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POPULATION PROCESSES

SIR epidemics model
single individual

S

RI

kIXI/N

kR

kS

Consider a CTMC model of a
population epidemics in which
each of N individuals can be in
one of three states: susceptible
(S), infected (I), and recovered
(R);

Infection rate depends on the
density of infected individuals;

The CTMC for N agents has 3N

states (if we distinguish the
individuals) or (N + 1)2 states (if
we just count them): it’s
impossible to write down the Q
matrix explicitly.

We need a better description of
population CTMCs.
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POPULATION CTMC

A population CTMC model is a tuple X = (X,D,T ,x0), where:
1 X — vector of variables counting how many individuals in

each state.
2 D =

Q
i Di — (countable) state space.

3 x0 2 D—initial state.
4 ⌘i 2 T — global transitions, ⌘i = (a, �(X),v, r(X))

1 a — event name (optional).
2 �(X) — guard.
3 v 2 Rn — update vector (from X to X + v)
4 r : D! R�0 — rate function.
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EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

Three variables: XS,XI ,XR.
State space:
D = {(n1,n2,n3) | n1 +n2 +n3 =
N} ⇢ {0, . . . ,N}3.

Transitions:

(inf ,>, (�1,1,0)kI
XI
N XS)

(rec,>, (0,�1,1), kRXI)

(susc,>, (1,0,�1), kSXR)



PRELIMINARIES CTMC PCTMC SIMULATION 34 / 54

EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

Three variables: XS,XI ,XR.
State space:
D = {(n1,n2,n3) | n1 +n2 +n3 =
N} ⇢ {0, . . . ,N}3.

Transitions:
(inf ,>, (�1,1,0)kI

XI
N XS)

(rec,>, (0,�1,1), kRXI)

(susc,>, (1,0,�1), kSXR)



PRELIMINARIES CTMC PCTMC SIMULATION 34 / 54

EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

Three variables: XS,XI ,XR.
State space:
D = {(n1,n2,n3) | n1 +n2 +n3 =
N} ⇢ {0, . . . ,N}3.

Transitions:
(inf ,>, (�1,1,0)kI

XI
N XS)

(rec,>, (0,�1,1), kRXI)

(susc,>, (1,0,�1), kSXR)



PRELIMINARIES CTMC PCTMC SIMULATION 34 / 54

EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

Three variables: XS,XI ,XR.
State space:
D = {(n1,n2,n3) | n1 +n2 +n3 =
N} ⇢ {0, . . . ,N}3.

Transitions:
(inf ,>, (�1,1,0)kI

XI
N XS)

(rec,>, (0,�1,1), kRXI)

(susc,>, (1,0,�1), kSXR)



PRELIMINARIES CTMC PCTMC SIMULATION 35 / 54

EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

N = 100, kI = 1, kR = 0.05, kS = 0.01

 S  I  R

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100 110
time

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

100

va
lu

es

(1 run)
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EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

N = 100, kI = 1, kR = 0.05, kS = 0.01

 S  I  R

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100 110
time

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

100

av
er

ag
e

(average)
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MASTER EQUATION

The Kolmogorov equation in the context of Population
Processes is often know as master equation.

There is one equation per state x 2 D, for the probability mass
P(x, t), which considers the inflow and outflow of probability at
time t .

dP(x, t)
dt

=
X

⌘2T
r⌘(x � v⌘)P(x � v⌘, t) �

X

⌘2T
r⌘(x)P(x, t)
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POISSON REPRESENTATION

Population CTMC admit a simple description in terms of Poisson
processes.
Essentially, we introduce variables R⌘(t) counting how many times
each transition ⌘ has fired up to time t . Hence we can write:

X (t) = X (0) +
X

⌘2T
v⌘R⌘(t).

It turns out that R⌘(t) is a time-inhomogeneous Poisson process with
cumulative rate

R t
0 r⌘(X (s))ds, independent from the other R⌘0 .

Hence, let N⌘ be independent Poisson processes. For each t � 0:

X (t) = X (0) +
X

⌘2T
v⌘N⌘

 Z t

0
r⌘(X (s))ds

!
.

Equivalently, let Y⌘ be independent Poisson r.v. It holds:

X (t) = X (0) +
X

⌘2T
v⌘Y⌘

 Z t

0
r⌘(X (s))ds

!
.
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SIMULATING A POPULATION CTMC

Population CTMC have generally a complex dynamics and
state space which is too large for

1 Solving the CTMC analytically
2 Performing numerical computations like solution of the

Kolmogorov equation, transient analysis by uniformization,
or computation of steady state.

Therefore, one can resort to statistical tools.
One samples a (large) set of trajectories from the distribution
induced by the CTMC in the space of traces (cadlag functions),
and then uses statistical methods to extract information about
the process from these samples.
We will review some simulation algorithms, exploiting the
different characterizations of (population) CTMCs.
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DIRECT METHOD

RACE CONDITION CHARACTERIZATION OF A PCTMC
In each state x, the m transitions in T compete in a race
condition: the fastest wins and is executed.

