Biodiversity and Resllience of
Ecosystem Functions

Tom H. Oliver,"#* Matthew S. Heard,? Nick J.B. Isaac,”
David B. Roy,? Deborah Procter,® Felix Eigenbrod,*
Rob Freckleton,® Andy Hector,® C. David L. Orme,”
Owen L. Petchey,® Vania Proenca,® David Raffaelli, '°

K. Blake Suttle,”" Georgina M. Mace,'?

Berta Martin-Lopez, '®'* Ben A. Woodcock,? and
James M. Bullock?

Accelerating rates of environmental change and the continued loss of global
biodiversity threaten functions and services delivered by ecosystems. Much
ecosystem monitoring and management is focused on the provision of ecosys-
tem functions and services under current environmental conditions, yet this
could lead to inappropriate management guidance and undervaluation of the
importance of biodiversity. The maintenance of ecosystem functions and ser-
vices under substantial predicted future environmental change (i.e., their ‘resil-
ience’) is crucial. Here we identify a range of mechanisms underpinning the
resilience of ecosystem functions across three ecological scales. Although
potentially less important in the short term, biodiversity, encompassing variation
from within species to across landscapes, may be crucial for the longer-term
resilience of ecosystem functions and the services that they underpin.

The Importance of Resilience

Across the globe, conservation efforts have not managed to alleviate biodiversity loss [1], and
this will ultimately impact many functions delivered by ecosystems [2,3]. To aid environmental
management in the face of conflicting land-use pressures, there is an urgent need to quantify
and predict the spatial and temporal distribution of ecosystem functions and services (see
Glossary) [4-6]. Progress is being made in this area, but a serious issue is that monitoring and
modeling the delivery of ecosystem functions has been largely based on the current set of
environmental conditions (e.g., current climate, land use, habitat quality). This ignores the need
to ensure that essential ecosystem functions will be provided under a range of environmental
perturbations that could occur in the near future (i.e., the provision of resilient ecosystem
functions). The objective of this review is to identify the range of mechanisms that underpin the
provision of resilient ecosystem functions to inform better environmental monitoring and
management.

A focus on current environmental conditions is problematic because future conditions might be
markedly different from current ones (e.g., increased frequency of extreme weather events [7]
and pollution [8]) and might therefore lead to rapid, nonlinear shifts in ecosystem function
provision that are not predicted by current models. Reactive management might be too slow to
avert consequent deficits in function, with impacts for societal well-being [9]. An analogy of this
situation is the difference between monitoring whether a bridge is either standing (i.e., providing
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its function) or collapsed, prompting need for a rebuild, as opposed to monitoring and repairing
damage to prevent the collapse from ever happening. In environmental science, attempts have
been made to identify this ‘safe operating space’ at a global level to ensure that boundaries are
not crossed that could lead to rapid losses in ecosystem functions [10,11]. However, there is a
danger that current regional and local assessments of ecosystem functions and management
advice do not incorporate such risk assessments. This could result in poor management advice
and undervaluation of the importance of biodiversity, because while relatively low levels of
biodiversity can be adequate to provide current function [12], higher levels might be needed to
support similar levels of function under environmental change [2,13-18]. Therefore, there is a
need to identify the characteristics of resilient ecosystem functions and capture these in both
predictive models and management guidance.

Defining and Applying the Resilience Concept

Resilience is a concept with numerous definitions in ecological [19], social [20], and other sciences
[21]. In ecology, an initial focus on the stability of ecosystem processes and the speed with which
they return to an equilibrium state following disturbance (recovery or ‘engineering resilience’ [22])
has gradually been replaced by a broader concept of ‘ecological resilience’ recognizing multiple
stable states and the ability for systems to resist regime shifts and maintain functions, potentially
through internal reorganization (i.e., their ‘adaptive capacity’ [23]). Recent definitions of resilience
encompass aspects of both recovery and resistance, although different mechanisms can underpin
these and in some cases there might be trade-offs between them [24]. However, some mecha-
nisms can promote both resistance and recovery depending on the timeframe in which a system s
observed (e.g., very rapid recovery can look like resistance). Therefore, we treat resistance and
recovery here as two related complementary aspects of resilience [25].

