
LESSON 13.

1. Rational maps

Let X, Y be quasi–projective varieties over an algebraically closed field K. The idea to

define rational maps is that they are to regular maps as rational functions are to regular

functions.

Definition 1.1. The rational maps from X to Y are the germs of regular maps from open

subsets of X to Y , i.e. they are equivalence classes of pairs (U,ϕ), where U 6= ∅ is open in

X and ϕ : U → Y is regular. The equivalence relation is of course defined by (U,ϕ) ∼ (V, ψ)

if and only if ϕ|U∩V = ψ|U∩V .

We need to prove that this is indeed an equivalence relation. The following Lemma

guarantees that this is the case.

Lemma 1.2. Let ϕ, ψ : X → Y ⊂ Pn be regular maps between quasi-projective varieties. If

ϕ|U = ψ|U for U ⊂ X open and non–empty, then ϕ = ψ.

Proof. Let P ∈ X and consider ϕ(P ), ψ(P ) ∈ Y . There exists a hyperplane H such that

ϕ(P ) 6∈ H and ψ(P ) 6∈ H (otherwise the dual projective space P̌n would be the union of its

two hyperplanes Hϕ(P ), Hψ(P ), defined by the conditions of containing respectively ϕ(P ) and

ψ(P )).

Up to a projective transformation, we can assume that H = VP (x0), so ϕ(P ), ψ(P ) ∈ U0.

Set V = ϕ−1(U0)∩ψ−1(U0): an open neighbourhood of P . Consider the restrictions of ϕ and

ψ from V to Y ∩U0: they are regular maps whose codomain is contained in U0 ' An. Since

they coincide on V ∩ U , their components ϕi, ψi, i = 1, . . . , n, coincide on V ∩ U , hence on

V (Corollary 1.4, 2, Lesson 10). So ϕi|V = ψi|V . In particular ϕ(P ) = ψ(P ). �

A rational map from X to Y will be denoted by ϕ : X 99K Y . As for rational functions,

the domain of definition of ϕ, dom ϕ, is the maximum open subset of X such that ϕ is

regular at the points of dom ϕ.

The following proposition follows from the characterization of rational functions on affine

varieties.

Proposition 1.3. Let X, Y be affine algebraic sets, with Y closed in An. Then ϕ : X 99K Y

is a rational map if and only if ϕ = (ϕ1, . . . , ϕn), where ϕ1, . . . , ϕn ∈ K(X).
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If X ⊂ Pn, Y ⊂ Pm, then a rational map X 99K Y is assigned by giving m+1 homogeneous

polynomials of K[x0, x1, . . . , xn] of the same degree, F0, . . . , Fm, such that at least one of them

is not identically zero on X.

A rational map ϕ : X 99K Y is called dominant if the image of X via ϕ is dense in Y , i.e.

if ϕ(U) = Y , where U = dom ϕ.

Dominant rational maps can be composed: if ϕ : X 99K Y is dominant and ψ : Y 99K Z is

any rational map, then dom ψ ∩ Imϕ 6= ∅, so we can define ψ ◦ ϕ : X 99K Z: it is the germ

of the map ψ ◦ ϕ, regular on ϕ−1(dom ψ ∩ Imϕ). We note that also the composed rational

map ψ ◦ ϕ is dominant.

Definition 1.4. A birational map from X to Y is a rational map ϕ : X 99K Y such that ϕ

is dominant and there exists ψ : Y 99K X, a dominant rational map, such that ψ ◦ ϕ = 1X
and ϕ ◦ ψ = 1Y as rational maps. In this case, X and Y are called birationally equivalent

or simply birational.

If ϕ : X 99K Y is a dominant rational map, then we can define the comorphism ϕ∗ :

K(Y )→ K(X) in the usual way: it is an injective K–homomorphism.

Proposition 1.5. Let X, Y be quasi–projective varieties, and let u : K(Y ) → K(X) be a

K–homomorphism. Then there exists a rational map ϕ : X 99K Y such that ϕ∗ = u.

Proof. Y is covered by open affine varieties Yα, α ∈ I (by Proposition 1.12, Lesson 11); note

that for any index α, K(Y ) ' K(Yα) (Prop. 1.9, Lesson 10) and K(Yα) ' K(t1, . . . , tn),

where t1, . . . , tn can be interpreted as coordinate functions on Yα. Choose such an open

subset Yα. Then u(t1), . . . , u(tn) ∈ K(X) and there exists U ⊂ X, non–empty open subset

such that u(t1), . . . , u(tn) are all regular on U . So u(K[t1, . . . , tn]) ⊂ O(U) and we can

consider the regular map u] : U → Yα ↪→ Y . The germ of u] gives a rational map X 99K Y .

