Lecture 4 : Basic elements of game theory (cont'd)

Best response

The *Best Response* of a player is his preferred action given the strategies played by the other players.

- Consider a normal form game with *n* players
- A strategy s_i is a best response of player *i* to a given combination of other players' strategies s_{-i} if:

$$u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$$
 for every $s'_i \in S_i$

• In other words the best response of player *i* to a given combination of other players' strategies $s_{-i} = (s_1, \dots, s_{i-1}, s_{i+1}, s_n)$ solves the following problem:

$$\max_{s_i \in S_i} u(s_1, \dots, s_i, \dots, s_n)$$

Note that for each player we can find at least one best response for each combination of other players' strategies.

Example 1

		Player 2		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
	В	1,2	0,1	4,4

The best response of player 1 to player 2 playing L is Z The best response of player 1 to player 2 playing C is Y The best response of player 2 to player 1 playing B is R

Example 2

Suppose a game with two players, 1 and 2. payoff of player 1 is

$$(10 - a_1 - a_2) a_1$$

 $a_1 = 3$

where a_1 is the action of player 1 and a_2 is the action of player 2 What is player 1's best response if player 2 plays $a_2 = 4$?

To find it we have to solve

$$Max (10-a_1-a_2)a_1$$

The FOC are: $10 - 2a_1 - a_2 = 0$
Solving by a_1 we get player 1'best response
 $a_1 = (10 - a_2)/2$
Replacing $a_2 = 4$ into player 1'best response we get

Rationalizability

- As with iterated dominance, this procedure eliminates at each stage strategies that are not best response to any strategy combination of the other players.
- The strategies that survive to this process are called *rationalizable strategies*
- This process requires that players are able to identify best responses. Then respect to iterated dominance we need that player a "more sophisticated".
- To identify a best response could be more difficult respect to identify a strictly dominated strategy
- This ability has to be common knowledge

		Player 2		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
	В	1,2	0,1	4,4

The best response of player 1 to player 2 playing L is Z The best response of player 1 to player 2 playing C is Y The best response of player 1 to player 2 playing R is T Then B is never a best response and we can eliminate it

		Player 2		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
		1.2	0.1	<u> </u>
		1,4	0,1	т,т

The best response of player 2 to player 1 playing T is L The best response of player 2 to player 1 playing Y is C The best response of player 2 to player 1 playing Z is L Then R is never a best response and we can eliminate it

		Player 2		
		L	C	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
	В	1,2	0,1	

The best response of player 1 to player 2 playing L is Z The best response of player 1 to player 2 playing C is Y Then T is never a best response and we can eliminate it

		Player 2			
		L	С	R	
	Т	2,3	2,2		
Player 1	Y	3,2	5,3	3,1	
	Ζ	4,3	1,1	2,2	
	B	1,2	0,1	4,4	

The best response of player 1 to player 2 playing L is Z The best response of player 1 to player 2 playing C is Y Then T is never a best response and we can eliminate it

The process stops here and we have identified the set of rationalizble strategies.

Nash Equilibrium

- It is a prediction about the strategy each player will choose
- This prediction is correct if each player's predicted strategy is a best response to the predicted strategies of the other players.
- Such prediction is *strategically stable* or *self enforcing*: no player wants to change his/her predicted strategy
- We call such a prediction a *Nash Equilibrium*.

Definition of Nash Equilibrium

- A strategy profile where all players plays a best response against the strategies of the other players is a **Nash equilibrium**
- If for each player there are not indifferences with some other strategies, then we say that the strategy profile is **strict Nash Equilibrium**
- Intuitively we can say that a Nash equilibrium strategy profile is a strategy combination where no player has an inventive to deviate from it and she expects that no other player to deviate

Math definition of Nash Equilibrium

The strategy profile $s^* = (s_1^*, ..., s_n^*)$ is a **Nash equilibrium** if for every player *i*:

$$u_i(s_1^*, \dots, s_i^*, \dots, s_n^*) \ge u_i(s_1^*, \dots, s_i^*, \dots, s_n^*)$$
 for every action $s_i \in S_i$

(none ha an incentive to deviate from $s^* = (s_1^*, ..., s_n^*)$)