There has been much semantic and theoretical treatment of the resilience concept, but here we
are concerned with identifying metrics for real-world applications. An ecological system can be
defined by the species composition at any point in time [26] and there is a rich ecological
literature, both theoretical and experimental, that focuses on the stability of communities [16,
27-29] with potential relevance to resilience. Of course, the species in a community are essential
to the provision of many ecosystem functions that are the biological foundation of ecosystem
services [3]. However, the stability of species composition itself is not a necessary prerequisite
for the resilience of ecosystem functions. Turnover in species communities might be the very
thing that allows resilient functions. For example, in communities subjected to climatic warming,
cold-adapted species are expected to decline while warm-adapted species increase [30]. The
decline of cold-adapted species can be limited through management [31], but in many cases
their local loss might be inevitable [32]. If these species have important functional roles,
ecosystem functions can suffer unless other species with similar functional roles replace them.
Indeed, similar sets of functions might be achieved by very different community structures [33].
Therefore, while the species composition of an ecosystem is typically the target of conservation,
it is ecosystem functions, rather than species composition per se, that need to be resilient if
ecosystem services are to be maintained (Figure 1). In this case the most relevant definition of
resilience is the degree to which an ecosystem function can resist or recover rapidly from
environmental perturbations, thereby maintaining function above a socially acceptable level. This
can be thought of as the ecosystem functions-related meaning of resilience [19], or alternatively
as the inverse of ecological ‘vulnerability’ [34]. Resilience in this context is related to the stability of
an ecosystem function as defined by its constancy over time [35], but the approach of using a
minimum threshold more explicitly measures deficits of ecological function that impact on human
well-being (e.g., [14]). Note that here we focus on the resilience of individual ecosystem
functions, which might be appropriate for policy formulation (e.g., pollination resilience), although
ecosystem managers will ultimately want to consider the suite of ecosystem functions support-
ing essential services in a given location.
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Glossary

Alternative stable states: when an
ecosystem has more than one stable
state (e.g., community structure) for a
particular set of environmental
conditions. These states can differ in
the levels of specific ecosystem
functions.

Beta diversity: variation in the
composition of species communities
across locations.

(Demographic) Allee effects:
where small populations exhibit very
slow or negative growth contrary to
the rapid growth usually expected.
Explanations range from an inability
to find mates or avoid predators or
herbivores to limited ability to engage
in cooperative behaviors.
Ecosystem functions: the biological
underpinning of ecosystem services.
While ecosystem services are
governed by both ecological and
social factors (e.g., business
demand-supply chains), in this review
we focus on the proximate biological
processes — such as productivity,
pest control, and pollination — that
determine the supply of ecosystem
services.

Ecosystem services: outputs of
ecosystem processes that provide
benefits to humans (e.g., crop and
timber production).

Effect traits: attributes of the
individuals of a species that underlie
its impacts on ecosystem functions
and services.

Functional redundancy: the
tendency for species to perform
similar functions, such that they can
compensate for changes in each
other's contribution to ecosystem
processes. Functional redundancy
arises when multiple species share
similar effect traits but differ in
response traits.

Phenotypic plasticity: gene-by-
environment interactions that lead to
the same genotypes expressing
changed behavior or physiology
under different environmental
conditions.

Resilient ecosystem function: see
main text for a history of the term
resilience. The definition used here is
the degree to which an ecosystem
function can resist or recover rapidly
from environmental perturbations,
thereby maintaining function above a
socially acceptable level.
Resistance/recovery: in the context
used here, these refer to the
tendency of ecosystem function
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Figure 1. Schematic Showing Varying Resilience Levels of an Ecosystem Function (¥) to Environmental
Perturbations (Red Arrows). Panel (A) shows a system with high resistance but slow recovery; panel (B) shows a system
with low resistance but rapid recovery; panel (C) shows a system with both low resistance and slow recovery. Lack of
resilience (vulnerability) could be quantified as the length of time that ecosystem functions are provided below some
minimum threshold set by resource managers (this threshold shown with the symbol W) or the total deficit of ecosystem
function (i.e., the total shaded-red area). Note that, in the short term, mean function is similar in all systems but in the longer
term mean function is lower and the extent of functional deficit is higher in the least resilient system (C).

