1. PRODUCT OF QUASI-PROJECTIVE VARIETIES AND TENSORS.

1.1. **Products.** Let \mathbb{P}^n , \mathbb{P}^m be projective spaces over the same field K. The cartesian product $\mathbb{P}^n \times \mathbb{P}^m$ is simply a set: we want to define an injective map from $\mathbb{P}^n \times \mathbb{P}^m$ to a suitable projective space, so that the image is a projective variety, which will be identified with our product.

Let N = (n+1)(m+1) - 1 and define $\sigma : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$ in the following way: $\sigma([x_0, \ldots, x_n], [y_0, \ldots, y_m]) = [x_0y_0, x_0y_1, \ldots, x_iy_j, \ldots, x_ny_m]$. Using coordinates w_{ij} , $i = 0, \ldots, n, j = 0, \ldots, m$, in \mathbb{P}^N , σ is defined by

$$\{w_{ij} = x_i y_j, i = 0, \dots, n, j = 0, \dots, m.$$

It is easy to observe that σ is a well-defined map.

Let $\Sigma_{n,m}$ (or simply Σ) denote the image $\sigma(\mathbb{P}^n \times \mathbb{P}^m)$.

Proposition 1.1. σ is injective and $\Sigma_{n,m}$ is a closed subset of \mathbb{P}^N .

Proof. If $\sigma([x], [y]) = \sigma([x'], [y'])$, then there exists $\lambda \neq 0$ such that $x'_i y'_j = \lambda x_i y_j$ for all i, j. In particular, if $x_h \neq 0$, $y_k \neq 0$, then also $x'_h \neq 0$, $y'_k \neq 0$, and for all $i x'_i = \lambda \frac{y_k}{y'_k} x_i$, so $[x_0, \ldots, x_n] = [x'_0, \ldots, x'_n]$. Similarly for the second point.

To prove the second assertion, I claim: $\Sigma_{n,m}$ is the closed set of equations:

(1)
$$\{w_{ij}w_{hk} = w_{ik}w_{hj}, i, h = 0, \dots, n; j, k = 0 \dots, m.$$

It is clear that if $[w_{ij}] \in \Sigma$, then it satisfies (1).

Conversely, assume that $[w_{ij}]$ satisfies (1) and that $w_{\alpha\beta} \neq 0$. Then

$$[w_{00}, \dots, w_{ij}, \dots, w_{nm}] = [w_{00}w_{\alpha\beta}, \dots, w_{ij}w_{\alpha\beta}, \dots, w_{nm}w_{\alpha\beta}] =$$
$$= [w_{0\beta}w_{\alpha0}, \dots, w_{i\beta}w_{\alpha j}, \dots, w_{n\beta}w_{\alpha m}] =$$
$$= \sigma([w_{0\beta}, \dots, w_{n\beta}], [w_{\alpha0}, \dots, w_{\alpha m}]).$$

 σ is called the Segre map and $\Sigma_{n,m}$ the Segre variety or biprojective space. Note that Σ is covered by the affine open subsets $\Sigma^{ij} = \Sigma \cap W_{ij}$, where $W_{ij} = \mathbb{P}^N \setminus V_P(w_{ij})$. Moreover $\Sigma^{ij} = \sigma(U_i \times V_j)$, where $U_i \times V_j$ is naturally identified with \mathbb{A}^{n+m} .

Proposition 1.2. $\sigma|_{U_i \times V_j} : U_i \times V_j = \mathbb{A}^{n+m} \to \Sigma^{ij}$ is an isomorphism of varieties.

Proof. Assume by simplicity i = j = 0. Choose non-homogeneous coordinates on U_0 : $u_i = x_i/x_0$ and on V_0 : $v_j = y_j/y_0$. So $u_1, \ldots, u_n, v_1, \ldots, v_m$ are coordinates on $U_0 \times V_0$. Take non-homogeneous coordinates also on W_{00} : $z_{ij} = w_{ij}/w_{00}$.