It is possible to check that this rational map does not depend on the choice of Yα and U . �

Theorem 1.6. Let X, Y be quasi–projective varieties. The following are equivalent:

(i) X is birational to Y ;

(ii) K(X) ' K(Y );

(iii) there exist non–empty open subsets U ⊂ X and V ⊂ Y such that U ' V .

Proof. (i) ⇔ (ii) via the construction of the comorphism ϕ∗ associated to ϕ and of u],

associated to u : K(Y )→ K(X). One checks that both constructions are functorial.

(i) ⇒ (iii) Let ϕ : X 99K Y , ψ : Y 99K X be rational maps inverse each other. Put

U ′ = dom ϕ and V ′ = dom ψ. By assumption, ψ ◦ ϕ is defined on ϕ−1(V ′) and coincides

with 1X there. Similarly, ϕ◦ψ is defined on ψ−1(U ′) and equal to 1Y . Then ϕ and ψ establish

an isomorphism between the corresponding sets U := ϕ−1(ψ−1(U ′)) and V := ψ−1(ϕ−1(V ′)).
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(iii) ⇒ (ii) U ' V implies K(U) ' K(V ); but K(U) ' K(X) and K(V ) ' K(Y ) (Prop.

1.9, Lesson 10), so K(X) ' K(Y ) by transitivity. �

Corollary 1.7. If X is birational to Y , then dimX = dimY .

Corollary 1.8. The projective space Pn and the affine space An are birationally equivalent.

Theorem 1.6 can be given an interpretation in the language of categories. We can define

a category C whose objects are the irreducible algebraic varieties over a fixed algebraically

closed field K, and the morphisms are the dominant rational maps. The isomorphisms in C
are birational maps, so two objects are isomorphic in C if they are birationally equivalent.

We can consider also the category C ′ with objects the fields, finitely generated extensions of

K, and morphisms the K-homomorphisms. Then there is a contravariant functor C → C ′

associating to a variety X its field of rational functions K(X) and to a rational map ϕ :

X 99K Y its comorphism ϕ∗. Proposition 1.5 and Theorem 1.6 say that this functor is an

equivalence of categories.

There are two classification problems for algebraic varieties, up to isomorphism and up to

birational equivalence. Both are central problems of Algebraic Geometry.

Example 1.9.

a) The cuspidal cubic Y = V (x3 − y2) ⊂ A2.

We have seen that Y is not isomorphic to A1, but in fact Y and A1 are birational. Indeed,

the regular map ϕ : A1 → Y , t→ (t2, t3), admits a rational inverse ψ : Y 99K A1, (x, y)→ y
x
.

ψ is regular on Y \ {(0, 0)}, ψ is dominant and ψ ◦ ϕ = 1A1 , ϕ ◦ ψ = 1Y as rational maps.

In particular, ϕ∗ : K(Y ) → K(X) is a field isomorphism. Recall that K[Y ] = K[t1, t2],

with t21 = t32, so K(Y ) = K(t1, t2) = K(t2/t1), because t1 = (t2/t1)2 = t22/t
2
1 = t31/t

2
1 and

t2 = (t2/t1)3 = t32/t
3
1 = t32/t

2
2, so K(Y ) is generated by a unique transcendental element.

Notice that ϕ and ψ establish isomorphisms between A1 \ {0} and Y \ {(0, 0)}.

b)Rational maps from P1 to Pn.

Let ϕ : P1 99K Pn be a rational map: on some open U ⊂ P1,

ϕ([x0, x1]) = [F0(x0, x1), . . . , Fn(x0, x1)],

with F0, . . . , Fn homogeneous of the same degree, without non–trivial common factors. As-

sume that Fi(P ) = 0 for a certain index i, with P = [a0, a1]. Then Fi ∈ Ih(P ) = 〈a1x0−a0x1〉,
i.e. a1x0−a0x1 is a factor of Fi. This remark implies that ∀ Q ∈ P1 there exists i ∈ {0, . . . , n}
such that Fi(Q) 6= 0, because otherwise F0, . . . , Fn would have a common factor of degree 1.

Hence we conclude that ϕ is regular.
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We have obtained that any rational map from P1 is in fact regular.

c) Projections.