Threats to Ecosystem Functions

Environmental change is not unusual (ecosystems have always faced periodic and persistent
changes), but anthropogenic activity (e.g., land conversion, carbon emissions, nitrogen cycle
disruption, species introductions) is now increasing both the rate and the intensity of environ-
mental change to previously unprecedented levels [36-38]. Rapid changes to the abiotic
environment might alter local and regional species pools through environmental filtering and
disrupting biotic interactions, leading to changes in the suites of traits and interactions that affect
ecosystem functioning [39]. The timescales involved tend to be measured with respect to
relevant human interventions; that is, usually over years to decades. The environmental changes
may be rapid-onset (e.g., disease), chronic (e.g., habitat loss), or transitory (e.g., drought;
Figure 2A) perturbations. Some environmental pressures can show complex temporal patterns.
For example, climate change includes transitory perturbations due to climatic extremes overlaid
on a background of long-term warming, with the potential for rapid-onset changes if tipping
points are reached [40].

The impacts of environmental perturbations on ecosystem functions will depend on the pres-
ence of ecosystem characteristics that confer resilience, involving interacting mechanisms at
multiple ecological scales (see next section). These processes govern the form of functional
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Figure 2. Different Possible Relationships between Environmental Change (g), time (t), and level of ecosystem
function provided (V). Panel (A) shows three types of environmental change: rapid onset (A), chronic (B), and transitory
perturbation (C). Panel (B) shows that ecosystem function might be relatively resistant to increasing levels of environmental
change (D), less resistant (E), or demonstrate hysteresis (F). Panel (C) shows the four qualitatively different outcomes for how
ecosystem function varies over time, whether the system is fully resistant to an environmental change (H), shows limited
resistance but full recovery (1), or shows limited (J) or low resistance (K) with no recovery of function. The horizontal line at W4
indicates some minimum threshold for ecosystem function that is set by resource managers. In both panels (A) and (C),
short-term stochasticity about trends is omitted for clarity.
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provision to remain stable in the face
of environmental perturbation or the
tendency to rapidly return to pre-
perturbation levels.

Response traits: attributes that
influence the persistence of
individuals of a species in the face of
environmental changes.
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response to environmental change (Figure 2B) and their rates relative to the environmental
change driver will govern the resilience and ultimate temporal trends in ecosystem function
(Figure 2C).

Mechanisms Underpinning Resilient Ecosystem Functions

Previous studies have attempted to identify the characteristics of resilient systems from a broad
socioeconomic perspective [20,21], but here we focus on the biological underpinnings of the
resilience of ecosystem functions, to inform targeted environmental management practices. The
resilience of ecosystem functions to environmental change is likely to be determined by multiple
factors acting at various levels of biological organization; namely, species, communities, and
landscapes (Table 1). These ecological levels are interconnected so that changes at a particular
level can cascade to other levels in the same system. For instance, individual species’ responses
to environmental change mediate changes in the population abundance and resulting inter-
actions with other species, thus affecting community structure and composition as well as the
distribution of effect and response traits [39]. These changes can extend to the level of whole
ecosystems but are mediated by the ecosystem context, such as landscape level heterogeneity
or habitat connectivity, to determine the resilience of ecosystem function.

Here we provide a new assessment of evidence for the mechanisms underpinning the resilience
of ecosystem functions across these ecological levels (Table 1). Our assessment is focused on
promoting general resilience to a range of different primary threats to ecosystem function.

Species-Level Mechanisms

Species rarely experience identical impacts of environmental change due to interactions
between traits, landscape composition, and the scale at which they experience environmental
drivers [41,42]. This variation in response within and between individual species determines both
the short-term provision and the long-term resilience of ecosystem functions. Below we list five
key mechanisms operating at the species level and provide hypotheses for their effects on the
resilience of ecosystem functions.