Using these coordinates we have:

$$\sigma|_{U_i \times V_j} : (u_1, \dots, u_n, v_1, \dots, v_m) \to (v_1, \dots, v_m, u_1, u_1 v_1, \dots, u_1 v_m, \dots, u_n v_m)$$

$$||$$

$$([1, u_1, \dots, u_n], [1, v_1, \dots, v_m])$$

i.e. $\sigma(u_1, ..., v_m) = (z_{01}, ..., z_{nm})$, where

$$\begin{cases} z_{i0} = u_i, & \text{if } i = 1, \dots, n; \\ z_{0j} = v_j, & \text{if } j = 1, \dots, m; \\ z_{ij} = u_i v_j = z_{i0} z_{0j} & \text{otherwise} \end{cases}$$

Hence $\sigma|_{U_0 \times V_0}$ is regular.

The inverse map takes (z_{01}, \ldots, z_{nm}) to $(z_{10}, \ldots, z_{n0}, z_{01}, \ldots, z_{0m})$, so it is also regular.

Corollary 1.3. $\mathbb{P}^n \times \mathbb{P}^m$ is irreducible and birational to \mathbb{P}^{n+m} .

Proof. The first assertion follows from Ex.5, Lesson 7, considering the covering of Σ by the open subsets Σ^{ij} . Indeed, $\Sigma^{ij} \cap \Sigma^{hk} = \sigma((U_i \times V_j) \cap (U_h \times V_k)) = \sigma((U_i \cap U_h) \times (V_j \cap V_k))$, and $U_i \cap U_h \neq \emptyset \neq V_j \cap V_k$.

For the second assertion, by Theorem 1.6, Lesson 13, it is enough to note that $\Sigma_{n,m}$ and \mathbb{P}^{n+m} contain isomorphic open subsets, i.e. Σ^{ij} and \mathbb{A}^{n+m} .

From now on, we shall identify $\mathbb{P}^n \times \mathbb{P}^m$ with $\Sigma_{n,m}$. If $X \subset \mathbb{P}^n$, $Y \subset \mathbb{P}^m$ are any quasiprojective varieties, then $X \times Y$ will be automatically identified with $\sigma(X \times Y) \subset \Sigma$.

Proposition 1.4. If X and Y are projective varieties (resp. quasi-projective varieties), then $X \times Y$ is projective (resp. quasi-projective).

Proof.

$$\sigma(X \times Y) = \bigcup_{i,j} (\sigma(X \times Y) \cap \Sigma^{ij}) =$$
$$= \bigcup_{i,j} (\sigma(X \times Y) \cap (U_i \times V_j)) =$$
$$= \bigcup_{i,j} (\sigma((X \cap U_i) \times (Y \cap V_j))).$$

If X and Y are projective varieties, then $X \cap U_i$ is closed in U_i and $Y \cap V_j$ is closed in V_j , so their product is closed in $U_i \times V_j$; since $\sigma|_{U_i \times V_j}$ is an isomorphism, also $\sigma(X \times Y) \cap \Sigma^{ij}$ is closed in Σ^{ij} , so $\sigma(X \times Y)$ is closed in Σ , by Lemma 1.3, Lesson 10.

If X, Y are quasi-projective, the proof is similar: $X \cap U_i$ is locally closed in U_i and $Y \cap V_j$ is locally closed in V_j , so $X \cap U_i = Z \setminus Z'$, $Y \cap V_j = W \setminus W'$, with Z, Z', W, W' closed. Therefore $(Z \setminus Z') \times (W \setminus W') = Z \times W \setminus ((Z' \times W) \cup (Z \times W'))$, which is locally closed.

As for the irreducibility, see Exercise 1, this Lesson.

Example 1.5. $\mathbb{P}^1 \times \mathbb{P}^1$

The example of $\mathbb{P}^1 \times \mathbb{P}^1$, the Segre quadric, has already been studied in Lesson 3, 1.5.

We recall that $\sigma : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ is given by the parametric equations $\{w_{ij} = x_i y_j, i = 0, 1, \dots, v_{ij}\}$ j = 0, 1. Σ has only one non-trivial equation: $w_{00}w_{11} - w_{01}w_{10}$, hence Σ is a quadric. The equation of Σ can be written as

(2)
$$\begin{vmatrix} w_{00} & w_{01} \\ w_{10} & w_{11} \end{vmatrix} = 0.$$

 Σ contains two families of special closed subsets parametrised by \mathbb{P}^1 , i.e.

 $\{\sigma(\{P\} \times \mathbb{P}^1)\}_{P \in \mathbb{P}^1}$ and $\{\sigma(\mathbb{P}^1 \times \{Q\})\}_{Q \in \mathbb{P}^1}$.