DIRECT METHOD

At each step, with current state x and current time t
1 sample m uniform r.v. U⌘;
2 compute T⌘ = � 1

r⌘(x)
log(U⌘);

3 find ⌘̄ = argmin⌘2TT⌘;
4 execute transition ⌘̄ updating the current state from x to

x + v⌘ and current time to t + T⌘.
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STOCHASTIC SIMULATION ALGORITHM

JUMP CHAIN AND HOLDING TIMES
We can improve the previous simulation by using the characterization
with Jump Chain and Holding Times, which for population CTMC
reads:

HOLDING TIME r(x) =
P
⌘2T r⌘(x)

JUMP CHAIN P(⌘ | x) = r⌘(x)
r(x)

SSA
At each step, with current state x and current time t

1 sample the next transition ⌘ from the jump chain;

2 sample the holding time from an Exp(r(x));

3 update current state and current time.

This method in biochemistry and system biology is also known as
Gillespie Algorithm.
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EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

TIME DELAY

Exponential with rate
1.6 + 0.1 = 1.7.

N = 10, kI = 1, kR = 0.05, kS = 0.01
XS(0) = 8, XI(0) = 2, XR(0) = 0.

STEP 0: RATES OF TRANSITIONS

INFECTION: 1
10 · 8 · 2 = 1.6

RECOVERY: 0.05 · 2 = 0.1
IMMUNITY LOSS: 0

NEXT STATE

XS(0) = 7, XI(0) = 3, XR(0) = 0 with prob.
1.6

1.6+0.1 = 0.9412
XS(0) = 8, XI(0) = 1, XR(0) = 1 with prob.

1.6
1.6+0.1 = 0.0588
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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

Consider a single ⌘ transition in a time interval [0, t ] in
which it never fires.
As other transitions may fire, its rate r⌘(X(s)) is a
time-dependent function.
Therefore, we can sample the firing time of ⌘ using the
inversion method for time-inhomogeneous exponential
distribution, solving for t

⇤⌘(t) =
Z t

0
r⌘(X(s))ds = ⇠ ⇠ Exp(1).



PRELIMINARIES CTMC PCTMC SIMULATION 47 / 54

NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

time0 t0

s0 t1

�0

�1

Start at time 0, and suppose the rate of ⌘ is �0. Assuming it does
not change in time, the firing time would be t0 = 1

�0
⇠ ⇠ Exp(�0).

Now, suppose at time s0 another event ⌘0 fires, and this changes
the rate of ⌘ to �1.
Then the firing time of ⌘ would be found by solving
�0s0 + �1(t1 � s0) = ⇠, from which

t1 = s0 +
�0

�1

 
1
�0
⇠ � s0

!
= s0 +

�0

�1
(t0 � s0).

This is the update formula of Gibson-Bruck algorithm (can be
easily generalized to n intermediate events by induction).
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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

time0 s0 t1

�0

�1

NEXT REACTION METHOD
At each step, with current state x and current time t

1 execute transition ⌘ with smallest time;

2 update rates and firing times of other transitions;

3 sample a new firing time for ⌘.

the algorithm uses a priority queue and a dependency graph to speed
up operations.
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EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

N = 10, kI = 1, kR = 0.05, kS = 0.01
XS(0) = 8, XI(0) = 2, XR(0) = 0.

STEP 1: RATES OF TRANSITIONS

INFECTION: 1
10 · 8 · 2 = 1.6

RECOVERY: 0.05 · 2 = 0.1
IMMUNITY LOSS: 0

STEP 2: COMPUTE FIRING TIMES

INFECTION: 1
1.6 · 0.2228 = 0.1392

RECOVERY: 1
0.1 · 1.9527 = 19.5273

IMMUNITY LOSS: 1
0 · 0 = 1
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EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

N = 10, kI = 1, kR = 0.05, kS = 0.01
XS(0.1392) = 7, XI(0.1392) = 3,
XR(0.1392) = 0.

STEP 1: RATES OF TRANSITIONS

INFECTION: 1
10 · 7 · 3 = 2.1

RECOVERY: 0.05 · 3 = 0.15
IMMUNITY LOSS: 0

STEP 2: REEVALUATE FIRING TIMES

INFECTION: 1
2.1 · 3.3323 = 1.5868

RECOVERY: 0.1392 + 0.1
0.15 · (19.5273 � 0.1392)

= 13.0646
IMMUNITY LOSS: 1
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⌧-LEAPING (SKETCH)

Consider the Poisson representation of a population CTMC at
time ⌧

X (⌧) = X (0) +
X

⌘2T
v⌘Y⌘

 Z ⌧

0
r⌘(X (s))ds

!
.

If ⌧ is sufficiently small, we may assume that the rates r⌘(X (s))
are approximately constant in [0, ⌧] and equal to a⌘.
Then

R t
0 r⌘(X (s))ds ⇡ a⌘⌧, hence

X (⌧) ⇡ X (0) +
X

⌘2T
v⌘Y⌘

⇣
a⌘⌧

⌘
.
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⌧-LEAPING (SKETCH)

⌧-LEAPING

At each step, with current state x and current time t
1 choose ⌧;
2 for each ⌘, sample n⌘ from the Poisson r.v. Y⌘

⇣
a⌘⌧

⌘
;

3 update x to x +
P
⌘ v⌘n⌘ and time to t + ⌧.

CHOICE OF ⌧: LEAPING CONDITION

The choice of ⌧ is an art:
it has to be small for rates to be approximately constant in
[t , t + ⌧];
it has to be as large as possible to make Y⌘(a⌘⌧) large to
gain in computational efficiency;
one has to avoid the generation of negative populations.
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