Sensitivity to Environmental Change

Species vary in their capacity to persist in the face of environmental perturbations, mediated by a
range of behavioral and physiological adaptations (response traits) [43]. Such traits show both
interspecific and intraspecific variation. Individuals with traits conferring reduced sensitivity to
environmental change will confer higher resistance on ecosystem functions [44]. For example,

Table 1. Mechanisms Underpinning the Resistance and Recovery of Ecosystem Functions to Environmental
Perturbation

Species (Intraspecific) Community (Interspecific) Landscape (Ecosystem Context)
Sensitivity to environmental Correlation between response and Local environmental heterogeneity (RES)
change (RES) effect traits (RES)

Intrinsic rate of population Functional redundancy (RES/REC) Landscape-level functional connectivity
increase (RES/REC) (RES/REC)

Adaptive phenotypic plasticity Network interaction structure (RES) Potential for alternative stable states
(RES/REC) (RES/REC)

Genetic variability (RES/REC) - Area of natural habitat cover at the

landscape scale (RES/REC)
Allee effects (RES/REC) - —

The abbreviations RES, REC, and RES/REC indicate the importance of each mechanism for resistance, recovery, or both,
respectively.
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trees vary in their sensitivity to drought depending on nonstructural carbohydrate levels [44],
which in turn might affect the resistance of the ecosystem functions that they provide. Broader
suites of traits, such as the plant resource economics spectrum [45], are also likely to explain
variation in sensitivity. Note, however, that there might be negative correlations between
sensitivity and intrinsic growth rates, with slow-growing species providing more resistant
ecosystem functions but with lower capacity to recover if perturbation does occur.

Intrinsic Rate of Population Increase

The capacity of species populations to grow rapidly from low numbers is determined by a suite of
related characteristics including generation time and mortality and fecundity rates. Species with
a high intrinsic rate of increase will recover more quickly from environmental perturbations [46] or
show resistance if this population reinforcement occurs during the perturbation.

Adaptive Phenotypic Plasticity

Individuals have the capacity to respond to environmental changes through flexible behavioral or
physiological strategies that promote their survival [43] and the resistance of ecosystem
functions. For example, thermoregulatory behavior appears to be an essential survival tool in
many ectotherms that operate in temperature conditions close to or beyond their physiological
limits [47]. Additionally, adaptations might allow flexibility to maximize resource acquisition and
growth rates in changed environmental conditions, enabling more rapid population recovery and
recovery of ecosystem function.

Genetic Variability

Higher adaptive genetic variation increases the likelihood that genotypes that are tolerant to a
given environmental perturbation will be present in a population [18]. This reduces the population
impacts of environmental perturbations [48] and promotes resistance of ecosystem functions
[49]. In addition, the persistence of tolerant genotypes locally means that population recovery
rates are likely to be higher, leading to enhanced function recovery rates [48,50]. Adaptive
genotypes can be present in standing genetic variation, which is more likely at higher effective
population sizes. Alternatively, they can arise locally through mutation or through immigration
from other populations [18]. It is also becoming increasingly apparent that epigenetic effects can
provide heritable variation in ecologically relevant traits [51].

Allee Effects

Allee effects make populations more susceptible to environmental perturbations causing
crashes from which it is difficult to recover [52,53]. Certain species are more susceptible to
Allee effects through mechanisms such as an inability to find mates or avoid predators or a
limited ability to engage in cooperative behaviors.

Community-Level Mechanisms

Beyond the tolerance and adaptability of individuals, the composition and structure of the
biological community is of particular importance for the resilience of ecosystem functions. Below
we list three key underpinning mechanisms.

Correlation between Response and Effect Traits

If the extent of species’ population decline following an environmental perturbation (mediated by
response traits) is positively correlated with the magnitude of species’ effects on an ecosystem
function (via effect traits), this will lead to less resistant ecosystem functions [39,54]. This might
occur if the same traits mediate both response and effects or through indirect associations
between different traits. Correlations and trade-offs are probably a common aspect of traits as a
result of biophysical limitations in structure and function [55]. For example, traits such as body
size have been linked with both sensitivity to environmental change (response traits) and the
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maintenance of ecosystem functions (effects traits) such as pollination by bees [56,57], nutrient
recycling by dung beetles [56], and pest control by predatory invertebrates [58,59]. By contrast,
completely uncorrelated response and effects traits cause higher resistance in ecosystem
function, since responses of species to environmental change are decoupled from their effects
on function [54,56]. For example, Diaz et al. [39] summarize several studies that show no
correlation between decomposability in plants (an effect trait for nutrient cycling and soil fertility)
and persistence in the seed bank (a response trait to disturbance under agricultural
intensification).