The strategy profile $s^* = (s_1^*, ..., s_n^*)$ is a **Strict Nash equilibrium** if for every player *i* the above inequality holds strictly for every action $s_i \in S_i$

Note

In a Nash equilibrium, for each i, s_i^* solves the following maximization problem:

$$\max_{s_i \in S_i} u_i(s_1^*, \dots, s_i, \dots, s_n^*)$$

Example 1: the Prisoner's Dilemma

		Player	2
		C(ooperate)	D(efect)
Player 1	C(ooperate)	2,2	0, <u>3</u>
	D(efect)	<u>3,0</u>	<u>1,1</u>

- The unique Nash equilibrium is (D,D)
- For every other profile, at least one player wants to deviate

Example 2: the "Battle of the Sexes"

		Player	2
		Football	Theatre
Player 1	Football	<u>2,1</u>	0,0
	Theatre	0,0	<u>1,2</u>

• There are two Nash equilibria: (Football, Football) and (Theatre, Theatre)

Example 3: Matching Pennies

		Player	2
		Head	Tail
Player 1	Head	<u>1</u> ,-1	-1, <u>1</u>
	Tail	-1, <u>1</u>	<u>1</u> ,-1

• There is no Nash equilibrium

Example 4: "Stag-Hunt"

		Player	2
		Stag	Hare
Player 1	Stag	<u>2,2</u>	0,1
	Hare	1,0	<u>1,1</u>

- There are two equilibria:
- (Stag, Stag) and (Hare, Hare)

Public good game

- This is an example of a game with continuous strategies
- Two individuals are endowed with 10 pounds.
- They can contribute to a public good by delivering any amount of money out of their endowment (c_1, c_2)
- For each individual the value of the public good is given by the sum of the contributions multiplied by 0.7

$$v_p = 0.7(c_1 + c_2)$$

Payoff of player 1 = Endowment – contribution + value of the public good

$$\pi_1 = 10 - c_1 + \nu_p = 10 - c_1 + 0.7(c_1 + c_2)$$

Payoff of player 2 = Endowment – contribution + value of the public good

$$\pi_2 = 10 - c_2 + v_p = 10 - c_2 + 0.7(c_1 + c_2)$$

The best response of player 1 is given by the solution of the problem:

$$\max_{c_1} \pi_1 = 10 - c_1 + 0.7(c_1 + c_2)$$

FOCs are:

$$-1 + 0.7 < 0$$

Then player 1's best response is $c_1 = 0$

The best response of player 2 is given by the solution of the problem:

$$\max_{c_2} \pi_2 = 10 - c_2 + 0.7(c_1 + c_2)$$

FOCs are:

$$-1 + 0.7 < 0$$

Then player 2's best response is $c_2 = 0$

Unique Nash equilibrium: both individuals contribute by 0 But the efficient outcome is both contributing by 10

		Player	2
		L	R
	Т	3,3	5,4
Player 1	М	1,0	4,1
	В	3, 2	1,3

Select the strategy profile that is Nash equilibrium

Mixed strategies: Motivation

		Player	2
		Head	Tail
Player 1	Head	1,-1	-1,1
	Tail	-1,1	1,-1

- The characteristic of Matching Pennies is that each player wants to outguess the other:
- There are other similar situations where each player wants to outguess the other(s): poker, football, battle,.....
- In situations where players want outguess the other, there is no Nash equilibrium **in pure strategies**

Definition of mixed strategy

- A **mixed strategy** of player *i* is a probability distribution over the strategies in *S_i*
- The strategies in S_i are called *pure strategies* Note: in static games of complete information strategies are the actions the player could take.