If $P = [a_0, a_1]$, then $\sigma(\{P\} \times \mathbb{P}^1)$ is given by the equations:

$$\begin{cases} w_{00} = a_0 y_0 \\ w_{01} = a_0 y_1 \\ w_{10} = a_1 y_0 \\ w_{11} = a_1 y_1 \end{cases}$$

hence it is a line. Cartesian equations of $\sigma(\{P\} \times \mathbb{P}^1)$ are:

$$\begin{cases} a_1 w_{00} - a_0 w_{10} = 0\\ a_1 w_{01} - a_0 w_{11} = 0; \end{cases}$$

they express the proportionality of the rows of the matrix (2) with coefficients $[a_1, -a_0]$. Similarly, $\sigma(\mathbb{P}^1 \times \{Q\})$ is the line of equations

$$\begin{cases} a_1 w_{00} - a_0 w_{01} = 0\\ a_1 w_{10} - a_0 w_{11} = 0. \end{cases}$$

Hence Σ contains two families of lines, called the rulings of Σ : two lines of the same ruling are clearly disjoint while two lines of different rulings intersect at one point ($\sigma(P,Q)$). Conversely, through any point of Σ there pass two lines, one for each ruling. Note that Σ is exactly the

quadric surface of Lesson 13, Example 1.9.d) and that the projection of centre [1, 0, 0, 0] realizes an explicit birational map between $\mathbb{P}^1 \times \mathbb{P}^1$ and \mathbb{P}^2 .

1.2. **Tensors.** The product of projective spaces has a coordinate-free description in terms of tensors. Precisely, let $\mathbb{P}^n = \mathbb{P}(V)$ and $\mathbb{P}^m = \mathbb{P}(W)$. The tensor product $V \otimes W$ of the vector spaces V, W is constructed as follows: let $K(V \times W)$ be the K-vector space with basis $V \times W$ obtained as the set of formal finite linear combinations of type $\sum_i a_i(v_i, w_i)$ with $a_i \in K$. Let U be the vector subspace generated by all elements of the form:

- (v, w) + (v', w) (v + v', w),
- (v, w) + (v, w') (v, w + w'),
- $(\lambda v, w) \lambda(v, w),$
- $(v, \lambda w) (\lambda(v, w),$

with $v, v' \in V$, $w, w' \in W$, $\lambda \in K$. The tensor product is by definition the quotient $V \otimes W := K(V \times W)/U$. The class of a pair (v, w) is denoted by $v \otimes w$, and called a decomposable tensor. So $V \otimes W$ is generated by the decomposable tensors; more precisely, a general element $\omega \in V \otimes W$ is of the form $\sum_{i=1}^{k} v_i \otimes w_i$, with $v_i \in V$, $w_i \in W$. The minimum k such that an expression of this type exists is called the tensor rank of ω .

There is a natural bilinear map $\otimes : V \times W \to V \otimes W$, such that $(v, w) \to v \otimes w$. It enjoys the following universal property: for any K-vector space Z with a bilinear map $f : V \times W \to Z$, there exists a unique linear map $\bar{f} : V \otimes W \to Z$ such that f factorizes in the form $f = \bar{f} \circ \otimes$.

If dim V = n, dim W = m, and bases $\mathcal{B} = (e_1, \ldots, e_n), \mathcal{B}' = (e'_1, \ldots, e'_m)$ are given, then $(e_1 \otimes e'_1, \ldots, e_i \otimes e'_j, \ldots, e_n \otimes e'_m)$ is a basis of $V \otimes W$: therefore dim $V \otimes W = nm$.

If $v = x_1 e_1 + \ldots x_n e_n$, $w = y_1 e'_1 + \ldots y_m e'_m$, then $v \otimes w = \sum x_i y_j e_i \otimes e'_j$. So, passing to the projective spaces, the map \otimes defines precisely the Segre map

$$\sigma: \mathbb{P}(V) \times \mathbb{P}(W) \to \mathbb{P}(V \otimes W), \ \ ([v], [w]) \to [v \otimes w].$$

Indeed in coordinates we have $([x_0, \ldots, x_n], [y_0, \ldots, y_m]) \to [w_{00}, \ldots, w_{nm}]$, with $w_{ij} = x_i y_j$. The image of \otimes is the set of decomposable tensors, or rank one tensors.