Functional Redundancy

When multiple species perform similar functions (i.e., species exhibit some redundancy in their
contributions to ecosystem processes), the resistance of an ecosystem function will be higher if
those species also have differing responses to environmental perturbations [60,61]. This gives
rise to the ‘insurance effect’ of biodiversity [62], which is well supported both empirically [14,15]
and theoretically [16,28]. Underpinning mechanisms include a statistical effect, where averaging
across independently fluctuating species populations results in higher resistance (‘portfolio
effects’), which is enhanced further where there is negative spatial and/or temporal covariance
(asynchrony) between species’ population sizes, driven by differing responses to environmental
change or competition [14-16,28,62].

The functional roles of species can be mediated by either continuous or categorical traits (e.g.,
complementary effect traits such as sward- and ground-active predators for pest control [63]).
Resistance is increased both by more species in total (assuming that there is variation in their
response traits) and, for a given total number of species, when they are dispersed equally across
effect-trait space (Figure 3). In reality, intraspecific variation in traits also occurs, and where this is
substantial relative to interspecific variation it might be relevant to consider the redundancy and
dispersion of individuals across effect-trait space [64].

Network Interaction Structure

Most of the theory and empirical work discussed above concerns organisms occupying a single
trophic level, but interactions between species (e.g., predation, parasitism, mutualism) can have
large influences on community responses to environmental change [2,65]. Loss of highly
connected species in interaction networks can cause extinction cascades and reduce network
stability [66-68]. If these species are particularly sensitive to environmental change, the resis-
tance of the ecosystem functions they provide will be low [69]. Impacts on ecosystem function
will be greater when response and effect traits are correlated and patterned in networks along
extinction cascades. For example, body size is linked with both extinction risk and the provision
of ecosystem functions in taxa including pollinators [56] and pest-control agents [70]. In general,
highly connected nested networks dominated by generalized interactions are less susceptible to
cascading extinction effects and provide more resistant ecosystem functions, in contrast to
networks dominated by strong specialized interactions [71,72].

An important consideration is that the impacts of species loss are likely to lead to changes in the
abundance of surviving species, so that the presence or absence of density compensation
following species loss can be the key predictor of ecosystem function provision [56,67,73]. For
example, atmospheric deposition of nitrogen can result in species loss from some plant
communities but density compensation of remaining species might support net primary pro-
ductivity [74].

Landscape-Level Mechanisms

The intraspecific- and community-level mechanisms described above are influenced by the
environmental context of both the local site and the wider landscape. The landscape context
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Figure 3. Functional Redundancy and Effects on Resilience of Ecosystem Functions. Complementary effect-trait
space occupied by all species in a community can be characterized by an n-dimensional hypervolume for continuous traits
[main panels (A-C)] or as discrete functional groups for categorical traits (inset panels A-C). A high density of species spread
evenly across complementary trait space [(A), shown for two of n possible traits] leads to higher resistance of ecosystem
functions. This is shown in panel (D) (scenario A), which shows the hypothetical average impact on ecosystem function as
species are lost from a community under increasing environmental perturbation. The same number of species less evenly
dispersed across complementary effect-trait space [i.e., a more ‘clumped’ distribution, (B)] leads to less resistant
ecosystem functions [(D), scenario B]. Similarly, fewer species that are evenly but thinly spread across complementary
effect-trait space (C), also lead to less resistant ecosystem functions. In both cases, the communities are said to have lower
‘functional redundancy’. The exact rate of loss of ecosystem function will be context dependent (e.g., depending on initial
number of species, ordering of species extinctions, and degree of species clustering in trait space).

determines the local and regional species pool and also the abiotic environment, which can
modify the impacts of environmental perturbations on individuals and communities.

Local Environmental Heterogeneity

Spatial heterogeneity can enhance the resistance of ecosystem functions by: (i) facilitating the
persistence of individual species under environmental perturbations by providing a range of
resources and microclimatic refugia [75-78]; and (i) increasing overall species richness [79] and,
therefore, functional redundancy. These heterogeneity effects can operate at: the fine scale, for
example through vegetation structural diversity [75]; the medium scale, for example through
topoedaphic diversity [76]; or the larger scale, for example, through diversity of land cover types
[77,78]. Additionally, environmental heterogeneity across locations (promoting beta diversity)
has been shown to increase the stability of ecosystem functions [27].

