CASP13 asses-

sor concluded that availability of good assembly templates usually

results in good models. Next most successful is assembly of com-

plexes where the experimental structure of all the components is

known, and there is little or no conformational change associated with

assembly. “Free” docking methods can be effective for these,36 but

these targets do not generally occur in CASP. Relatively few com-

plexes do not involve significant conformational changes of at least

side chains and local regions of structure, and without an assembly

template, current methods are unable to cope with these situations.

Add to this the complications of working with approximate models for

assembly components, and the problem is daunting. As the CASP13

assembly assessor points out,34 because of the importance of confor-

mational changes on assembly formation, the current standard proce-

dure of first building monomer structures in isolation and then

attempting to dock them is flawed. The assessor found seven of the

heteromeric CASP13 assembly targets have substantial interdepen-

dences between monomers, in a variety of ways. Figure 8 shows an

example for target H0953, an A3B1 multimer, where the trimer

assembly generates strong subunit interdependencies. In other targets

(T0973, 991, 998), a helix is swapped between subunits.

The obvious message is that successful assembly methods will

have to take subunit interdependences into account and not rely

1016 KRYSHTAFOVYCH ET AL.
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exclusively on modeling isolated subunits. Following the emergence

of powerful deep learning methods for monomers in CASP13, there is

intense interest in whether these approaches may be adaptable to the

problem. Of note in this regard is that the assembly assessor found

prediction of intersubunit contacts in homo-assemblies was “surpris-

ingly successful.”34 It's not clear how these predictions were made,

but they may be useful in identifying first, which regions are in contact

even in the absence of a good three-dimensional model of the mono-

mers, and second, possibly where there are conformational interde-

pendencies. Deep learning methods for image analysis have been

shown to be very robust to noise,12 for example see https://clarifai.

com/demo. It will be very interesting to see in the next CASP whether

any examples of contact driven nontrivial assembly can be achieved,

particularly with the use of deep learning.

9 | DATA ASSISTED MODELING

Even high-resolution experimental structures incorporate aspects of

modeling, making use of bond length and bond angle restrictions,

avoidance of steric clashes, and sometimes imposing reasonable elec-

trostatic interactions. Lower resolution methods—SAXS, chemical

cross-linking coupled with mass spectrometry, and sparse NMR—

depend critically on modeling to make maximum use of the experi-

mental data. Since CASP11, CASP has experimented with providing

these types of data to participants after data-free models have been

obtained, and assessing whether the sparse data can be effective in

increasing model accuracy. This area has great promise, but is proving

challenging to successfully implement. First, additional data must be

generated by the experimental community. A number of groups have

been very co-operative and supportive, but still, protein samples are

only available for a few targets, and those targets may not be ideal.

Second, it requires specialized expertise to make optimum use of

these types of data. In spite of vigorous efforts to provide webinars

and other material in CASP13, rather few predictors have so far

moved into this area. Third, because of low participation, the newer

contact prediction and deep learning methods were not used together

with the sparse data. As a result, more accurate models were obtained

without use of the experimental information.

9.1 | NMR

The Gaetano Montelione and Antonio Rosato groups produced simu-

lated sparse NMR data for 12 proteins or protein domains, in the form

of ambiguous interatomic contact lists, chemical shifts, and RDCs.

They also provided real sparse NMR data for one CASP target,

N1008. The data provided are intended to be similar to that available

for large structures, and are insufficient for structure solution by stan-

dard NMR techniques.37 Nine groups took part in NMR-assisted

modeling, three of whom were controls from the Montelione lab.

Generally, the models submitted are of similar accuracy to the best

unassisted models received, but for one target, N0981-D2, a model

built using the simulated data is over 30 GDT_TS units better than the

best unassisted, a notable success. The target with experimental NMR

data, N1008, is a designed protein,38 and even though there are no

sequence homologs, was very accurately modeled by a number of

groups, without the use of the data. As a result, the NMR assisted

models were not as accurate. That outcome illustrates how tricky it is

to choose targets in which to invest experimental effort. Of the nine

groups submitting NMR assisted structures, two (Laufer and Meiler)

had markedly better results than the controls. Laufer used molecular

dynamics with a filtering technique to remove nonconsistent

restraints.39 We hope the encouraging results will lead to larger scale

participation in this category in CASP14.

9.2 | SAXS

Data were generated for 11 targets in all, including seven complexes.

This was a very impressive contribution from the experimental group

(Susan Tsutakawa, Greg Hura, and John Tainer). Thirteen groups sub-

mitted models using these data. A number of teething troubles that

plagued the first SAXS experiment in CASP1240 were avoided or

greatly reduced, so that a more meaningful assessment of the contri-

bution from the SAXS data could be made.

For no target was the best data assisted structure as accurate as

the best unassisted, although there are some examples of improved

intersubunit relationships. Again, the issue here may be the relatively

low participation, so that the results are not necessarily representative

of the newest unassisted methods. Several groups did develop inter-

esting pipelines incorporating SAXS data, and as is often the case in

CASP, it may take further iterations before the power of these can be

properly assessed. Methods typically take the full set of server models

available for a target and evaluate the fit of these to the SAXS data,

F IGURE 8 Part of the experimental structure of target H0953
(PDB 6F45), the adhesin tip complex of a bacteriophage tail fiber,
illustrating subunit structure interdependence. One of the two protein
chains contributing to this assembly forms a trimer (colored red,
green, and blue), with the N terminal five strand beta sheets of the
three monomers packing against each other. The C terminal three
beta strands of each monomer interdigitate with each other. The C
terminal stands also form an interface with the helical end of another
subunit (green). Impressively, in spite of the apparent
interdependency of the five-strand beta-sheets, accurate models
were returned for that part of the structure. But failure to consider
the even more intimate subunit interactions of the three N terminal
strands resulted in incorrect models for that subdomain
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often also using additional accuracy estimations. One group also

investigated the use of normal mode driven structure changes.