The tensor product $V \otimes W$ has the same dimension, and is therefore isomorphic to the vector space of $n \times m$ matrices. The coordinates w_{ij} can be interpreted as the entries of such a $n \times m$ matrix. The equations of the Segre variety $\Sigma_{n,m}$ are the 2×2 minors of the matrix, therefore $\Sigma_{n,m}$ can be interpreted as the set of matrices of rank one.

The construction of the tensor product can be iterated, to construct $V_1 \otimes V_2 \otimes \cdots \otimes V_r$. The following properties can easily be proved:

- 1. $V_1 \otimes (V_2 \otimes V_3) \simeq (V_1 \otimes V_2) \otimes V_3;$
- 2. $V \otimes W \simeq W \otimes V$;
- 3. $V^* \otimes W \simeq Hom(V, W)$, where $f \otimes w \to (V \to W : v \to f(v)w)$.

Also the Veronese morphism has a coordinate free description, in terms of symmetric tensors. Given a vector space V, for any $d \ge 0$ the d-th symmetric power of V, $S^d V$ or $Sym^d V$, is constructed as follows. We consider the tensor product of d copies of V: $V \otimes \cdots \otimes V = V^{\otimes d}$, and we consider its subvector space U generated by tensors of the form $v_1 \otimes \ldots \otimes v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(d)}$, where σ varies in the symmetric group on d elements S_d . Then by definition $S^d V := V^{\otimes d}/U$. The equivalence class $[v_1 \otimes \cdots \otimes v_d]$ is denoted as a product $v_1 \ldots v_d$.

There is a natural multilinear and symmetric map $V \times \cdots \times V = V^d \rightarrow S^d V$, such that $(v_1, \ldots, v_d) \rightarrow v_1 \ldots v_d$, which enjoys the universal property. $S^d V$ is generated by the products $v_1 \ldots v_d$.

In characteristic 0, $S^d V$ can also be interpreted as a subspace of $V^{\otimes d}$, by considering the following map, that is an isomorphism to the image:

$$S^d V \to V^{\otimes d}, \quad v_1 \dots v_d \to \sum_{\sigma \in \mathcal{S}_d} \frac{1}{d!} v_{\sigma(1)} \otimes \dots \otimes v_{\sigma(d)}$$

If $\mathcal{B} = (e_1, \ldots, e_n)$ is a basis of V, then it is easy to check that a basis of $S^d V$ is formed by the monomials of degree d in e_1, \ldots, e_n ; therefore dim $S^d V = \binom{n+d-1}{d}$.

For instance, in S^2V the product v_1v_2 can be identified with $\frac{1}{2}(v_1 \otimes v_2 + v_2 \otimes v_1)$.

The symmetric algebra of V is $SV := \bigoplus_{d \ge 0} S^d V = K \oplus V \oplus S^2 V \oplus \ldots$ An inner product can be naturally defined to give it the structure of a K-algebra, which results to be isomorphic to the polynomial ring in n variables, where $n = \dim V$.

If charK = 0 the Veronese morphism can be interpreted in the following way:

$$v_{n,d}: \mathbb{P}(V) \to \mathbb{P}(S^d V), \ [v] = [x_0 e_0 + \dots + x_n e_n] \to [v^d] = [(x_0 e_0 + \dots + x_n e_n)^d].$$

Moreover S^2V can be interpreted as the space of symmetric $d \times d$ matrices, and the Veronese variety $V_{n,2}$ as the subset of the symmetric matrices of rank one.

Exercises 1.6. 1. Using Ex. 5 of Lesson 7, prove that, if $X \subset \mathbb{P}^n$, $Y \subset \mathbb{P}^m$ are irreducible projective varieties, then $X \times Y$ is irreducible.

2. Let L, M, N be the following lines in \mathbb{P}^3 :

$$L: x_0 = x_1 = 0, M: x_2 = x_3 = 0, N: x_0 - x_2 = x_1 - x_3 = 0$$

Let X be the union of lines meeting L, M and N: write equations for X and describe it: is it a projective variety? If yes, of what dimension and degree?

3. Let X, Y be quasi-projective varieties, identify $X \times Y$ with its image via the Segre map. Check that the two projection maps $X \times Y \xrightarrow{p_1} X$, $X \times Y \xrightarrow{p_2} Y$ are regular. (Hint: use the open covering of the Segre variety by the Σ^{ij} 's.)