Landscape-Level Functional Connectivity

Metapopulation theory suggests that populations in well-connected landscapes will persist
better or recolonize more rapidly following environmental perturbation (the ‘rescue effect’).
Empirical studies confirming this hypothesis range from mesocosm experiments [80,81] to
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landscape-level field studies [82,83]. This prediction extends to metacommunities and experi-
ments have shown that connectivity enhances community recovery after local perturbations
[81,84]. In afew cases, this recovery of community structure through dispersal has been shown
to lead to recovery of ecosystem functions such as productivity and carbon sequestration to pre-
perturbation levels, a process termed ‘spatial insurance’ [85,86].

Area of Natural Habitat Cover at the Landscape Scale

In addition to improving functional connectivity for particular species, larger areas of natural or
seminatural habitat tend to provide a greater range and amount of resources, which promotes
higher species richness and larger population sizes for each species [87,88]. This, inturn, is likely
to mean greater genetic diversity and functional redundancy, both of which promote the
resistance of ecosystem functions [18,60,61].

Potential for Alternative Stable States

Alternative stable states are associated with abrupt shifts in ecosystems, tipping points, and
hysteresis, all of which challenge traditional approaches to ecosystem management [17,89].
Ecosystem states maintain their stability through internal feedback mechanisms, which confer
resistance on ecosystem functions. However, environmental perturbations can increase the
likelihood of regime shift leading to a fundamental change in the assemblages of species
providing functions [17]. Systems can be more susceptible to environmental stochasticity
and transient perturbations close to these critical tipping points leading to sudden changes
to a new equilibrium [53]. Some alternative stable states might be unfavorable in terms of
ecosystem functions with return to previous states possible only through large and costly
management interventions (hysteresis), thereby limiting the recovery capacity of ecosystem
function. Alternative states are documented in a wide variety of ecosystems from local to global
scales, although how stable and persistent these are remains uncertain [89-91].

Managing for Resilience

Applied Ecosystem Management

Ecosystem services are beginning to be integrated within major land-management programs
(e.g., the EU Common Agricultural Policy, REDD+). However, the measurement, monitoring, and
direct management of ecosystem function resilience in these programs is lacking [92]. The
ecological theory and empirical evidence discussed above suggest that multiple factors will
determine ecosystem resilience. However, we do not yet know which will be the most important
in determining resilience in particular functions or ecosystems. It is clear that some factors will be
more amenable to management (e.g., population-level genetic variability, landscape structure
[18,31]) than others (e.g., environmental sensitivity of individual species, presence of alternative
stable states). Additionally, there can be trade-offs and synergies between resilience and the
short-term performance of ecosystem functions [49,93].

Synergies and Trade-Offs with Short-Term Performance

In some cases there are synergies between the short-term performance of ecosystem functions
and their longer-term resilience; for example, if species richness is associated with higher levels
of function under current conditions due to complementarity [13], and with higher resilience of
function due to higher functional redundancy [39,54]. In these cases, management targeted
toward short-term performance will also enhance resilience. In other cases, however, trade-offs
can occur. For example, maintaining genetic diversity for the resilience of ecosystem functions
may conflict with the aim to produce the ‘best locally adapted phenotype’ [49]. Much intensive
agricultural management currently focuses on such low-diversity systems that produce high
levels of provisioning services but which might have low resilience [93]. Furthermore, while
habitat heterogeneity can promote the persistence of species through climatic extremes [77,78],
it can, in the shorter term, reduce the availability of specific habitats required by key species. In
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Box 1. Indicators of Short-Term Ecosystem Function Flows versus Resilience

The development of indicators for ecosystem functions is hampered by a lack of primary data and there is strong reliance
on proxy measures such as habitat extent [94,95]. These proxy measures are currently used to inform on spatial and
temporal trends in ecosystem function for the reporting and management of biodiversity change [4-6]. Such models use
abiotic variables such as land cover, topography, and climate data as explanatory variables in spatially explicit statistical
correlative models [96,97] or process models [98,99] to predict the provision of ecosystem functions and services.
However, because models are parameterized and validated (where undertaken) on the current set of environmental
conditions they are often suitable only for producing indicators of short-term ecosystem function flows rather than
resilience under environmental perturbations (Figure 4).