Comparison of the SAXS envelopes with the X-ray structures sug-

gests that for up to half the targets there could be differences

between the solution and crystal structures. Such differences may in

principle limit the accuracy that modeling can achieve using the crystal

structure as the gold standard. But there could be a number of expla-

nations for the discrepancies, including sequence differences between

crystal and SAXS samples, more disorder in solution, and the inherent

difficulties of interpreting SAXS data.

9.3 | Chemical crosslinking and mass spectrometry

Experimental data derived from two different cross-linking chemis-

tries were provided. Alexander Leitner and Ruedi Abersold (ETH,

Zurich) used a predominantly Lys primary amine-oriented (BS3) chem-

istry and Adam Belsom and Juri Rappsilber (University of Edinburgh

and Berlin Technical University) employed heterobifunctional, photo-

activable cross-linking chemistry. One data set was also provided by

Marcus Hartmann, using disuccinimidyl suberate (DSS) chemistry.

Altogether data were collected for eight different protein samples,

including three hetero-multimers, two homo-multimers, and three sin-

gle chain proteins. Based on these data, five heteromeric targets and

17 single-sequence targets (monomers or subunits of multimers) were

released for prediction. An analysis by the assessor41 shows that a

surprisingly high fraction of cross-links appear not to be compatible

with the targets' X-ray structures (27%-47%). In total, 14 prediction

groups participated. For the monomeric protein domains and subunits,

there are many instances where the data-assisted models are more

accurate than the corresponding unassisted models from the same

participants. But this comparison likely provides too optimistic a view,

since the groups with the greatest improvement started from scratch

in utilizing the cross-link data, ignoring their initial submissions, and

instead making use of the full set of server models available for each

target. A more stringent criterion, comparing the data-assisted models

to the best received for each target from any group generally shows

all the cross-link assisted models are less accurate. For the complete

complexes, there is one instance of a significant improvement, for

X0957, a bacterial toxin/immunity protein complex, where several

intersubunit crosslinks helped select a more appropriate overall

assembly,34 an encouraging result. The results illustrate both the

promise and the challenges of using cross-link information to improve

models. Many cross-links are misleading in that they conflict with the

corresponding X-ray structure and some can be false positives. Fur-

ther, the large variation in distance between crosslinked residues41

makes the technique inherently low-resolution, and so likely best

suited to complexes, as the result for X0957 illustrates.

Pilot experiments were also conducted with FRET data on one tar-

get (generously provided by Claus Seidel and Mykola Dimura) and

SANS on another (provided by Anne Martel). We expect to include

more data of these types in CASP14.

10 | DISCUSSION

Successful use of relatively standard deep learning techniques for

predicting not only three-dimensional contacts but more general

inter-residue distance distributions was the outstanding development

of CASP13 and caused much excitement and creative thinking at the

CASP meeting. There is an expectation that similar approaches can be

applied to other areas of structure modeling, particularly improved

estimates of both global and local model accuracy, improved model

refinement by allowing focus on regions of maximum error, and recog-

nition and prediction of protein-protein interfaces. We will have to

wait until CASP14 in 2020 to see which of these bears fruit. CASP14

is also likely to see further progress in 3D structure modeling based

on deep learning approaches. Several modeling groups are developing

servers that will make the new methods available to the broader com-

munity. It's likely that the impact on the usefulness of modeling will

be large.

The major progress in modeling domains and monomeric proteins

without direct use of a structural template is a very significant break-

through: for these proteins, the long-standing problem of “protein

folding” (generating a model with the correct topology) is essentially

solved, albeit it in way that early work in the field never imagined. An

alignment with of at least a few dozen sequences is usually needed

for the methods to work, but most protein families are now that large.

Success with topology prediction has increased focus on the

remaining problems—we are still a long way from the accuracy of X-

ray structures or from enabling structure-based drug design, and more

complex structures are the norm in biology. CASP already has well-

established categories in the relevant areas, particularly refinement

and protein assemblies, and as already noted it will be exciting to see

what impact deep learning and related approaches have on those.

Other areas, such as conformational change in response to ligand

binding and environmental conditions, remain future challenges.

CASP continues to experiment with other aspects of modeling. Of

note this round was the expanded number of targets for which sparse

experimental data were available. Although the results in terms of

more accurate models are not impressive, it is clear that much more

development is possible, and we have already seen several groups

introduce methods specifically tailored to particular data types. CASP

continues to investigate the best ways of assessing how effectively

functional information can be derived from models,42,43 and in this

round, solicited assessment comments from those who provided the

prediction targets.44 An interesting development during CASP13 was

the introduction of a CASP commons experiment (http://

predictioncenter.org/caspcommons/). Biologists were canvased to

identify a total of 35 small proteins for which structure would be par-

ticularly useful for their research. The Montelione group cloned and

expressed these, with the goal of determining which are suitable for

NMR structure determination, and in parallel the CASP community

was invited to submit models. So far one experimental structure has

been obtained.38 A new round of modeling is now beginning, using

the new free modeling methods from CASP13.
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We plan to hold CASP14 in 2020, with a similar timetable to pre-

vious rounds. The prediction season will be spring and summer, and

the conference will be at the end of the year. Details will be posted

on the Prediction Center web site as they become available.
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