Corso di Biologia Cellulare del Cancro AA 2019-2020

HALLMARK #4: **EVASIONE DAI MECCANISMI ONCOSOPPRESSIVI INTRINSECI**

RESISTENZA ALLA MORTE CELLULARE

p53 induce diverse risposte cellulari oncosoppressive...

PROTECTION/REPAIR Transient cell cycle arrest Anti-oxidant functions DNA repair Cell metabolism

TUMOR PREVENTION LONGEVITY FERTILITY ELIMINATION OF DAMAGED CELLS Apoptosis/autophagy Senescence Differentiation

TUMOR SUPPRESSION TOXICITY OF THERAPIES AGING DEVELOPMENT L'induzione dell'apoptosi dipende dall'attivazione di uno specifico programma trascrizionale da parte di p53

La decisione di indurre l'apoptosi dipende dal tipo ed entità dello stress e dal contesto cellulare

Severe/persistent DNA damage

Activation of specific enzymes

p53 threshold levels

Code of PTMs

Interaction with cofactors

Le strategie terapeutiche mirate all'induzione di morte cellulare devono essere mirate ai meccanismi di morte cellulare attivi nelle cellule tumorali

Apoptosi: via estrinseca e via intrinseca

Segnale di morte extracellulare

Es. TRAIL

Segnale di morte intrinseco

Es.

Danno al DNA non riparabile ER stress cronico, Ipossia Stress metabolico

Cistein-proteasi che tagliano a monte di un residuo di Asp

Regolatori dell'apoptosi

> Membri della famiglia di Bcl-2 (B-cell lymphoma 2)

Inhibitori dell' apoptosi (IAPs)

Antagonisti di IAP (SMAC/DIABLO)

Le proteine proapoptotiche multidominio:

EFFETTORI della permeabilizzazione mitocondriale (MOMP)

Interazioni regolatorie tra i membri della famiglia di Bcl-2

L'attivazione della via intrinseca è mediata dalle piccole proteine BH3-only

Regolatori dell'apoptosi

> Membri della famiglia di Bcl-2 (B-cell lymphoma 2)

Inhibitori dell' apoptosi (IAPs)

Antagonisti di IAP (SMAC/DIABLO)

I membri della famiglia di Bcl2 regolano l'equilibrio tra sopravvivenza e morte cellulare

Regolatori dell'apoptosi

> Membri della famiglia di Bcl-2 (B-cell lymphoma 2)

Inhibitori dell' apoptosi (IAPs)

Antagonisti di IAP (SMAC/DIABLO)

Inhibitor of apoptosis proteins IAPs

IAPs legano direttamente le CASPASI

RING (really interesting new gene) domain conferisce attività ubiquitin protein ligase (E3) causando degradazione di proteine proapoptotiche

IAP antagonists

Meccanismi di evasione dall'apoptosi

Deregolazione dei membri della famiglia di Bcl2

a Alterations in anti-apoptotic genes

Delbridge Nat Rev Cancer 2013

Deregolazione della survivina

Segnali di sopravvivenza cellulare inibiscono l'apoptosi

Terapie mirate per l'induzione di apoptosi

Farmaci contro Bcl2

${\rm Table}\ 1 \ | \ \textbf{BH3-mimetics undergoing clinical trials for cancer indications}$

BH3-mimetic	Alternative name	Targets	Therapy	Indication	Clinical trial
ABT-199	Venetoclax	BCL-2	Single agent	Chronic lymphocytic leukaemia	Phase III
				Acute myeloid leukaemia	Phase I/II
				Diffuse large B cell lymphoma	Phase I
				Follicular lymphoma	Phase I
				Lymphoma	Phase I
				Mantle cell lymphoma	Phase I
				Multiple myeloma	Phase I
				Non-Hodgkin lymphoma	Phase I
			Combination*	Chronic lymphocytic leukaemia	Phase III
				B cell non-Hodgkin lymphoma	Phase I/II
				Diffuse large B cell lymphoma	Phase I/II
				Follicular lymphoma	Phase II
				Non-Hodgkin lymphoma	Phase II
S-055746	None	BCL-2	Single agent	Haematological malignancies including myelodysplasia	Phase I
PNT-2258	None	BCL-2	Single agent	Diffuse large B cell lymphoma	Phase II
				Follicular lymphoma	Phase II
				Non-Hodgkin lymphoma	Phase II

Data compiled from the Global Data database: <u>http://healthcare.globaldata.com/</u> (accessed July 2015). *Combination with standard of care therapies. *Delbridge Nat Rev Cancer 2013*