Attempts at developing resilience indicators for ecological functions have been limited mostly to ‘early-warning systems’
[53,92]. These focus on emergent properties of systems that might precede impending critical state transitions (e.g.,
‘critical slowing down’ [53]). However, these properties occur before critical transitions in only a subset of cases and thus
are likely to be poor general predictive indicators of resilience [91]. A focus on emergent properties of systems also
ignores the mechanisms that underpin resilience and therefore has limited ability to inform management advice.

Therefore, assessments of the resilience of ecosystem functions and services are currently severely lacking. The
development of robust yet cost-effective indicators is likely to be dependent on proxy measures that can be both
derived from existing monitoring [4] and shown to covary with resilience. For example, an attempt to assess the
importance and feasibility of resilience indicators based on expert opinion for coral-reef systems is provided by
McClanahan et al. [100]. Validation of practicable proxy measures is then important to ensure they are reliable.

these cases, short-term management for higher levels of ecosystem function might hinder
resilience.

Measuring and Monitoring Resilience

Reporting on ecosystem services has focused on the short term [6], despite the acknowledge-
ment of long-term resilience in Earth systems management [10,92]. Therefore, a challenge is the
development of robust yet cost-effective indicators of the resilience of ecosystem functions and
services (Box 1). To develop indicators, research is needed into current data availability, the
feasibility of data collection, and the validation of indicator metrics. The subsequent implemen-
tation of resilience indicators to inform environmental management will also require significant
interdisciplinary research with the socioeconomic sciences; for example, to ascertain target
suites of ecosystem functions in different areas and to set socially acceptable minimum thresh-
olds for functions. An additional challenge will be to identify and balance trade-offs between the
resilience of multiple functions. Such research, however, is essential to safeguard the provision
of ecosystem functions under the significant environmental perturbations expected within the
next century (see Outstanding Questions).
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Figure 4. Hypothetical Example of Indicator Values for an Ecosystem Function Flow (e.g., Estimates of Pollen
Delivery to Crops) or Resilience of that Function (e.g., Pollination under Environmental Perturbations as
Measured by Some Combination of the Mechanisms Highlighted in this Review) as an Ecosystem is
Degraded over Time. The thresholds to initiate management action (red dotted lines) differ depending on which indicator
is used (A for the resilience indicator, B for the ecosystem function flow indicator). Given that remedial management takes
time to put in place and become effective, unacceptable losses of ecosystem function might occur if ecosystem function
flow indicators are solely relied on. These losses can be costly for society and difficult to reverse.
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Concluding Remarks
In this review we have highlighted mechanisms by which biodiversity, at different hierarchical
scales, can influence the resilience of ecosystem functions. We hope that a focus on resilience
rather than short-term delivery of ecosystem functions and services, and the consideration of
specific underpinning mechanisms, will help to join the research areas of biodiversity—ecosystem
function and ecological resilience and ultimately aid the development of evidence-based yet
flexible ecosystem management. Further work will also need to draw significantly on other
disciplines to develop appropriate indicators for the simultaneous resilience of multiple ecosys-
tem functions.
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Outstanding Questions

The following research questions have
particular  priority  for  advancing
research into the management of resil-
ient ecosystem functions.

Are there thresholds that should be
avoided to prevent sudden collapse
of ecosystem functions? If so, how
quickly are systems moving toward
these thresholds and do the thresholds
themselves move?

How exactly can each of the mecha-
nisms identified in this review and any
others be used to inform applied man-
agement to enhance the resilience of
ecosystem functions?

How can the relevance and feasibility of
these mechanisms be assessed to
develop robust indicators for the mea-
surement and monitoring of resilience?

Given that the values people give to
ecosystem services are likely to be
context dependent over space and
time, how do we decide which services
and the underpinning functions are pri-
orities in a given area and what the
minimum thresholds are?

Given that ecosystem services are the
products of both natural capital (i.e.,
ecosystem functions) and other socio-
economic capitals, what is the relative
contribution of resilient ecosystem
functions to the maintenance of differ-
ent ecosystem services over time?

How can the measures to promote
resilience be justified when, under sta-
ble environmental conditions and in
many decision-making-relevant time-
scales, they lead to apparent
redundancy?
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