LESSON 14.

1. PRODUCT OF QUASI-PROJECTIVE VARIETIES AND TENSORS.

1.1. Products. Let P*, P™ be projective spaces over the same field K. The cartesian
product P x P™ is simply a set: we want to define an injective map from P" x P™ to a
suitable projective space, so that the image is a projective variety, which will be identified
with our product.

Let N = (n+ 1)(m + 1) — 1 and define ¢ : P* x P™ — PV in the following way:
o([oy -y Tuls [Yos - -, Ym]) = [ToYo, ToY1s - -, TilYj, - - - s TnYm]. Using coordinates w;j, i =
0,...,mn,7=0,...,m,in PV, ¢ is defined by

{wij = T;Yj, i:O,...,n,j :0,...,m.
It is easy to observe that ¢ is a well-defined map.
Let X, ,, (or simply ¥) denote the image o(P" x P™).

Proposition 1.1. ¢ is injective and %, ,, is a closed subset of PV.

Proof. 1f o([z], [y]) = o([2'], [y]), then there exists A # 0 such that zjy; = Az;y; for all 4, 5.

In particular, if x;, # 0, yx # 0, then also z}, # 0, y, # 0, and for all ¢ 2} = /\Z—hci, SO
k

[0, ..., @y =[x, ..., 2]. Similarly for the second point.

To prove the second assertion, I claim: ¥, ,, is the closed set of equations:
(1) {wijwp, = wigwy;, i, h=0,...,0;5,k=0...,m.

It is clear that if [w;;] € X, then it satisfies (1).
Conversely, assume that [w;;] satisfies (1) and that w,s # 0. Then

(W00, - -+ s Wiy« -+ s Wy | = [WooWagps - - -, WijWas, - - ., WpmWag| =
= [woﬂwao, e ,wiﬁwaj, Ce ,wnﬁwam] =
= o([wog, - - -, Wnga, [Waos - - - s Wam))-

O

o is called the Segre map and ¥, ,, the Segre variety or biprojective space. Note that X
is covered by the affine open subsets X% = 3 N W;;, where W;; = PV \ Vp(w;;). Moreover
¥4 = g(U; x V;), where U; x V; is naturally identified with A",

Proposition 1.2. oly,xy, : Uy x V; = A" — ¥4 is an isomorphism of varieties.
1



2 LESSON 14.

Proof. Assume by simplicity ¢ = j = 0. Choose non—-homogeneous coordinates on Uy:
w; = x;/xo and on Vy: v; = y;/yo. SO Uy, ... Uy, V1,. ..,V are coordinates on Uy x V. Take
non-homogeneous coordinates also on Wo: 2;; = w;;j/woo.

Using these coordinates we have:

(U, e Uy U1 e U) = (U1 Uy U, UL VT, e U Uy - e U Uy
|
(L gy e upn], [, 1,0 Um))
ie. o(uy,...,vm) = (201, -, 2nm), Where
Zi0 = U4, 1fz:1,,n
205 = Uy, lszl,,m,

Zij = U;V; = ZipZo; otherwise.

Hence 0|y, xv, is regular.

The inverse map takes (zo1,- -, Znm) 0 (210, - - - 5 Zn0, 201, - - -, Zom), SO it is also regular. [
Corollary 1.3. P" x P™ is irreducible and birational to P"™.

Proof. The first assertion follows from Ex.5, Lesson 7, considering the covering of ¥ by the
open subsets ¥¥. Indeed, X9 N X" = o(U; x V;) N (Up, x Vi) = o((U; N UR) x (V; N VL)),
and U;NU, # 0 #V; NV

For the second assertion, by Theorem 1.6, Lesson 13, it is enough to note that X, ,,, and
P+ contain isomorphic open subsets, i.e. X% and A"T™, U

From now on, we shall identify P" x P™ with X, ,,. If X C P", Y C P™ are any quasi-
projective varieties, then X x Y will be automatically identified with o(X x Y) C X.

Proposition 1.4. If X and Y are projective varieties (resp. quasi—projective varieties), then
X XY is projective (resp. quasi—projective).

Proof.
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If X and Y are projective varieties, then X NUj; is closed in U; and Y NVj is closed in V,
so their product is closed in U; x V; since o]y, xv, is an isomorphism, also o(X x Y) N X% is
closed in X%, so 0(X x Y) is closed in ¥, by Lemma 1.3, Lesson 10.

If X,Y are quasi-projective, the proof is similar: X NU; is locally closed in U; and Y NV}
is locally closed in V;, so X NU; = Z\Z', YNV, =W\ W, with Z,Z',W, W' closed.
Therefore (Z\ Z") x (W\W')=Z x W\ (Z' x W)U (Z x W’)), which is locally closed.

As for the irreducibility, see Exercise 1, this Lesson. O

Example 1.5. P! x P!

The example of P! x P!, the Segre quadric, has already been studied in Lesson 3, 1.5.

We recall that o : P! x P! — P? is given by the parametric equations {w;; = x;y;, i =0, 1,
7 =0,1. ¥ has only one non—trivial equation: wgywi; — weiwy, hence 3 is a quadric. The
equation of ¥ can be written as

(2) Woo Wo1 —0

Wip W11

¥ contains two families of special closed subsets parametrised by P!, i.e.

{o({P} xP)}pepr and  {o(P' x {Q})}qer-
If P = [ag, ay], then o({P} x P!) is given by the equations:

(

Woo = @Yo
Wo1 = QoY1
W10 = 1Yo
(W11 = 1

hence it is a line. Cartesian equations of o({P} x P!) are:

a1woo — apwip =0

arwor — apwiy = 0;
they express the proportionality of the rows of the matrix (2) with coefficients [a;, —ag].
Similarly, o(P! x {Q}) is the line of equations

a1woo — agwor = 0

1w — AgWi11 — 0.