Let ϕ : Pn 99K Pm be a rational map, that can be represented in matrix form by Y = AX,

where A is a (m+ 1)× (n+ 1)-matrix, with entries in K. Then ϕ is a rational map, regular

on Pn \P(KerA). Put Λ := P(KerA). If A = (aij), this means that Λ has cartesian equations
a00x0 + . . .+ a0nxn = 0

a10x0 + . . .+ a1nxn = 0

. . .

am0x0 + . . .+ amnxn = 0.

The map ϕ has a geometric interpretation: it can be seen as the projection of centre

Λ to a complementar linear space. To see how to give this interpretation, first of all we

can assume that rk A = m + 1, otherwise we replace Pm with P(Im A); hence dim Λ =

(n+ 1)− (m+ 1)− 1 = n−m− 1.

Consider first the special case in which Λ : x0 = · · · = xm = 0; we can identify Pm with the

subspace of Pn of equations xm+1 = · · · = xn = 0, so Λ and Pm are complementar subspaces,

i.e. Λ ∩ Pm = ∅ and the linear span of Λ and Pm is Pn. Then, for Q[a0, . . . , an] ∈ Pn \ Λ,

ϕ(Q) = [a0, . . . , am, 0, . . . , 0]: it is the intersection of Pm with the linear span ΛQ of Λ and

Q. In fact, ΛQ has equations

{aixj − ajxi = 0, i, j = 0, . . . ,m (check!)

so ΛQ ∩ Pm has coordinates [a0, . . . , am, 0, . . . , 0].

In the general case, if Λ = VP (L0, . . . , Lm), with L0, . . . , Lm linearly independent forms,

we can identify Pm with VP (Lm+1, . . . , Ln), where Lm+1, . . . , Ln are linearly independents

linear forms chosen so that L0, . . . , Lm, Lm+1, . . . , Ln is a basis of (Kn+1)∗. Then L0, . . . , Lm
can be interpreted as coordinate functions on Pm.

If m = n − 1, then Λ is a point P and ϕ, often denoted by πP , is the projection from P

to a hyperplane not containing P . Also for the projection with centre Λ often the notation

πΛ is used.

d)Rational and unirational varieties.

A quasi–projective variety X is called rational if it is birational to a projective space Pn,

or equivalently to An.

By Theorem 1.6, X is rational if and only if K(X) ' K(Pn) = K(x1, . . . , xn) for some n,

i.e. K(X) is an extension of K generated by a transcendence basis; this kind of extension

is called a purely transcendental extension of K. In an equivalent way, X is rational if there
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exists a rational map ϕ : Pn 99K X which is dominant and is an isomorphism if restricted to a

suitable open subset U ⊂ Pn. Hence X admits a birational parameterization by polynomials

in n parameters.

A weaker notion is that of unirational variety: X is unirational if there exists a dominant

rational map Pn 99K X i.e. if K(X) is contained in the quotient field of a polynomial ring.

Hence X can be parameterized by polynomials, but not necessarily generically one–to–one.

It is clear that, if X is rational, then it is unirational. The converse implication has been

an important open problem, up to 1971, when it has been solved in the negative, for vari-

eties of dimension ≥ 3 (Clemens–Griffiths, Iskovskih–Manin, Artin-Mumford). Nevertheless

rationality and unirationality are equivalent for curves (Theorem of Lüroth, 1880, over any

field) and for surfaces if charK = 0 (Theorem of Castelnuovo, 1894).

As an example of rational variety with an explicit rational parameterization constructed

geometrically, let us consider the Segre quadric in P3, of maximal rank: X = VP (x0x3−x1x2),

an irreducible hypersurface of degree 2. Let πP : P3 99K P2 be the projection of centre

P [1, 0, 0, 0], such that πP ([y0, y1, y2, y3]) = [y1, y2, y3]. The restriction of πP to X is a rational

map π̃P : X 99K P2, regular on X \ {P}. π̃P has a rational inverse: indeed consider the

rational map ψ : P2 99K X, [y1, y2, y3]→ [y1y2, y1y3, y2y3, y
2
3]. The equation of X is satisfied

by the points of ψ(P2): (y1y2)y2
3 = (y1y3)(y2y3). ψ is regular on P2 \ VP (y1y2, y3). Let us

compose ψ and π̃P :

[y0, . . . , y3] ∈ X πP→ [y1, y2, y3]
ψ→ [y1y2, y1y3, y2y3, y

2
3];

y1y2 = y0y3 implies ψ ◦ πP = 1X . In the opposite order:

[y1, y2, y3]
ψ→ [y1y2, y1y3, y2y3, y

2
3]

πP→ [y1y3, y2y3, y
2
3] = [y1, y2, y3].

