Coordinate polari ed Equazioni di curve notevoli

coordinate polari				
ρ ρ χ	P(x,y)	coordinate cartesiane del punto P		
	$P(\rho,\theta)$	coordinate polari del punto P		
	$\rho = modulo$	distanza di P dall'origine		
	$\theta = anomalia$	misura dell'angolo orientato in senso antiorario formato da ρ con il semiasse positivo delle x		
passaggio di coordinate				
da cartesiane a polari	da polari a cartesiane			
$P(x,y) \rightarrow \begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \rightarrow P(\rho,\theta)$	$P(\rho,\theta) \rightarrow \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \cos\theta = \frac{y}{\rho} ; sen\theta = \frac{x}{\rho} \end{cases} \rightarrow P(x,y)$			

			,		
equazione cartesiana parametrica e polare di curve notevoli					
grafico	equazione cartesiana	equazione parametrica	equazione polare		
$\stackrel{\uparrow}{\longrightarrow}$	retta $y = mx + q$	$\begin{cases} x = t \\ y = mt + q \\ \text{con } t \in \mathbb{R} \end{cases}$	$\rho(sen\theta-mcos\theta)-q=0$		
Q X_1 X_2	segmento di estremi $P(x_1, y_1) e \ Q(x_2, y_2)$ $y = mx + q$ $\cos x_1 < x < x_2$	$\begin{cases} x = x_1(1-t) + x_2t \\ y = y_1(1-t) + y_2t \end{cases}$ $\cot 0 \le t \le 1$	$ ho(sen heta-mcos heta)-q=0$ $ ext{con } ho_P \leq ho \leq ho_Q $ $ ext{e} \ heta_P \leq heta \leq heta_Q $		
$\begin{array}{c} \uparrow \\ \downarrow \\ \downarrow \\ \end{array}$	parabola con asse parallelo all'asse y $y = ax^2 + bx + c$	$\begin{cases} x = t \\ y = at^2 + bt + c \\ \text{con } t \in \mathbb{R} \end{cases}$	$\rho(sen\theta - a\rho cos^2\theta - bcos\theta) = c$		
$\stackrel{\uparrow}{\longrightarrow}$	circonferenza di centro $C(\alpha,\beta)$ e raggio r $x^2 + y^2 + ax + by + c = 0$	$\begin{cases} x = \alpha + r \cos t \\ y = \beta + r \sin t \end{cases}$ $\cos 0 \le t \le 2\pi$	$\rho^2 + \rho(a\cos\theta + b\sin\theta) + c = 0$		
$\stackrel{\textstyle \uparrow}{\longrightarrow}$	circonferenza di centro l'origine e raggio r $x^2 + y^2 = r^2$	$\begin{cases} x = r \cos t \\ y = r sent \\ \cos 0 \le t \le 2\pi \end{cases}$	ho = r		
→	ellisse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\begin{cases} x = a \cos t \\ y = b \operatorname{sen} t \\ \cos 0 \le t \le 2\pi \end{cases}$	$\rho^2(b^2\cos^2\theta + a^2\sin^2\theta) = a^2b^2$		
· · · ·	ellisse traslata di centro $\theta'(\alpha, \beta)$ $\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1$	$\begin{cases} x = x_0 + a \cos t \\ y = y_0 + b \operatorname{sen} t \\ \cos 0 \le t \le 2\pi \end{cases}$	$b^{2}(\rho\cos\theta - \alpha) + a^{2}(\rho\sin\theta - \beta)$ $= a^{2}b^{2}$		