IAP targeted chemotherapeutics

Compound	Combination	Cancer type	Status	Phase I/II
_CL-161	None	Solid tumors	Completed	Phase I
_CL-161	None	Leukemia	Recruiting	Phase II
_CL-161	Paclitaxel	Solid tumors	Completed	Phase I
_CL-161	Paclitaxel	Solid tumors	Recruiting	Phase I
_CL-161	Paclitaxel	Breast cancer	Completed	Phase II
_CL-161	Gemcitabine	Pancreatic cancer	Recruiting	Phase I
_CL-161	Cyclophosphamide	Multiple myeloma	Recruiting	Phase II
GDC-0152	None	Solid cancers	Completed	Phase I
CUCD-427	None	Lymphoma	Recruiting	Phase I
Birinapant	None	Solid tumors	Completed	Phase I/II
Birinapant	None	Solid tumors, lymphoma	Completed	Phase I
Birinapant	None	AML	Completed	Phase I/II
Birinapant	None	Ovarian, peritoneal and fallopian tube cancer	Completed	Phase II
Birinapant	Gemcitabine	Solid tumors	Terminated	Phase I
Birinapant	5-Aza	MDS	Active, not recruiting	Phase I/II
Birinapant	5-Aza	MDS, CMML	Recruiting	Phase II
Birinapant	Conatumumab	Ovarian, peritoneal and fallopian tube cancer	Recruiting	Phase I
AT-406	Daunorubicin, cytarabine	AML	Terminated	Phase I
Debio1143	None	Solid tumors, lymphoma	Completed	Phase I
Debio1143	Paclitaxel, carboplatin	Solid tumors	Recruiting	Phase I
Debio1143	Cisplatin, radiotherapy	Head and neck carcinoma	Recruiting	Phase I/II
IGS1029	None	Solid tumors	Completed	Phase I
IGS1029	None	Lymphoid malignancies	Terminated	Phase I

Table 1. Clinical trials with Smac mimetics

Abbreviations: 5-Aza, 5-Azacitidine; AML; acute myelogenous leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome.

diversi tipi di morte cellulare

autofagia

apoptosi

necrosi ;

formazione di autofagosomi

vescicolazione

lisi

Induzione di morte cellulare immunogenica e non immunogenica:

Calreticulin, HSPs, Release of DAMP (damage-associated molecular patterns: ATP, HMGB1...)

Induzione di morte cellulare immunogenica e non immunogenica: implicazioni terapeutiche

Induzione di morte cellulare immunogenica e non immunogenica: implicazioni terapeutiche

Non-immunogenic cell death mode

Immunogenic cell death modes

Polimorfismi nella pathway di p53: implicazioni per il rischio tumorale

the p53 pathway harbors single-nucleotide polymorphisms (SNPs) that affect p53 signaling resulting in differences in cancer risk and clinical outcome in humans

more than 50,000 SNPs in the NCBI SNP repository in genes implicated in mediating and regulating the p53 response (Vazquez et al. 2008). 32

Mdm2 SNP309

Cellule con genotipo G/G esprimono quantità 4-volte maggiore di Mdm2: La risposta di p53 è attenuata (in vitro e in modelli sperimentali di tumorigenesi in vivo)

Gli estrogeni promuovono la trascrizione di HDM2

Aumento del rischio di tumori responsivi agli estrogeni, es. ER+ breast cancer (età media 45 anzichè 57) ~65% dei breast tumours sono ER +
 ⇒Mostrano risposta proliferativa agli estrogeni (ovaries)
 ⇒ beneficiano di terapia anti-estrogeni

La terapia ormonale sostitutiva in donne con genotipo G/G, può aumentare significativamente il rischio di cancro.

Al contrario tali pazienti beneficerebbero di terapie anti-estrogeniche

Il polimorfismo del codone 72

<u>p53-Arg72 :</u>

•Comune: frequenza nella popolaz caucasica Pro/Pro 5%; Arg/Pro 50%; Arg/Arg 40%

• Arg72 ha maggiore attività proapoptotica di Pro72

maggiore attività di soppressione tumorale e risposta a terapie convenzionali

Thomas et al., 1999; Bonafe et al., 2002; Dumont et al., 2003; Sullivan et al., 2004; Pim et al., 2004; Bergamaschi et al., 2006.

NB: l'effetto su MUTANT p53 è opposto

Cells bearing mutp53 Pro72 form undergo more apoptosis compared to isogenic Arg72

Marin et al., 2000; Bergamaschi et al., 2003; Vikhanskaya et al. 2005