So X is birational to P2 hence it is a rational surface.

Note that if we consider another projection πP ′ whose centre P ′ is not on the quadric, we

get a regular 2 : 1 map to the plane, that is certainly not birational.

e) A birational non–regular map from P2 to P2.

The following rational map is called the standard quadratic transformation:

Q : P2 99K P2, [x0, x1, x2]→ [x1x2, x0x2, x0x1].

Q is regular on U := P2 \{A,B,C}, where A[1, 0, 0], B[0, 1, 0], C[0, 0, 1] are the fundamental

points (see Figure 1).

Let a be the line through B and C: a = VP (x0), and similarly b = VP (x1), c = VP (x2).

Then Q(a) = A, Q(b) = B, Q(c) = C. Outside these three lines Q is an isomorphism.
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Precisely, put U ′ = P2 \ {a ∪ b ∪ c}; then Q : U ′ → P2 is regular, the image is U ′ and

Q−1 : U ′ → U ′ coincides with Q. Indeed,

[x0, x1, x2]
Q→ [x1x2, x0x2, x0x1]

Q→ [x2
0x1x2, x0, x

2
1x2, x0x1x

2
2].

So Q ◦Q = 1P2 as rational map, hence Q is birational and Q = Q−1.

Note that another way to express Q is the following: [x0, x1, x2]→ [ 1
x0
, 1
x1
, 1
x2

].

	

A[1,0,0]	 B[0,1,0]	

C[0,0,1]	

a	

c	

b	

Figure 1

The set of the birational maps P2 99K P2 is a group, called the Cremona group. At the end

of XIX century, Max Noether proved that the Cremona group is generated by PGL(3, K)

and by the single standard quadratic transformation Q above. The analogous groups for Pn,

n ≥ 3, are much more complicated and a complete description is still unknown.

We conclude this Lesson with a theorem illustrating an application of the linearisation

procedure. We shall use the following notation: given a homogeneous polynomial F ∈
K[x0, x1, . . . , xn], D(F ) := Pn \ VP (F ).

Theorem 1.10. Let W ⊂ Pn be a closed projective variety. Let F be a homogeneous poly-

nomial of degree d in K[x0, x1, . . . , xn] such that W * VP (F ). Then W ∩D(F ) is an affine

variety.
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Proof. The assumption W * VP (F ) is equivalent to W ∩ D(F ) 6= ∅. Let us consider the

d-tuple Veronese embedding vn,d : Pn → PN(n,d), with N(n, d) =
(
n+d
d

)
− 1, that gives

the isomorphism Pn ' Vn,d. In this isomorphism the hypersurface VP (F ) corresponds to

a hyperplane section Vn,d ∩ H, for a suitable hyperplane H in PN(n,d). Therefore we have

W ∩ D(F ) ' vn,d(W ∩ D(F )) = vn,d(W ) \ H = vn,d(W ) ∩ (PN(n,d) \ H). There exists

a projective isomorphism τ : PN(n,d) → PN(n,d) such that τ(H) = H0, the fundamental

hyperplane of equation x0 = 0. Therefore, denoting X := vn,d(W ), we get X∩(PN(n,d)\H) '
τ(X) ∩ (PN(n,d) \H0) = τ(X) ∩ U0, which proves the theorem. �

As a consequence of Theorem 1.10, we get that the open subsets of the form W ∩D(F )

form a topology basis composed of affine varieties for W .

Exercises 1.11. 1. Let ϕ : A1 → An be the map defined by t→ (t, t2, . . . , tn).

a) Prove that ϕ : A1 → ϕ(A1) is an isomorphism and describe ϕ(A1);

b) give a description of ϕ∗ and ϕ−1∗.

2. Prove that the Veronese variety Vn,d is not contained in any hyperplane of PN(n,d).

3. Let GLn(K) be the set of invertible n × n matrices with entries in K. Prove that

GLn(K) can be given the structure of an affine variety.

4. Let ϕ : X → Y be a regular map and ϕ∗ its comorphism. Prove that the kernel of ϕ∗

is the ideal of ϕ(X) in O(Y ). In the affine case, deduce that ϕ is dominant if and only if ϕ∗

is injective.

5. Prove that O(XF ) is isomorphic to O(X)f , where X is an affine algebraic variety, F a

polynomial and f the regular function on X defined by F .