Math definition of mixed strategy

Suppose $S_i = \{s_{i1}, \dots, s_{ij}, \dots, s_{iK}\}$ (player *i* has *K* strategies) A mixed strategy for player *i* is a probability distribution

$$p_i = (p_{i1}, p_{i2}, \dots, p_{iK})$$

where p_{ij} is the probability that player *i* will play strategy *j* (i.e. the probability associated to strategy s_{ij})

Then in a game,

- 1. $p = (p_1 \dots p_i \dots p_n)$ denotes a *mixed strategy profile*, i.e. one strategy for each player.
- 2. p_{-i} denote a mixed strategy profile of all players except player *i*

Example 1: Matching Pennies

- $S_i = \{Head, Tail\}$
- (q, 1 q) is a mixed strategy where:
 - q is the probability to play *Head* and
 - 1– *q* is the probability to play *Tail* where $0 \le q \le 1$
- Note: (0,1) is the pure strategy *Tail and* (1,0) is the pure strategy *Head*
- But what means to play a mixed strategy?

Suppose that Player 1 likes to play:

- Head by probability 0.4
- Tail by probability 0.6
- i.e. the mixed strategy $p_1 = (0.4, 0.6)$

The action he will play is randomly chosen according to the distribution (0.4, 0.6), for example choosing a ball from a box where 4 balls are marked by H (Head) and 6 are marked by T (Tail)

		Player 2		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Z	4,3	1,1	2,2
	В	1,2	0,1	4,4

•
$$S_2 = \{L, C, R\}$$

- p₂ = (p_{2L}, p_{2C}, p_{2R}) is a mixed strategy of Player 2 where:
 p_{2L} = q is the probability to play L,
 p_{2C} = r is the probability to play C and
 p_{2R} = 1 q r is the probability to play R
 p₂ = (q,r,1-q-r)
 0 ≤ q ≤ 1; 0 ≤ r ≤ 1; 0 ≤ q + r ≤ 1
- Note: $p_2 = (0, 0, 1)$ is the pure strategy R

		Player 2		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Z	4,3	1,1	2,2
	В	1,2	0,1	4,4

•
$$S_2 = \{L, C, R\}$$

- p₂ = (p_{2L}, p_{2C}, p_{2R}) is a mixed strategy of Player 2 where:
 p_{2L} = q is the probability to play L,
 p_{2C} = r is the probability to play C and
 p_{2R} = 1 q r is the probability to play R
 p₂ = (q,r,1-q-r)
 0 ≤ q ≤ 1; 0 ≤ r ≤ 1; 0 ≤ q + r ≤ 1
- Note: $p_2 = (0, 0, 1)$ is the pure strategy R

Suppose that Player 2 wants play:

- L by probability 0.2
- C by probability 0.3
- R by probability 0.5
- i.e. the mixed strategy $p_2 = (0.2, 0.3, 0.5)$

The action he will play, it is randomly chosen according to the distribution (0.2, 0.3, 0.5), for example choosing a ball from a box where 2 balls are marked by L, 3 are marked by C and 5 are marked by R

Expected utility and mixed strategies

In order to evaluated a player's strategy against a strategy profile played by others we need to compute its expected value.

For example for player *i*, the expected utility of strategy p_i against the others' strategies p_{-i} is denoted by $u_i(p_i, p_{-i})$

Example:	Example:	
----------	----------	--

		Player 2		
		L	С	R
	Т	2,1	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
	В	1,4	0,1	4,4

We compute the expected value of $p_2 = (1, 0, 0)$ (the pure strategy L) against the player 1's strategy $p_1 = (0.4, 0.3, 0.2, 0.1)$

$$E_2(p_2|p_1) = 1 \cdot 0.4 + 2 \cdot 0.3 + 3 \cdot 0.2 + 4 \cdot 0.1 = 2$$

Example:

		Player 2		
		L	С	R
	Т	2,1	2,2	5,3
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
	В	1,4	0,1	4,5

We compute the expected value of $p_2 = (0.6, 0, 0.4)$ (a mixed strategy L) against the player 1's strategy $p_1 = (0.3, 0, 0, 0.7)$

		Player 2		
		0.6	0	0.4
	0.3	2,1	2,2	5,3
Player 1	0	3,2	5,3	3,1
	0	4,3	1,1	2,2
	0.7	1,4	0,1	4,5

 $E(p_2|p_1) = 1 \cdot 0.6 \cdot 0.3 + 3 \cdot 0.4 \cdot 0.3 + 4 \cdot 0.6 \cdot 0.7 + 5 \cdot 0.4 \cdot 0.7$