Hence ¥ contains two families of lines, called the rulings of X: two lines of the same ruling are
clearly disjoint while two lines of different rulings intersect at one point (o(P, Q)). Conversely,
through any point of ¥ there pass two lines, one for each ruling. Note that ¥ is exactly the
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quadric surface of Lesson 13, Example 1.9.d) and that the projection of centre [1,0,0,0]
realizes an explicit birational map between P! x P! and P?.

1.2. Tensors. The product of projective spaces has a coordinate-free description in terms
of tensors. Precisely, let P* = P(V) and P™ = P(W). The tensor product V ® W of the
vector spaces V, W is constructed as follows: let K(V x W) be the K-vector space with
basis V' x W obtained as the set of formal finite linear combinations of type 3;a;(v;, w;) with
a; € K. Let U be the vector subspace generated by all elements of the form:

(v,w) + (V,w) = (v+ v, w),

(v,w) + (v,w') — (v, w + w'),

(Av, w) — A(v, w),

(v, Aw) = (Av, w),
with v,v" € V, w,w’ € W, A € K. The tensor product is by definition the quotient
VoW := KV xW)/U. The class of a pair (v,w) is denoted by v ® w, and called a
decomposable tensor. So V ®@ W is generated by the decomposable tensors; more precisely, a
general element w € V ® W is of the form Elevi Q@ w;, with v; € V., w; € W. The minimum
k such that an expression of this type exists is called the tensor rank of w.

There is a natural bilinear map ® : VxW — V®W, such that (v, w) — v®w. It enjoys the
following universal property: for any K-vector space Z with a bilinear map f: V xW — Z,
there exists a unique linear map f : V®W — Z such that f factorizes in the form f = fo®.

If dimV = n, dimW = m, and bases B = (e1,...,e,), B = (€|,...,¢e,,) are given, then
(e1®e€,...,e;®e),...e,®e,) is a basis of V@ W: therefore dimV @ W = nm.

Ifv=1mx1e14+... 2060, w=1y1] +...Yne,,, then v @ w = Xx;y,6; ® e}. So, passing to the
projective spaces, the map ® defines precisely the Segre map

o:P(V)xPW)—=PVaW), (v, w])—vew].

Indeed in coordinates we have ([xo, ..., Znl, [Yo, - - Ym]) = [Woo, - - -, Wnm), With w;; = 237,
The image of ® is the set of decomposable tensors, or rank one tensors.

The tensor product V ® W has the same dimension, and is therefore isomorphic to the
vector space of n x m matrices. The coordinates w;; can be interpreted as the entries of such
a n x m matrix. The equations of the Segre variety ¥, ,, are the 2 x 2 minors of the matrix,

therefore ¥, ,,, can be interpreted as the set of matrices of rank one.

The construction of the tensor product can be iterated, to construct Vi @ Vo ® --- ® V.
The following properties can easily be proved:

LV (VeeVs)~ (Vi) Vs

22.VW ~W eV,

3. VF@W ~ Hom(V,W), where f @w — (V = W v — f(v)w).
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Also the Veronese morphism has a coordinate free description, in terms of symmetric
tensors. Given a vector space V, for any d > 0 the d-th symmetric power of V, SV
or SymdV, is constructed as follows. We consider the tensor product of d copies of V:
V®---®V =V® and we consider its subvector space U generated by tensors of the form
V1@ ...V — V(1) @ ... DVUg(q), Where o varies in the symmetric group on d elements S;. Then
by definition SV := V®/U. The equivalence class [v; ® - -+ ® vg] is denoted as a product
vy ... Vg

There is a natural multilinear and symmetric map V x --- x V. = V¢ — S9V_ such
that (vq,...,v4) — v1...v4, which enjoys the universal property. SV is generated by the
products vy ... vg.

In characteristic 0, S?V can also be interpreted as a subspace of V®?, by considering the

following map, that is an isomorphism to the image:

1
de — V®d, V1...09g —~ Egegda’ug(l) QK ® Vo (d)-

If B= (e1,...,e,) is a basis of V, then it is easy to check that a basis of S?V is formed

n+(cilfl) )

For instance, in S?V the product v,v, can be identified with %(vl ® Vg + Uy @ V1).

by the monomials of degree d in ey, ..., e,; therefore dim SV = (

The symmetric algebra of V is SV 1= 45059V = K&V @S2V @. ... An inner product can
be naturally defined to give it the structure of a K-algebra, which results to be isomorphic

to the polynomial ring in n variables, where n = dim V.

If char K = 0 the Veronese morphism can be interpreted in the following way:
Vpa: P(V) = P(SYV), [v] = [zoeo + - .. Tnen] — [v7] = [(zoeo + - -+ + 2pen)].

Moreover S?V can be interpreted as the space of symmetric d x d matrices, and the
Veronese variety V), o as the subset of the symmetric matrices of rank one.

Exercises 1.6. 1. Using Ex. 5 of Lesson 7, prove that, if X C P", Y C P™ are irreducible
projective varieties, then X x Y is irreducible.

2. Let L, M, N be the following lines in P3:
L:xg=21=0M:29=23=0,N:29— 20 =27 — 23 =0.

Let X be the union of lines meeting L, M and N: write equations for X and describe it: is
it a projective variety? If yes, of what dimension and degree?
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3. Let X,Y be quasi—projective varieties, identify X x Y with its image via the Segre
map. Check that the two projection maps X x Y & X, X xY B Y are regular. (Hint: use
the open covering of the Segre variety by the ¥%’s.)



