Expected utility and mixed strategies

In order to evaluated a player's strategy against a strategy profile played by others we need to compute its expected value.

For example for player *i*, the expected utility of strategy p_i against the others' strategies p_{-i} is denoted by $u_i(p_i, p_{-i})$ or $E_i(p_i|p_{-i})$

Example:

		Player 2		
		L	С	R
0.4	Т	2(1)	2,2	5,0
Player 10.3	Y	32	5,3	3,1
0.2	Ζ	43	1,1	2,2
0.1	В	14	0,1	4,4

We compute the expected value of $p_2 = (1, 0, 0)$ (the pure strategy L) against the player 1's strategy $p_1 = (0.4, 0.3, 0.2, 0.1)$

$$E_2(p_2|p_1) = 1 \cdot 0.4 + 2 \cdot 0.3 + 3 \cdot 0.2 + 4 \cdot 0.1 = 2$$

Example:

		Player 2		
		L	С	R
	Т	2,1	2,2	5,3
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
	В	1,4	0,1	4,5

We compute the expected value of $p_2 = (0.6, 0, 0.4)$ (a mixed strategy L) against the player 1's strategy $p_1 = (0.3, 0, 0, 0.7)$

		Player 2		
		0.6 0 0.4		
	0.3	2,1	2,2	5,3
Player 1	0	3,2	5,3	3,1
	0	4,3	1,1	2,2
	0.7	1,4	0,1	4,5

 $E(p_2|p_1) = 1 \cdot 0.6 \cdot 0.3 + 3 \cdot 0.4 \cdot 0.3 + 4 \cdot 0.6 \cdot 0.7 + 5 \cdot 0.4 \cdot 0.7$

Sometime, when we take the expectation of a pure strategy, inside the parenthesis we write the name of the pure strategy.

For example in the game

		Player 2		
		L	С	R
	Т	2,1	2,2	5,3
Player 1	Y	3,2	5,3	3,1
	Z	4,3	1,1	2,2
	В	1,4	0,1	4,5

the expected value of $p_2 = (0, 1, 0)$, i.e. the pure strategy C, can be denoted by either $E_2(p_2|p_1)$ or $E_2(C|p_1)$.

Finally if it is not ambiguous we omit the strategy of the opponent(s), e.g. in the above example we write $E_2(C)$

		Player 2		
		L	С	R
	Т	2,1	2,2	5,3
Player 1	Y	2,2	4,3	3,1
	Ζ	4,3	1,1	2,2
	В	1,4	0,1	4,5

Compute the expected value of $p_1 = (0, 1, 0, 0)$ against $p_2 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

$$E_1(p_1|p_2) = 2 \cdot \frac{1}{3} + 4 \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} = 3$$

		Player 2		
		L	С	R
	Т	2,1	2,2	5,3
Player 1	Y	2,2	4,3	3,1
	Z	4,3	1,1	2,2
	В	1,4	0,1	4,5

Question 1 www.menti.com code 413643

Compute the expected value of $p_1 = (\frac{1}{2}, \frac{1}{2}, 0, 0)$ against $p_2 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ $E_1(p_1|p_2) =$ $= 2 \cdot \frac{1}{3} \cdot \frac{1}{2} + 2 \cdot \frac{1}{3} \cdot \frac{1}{2} + 5 \cdot \frac{1}{3} \cdot \frac{1}{2} + 2 \cdot \frac{1}{3} \cdot \frac{1}{2} + 4 \cdot \frac{1}{3} \cdot \frac{1}{2} + 3 \cdot \frac{1}{3} \cdot \frac{1}{2} =$ $= 2 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} = 3$

Matching Pennies

		Player	2
		Head (q)	Tail $(1-q)$
Player 1	Head (r)	1,-1	-1,1
	Tail $(1-r)$	-1,1	1,-1

 $p_1 = (r, 1 - r)$ where *r* is the probability that player 1 chooses Head, $p_2 = (q, 1 - q)$ where *q* is the probability that player 2 chooses Head Player 1's expected payoff is:

$$E_1(p_1|p_2) =$$

$$= rq - r(1 - q) - (1 - r)q + (1 - r)(1 - q) =$$

$$= r(4q - 2) + 1 - 2q$$

Player 1's expected payoff is: $E_1(p_1|p_2) = r(4q-2) + 1 - 2q$

The expected payoff:

- 1) is increasing in r if (4 q 2) > 0 i.e. q > 0.5In this case the best response of player 1 is $p_1 = (1,0)$
- 2) is decreasing in r if (4 q 2) < 0 i.e. q < 0.5In this case the best response of player 1 is $p_1 = (0,1)$
- 3) is equal 0 and constant in r for q = 0.5In this case the best response of player 1 is $p_1 = (r, 1 - r) \forall r \in [0, 1]$

		Player	2
		Head (q)	Tail
Player 1	Head (r)	1,-1	-1,1
	Tail	-1,1	1,-1

- *r*: Probability that 1 chooses Head
- q: Probability that 2 chooses Head

 $r(q) = 1 \quad \text{if } q > 1/2;$ $0 \quad \text{if } q < 1/2;$ $[0,1] \quad \text{if } q = 1/2;$ $q(r) = 0 \quad \text{if } r > 1/2;$ $1 \quad \text{if } r < 1/2;$ $[0,1] \quad \text{if } r = 1/2;$

Note that player 1's strategy (0.5, 0.5) is a best response to the player 2' strategy (0.5, 0.5) and player 2's strategy (0.5, 0.5) is a best response to the player 1's strategy (0.5, 0.5)

Then player 1 plays (0.5, 0.5) and player 2 plays (0.5, 0.5) is a Nash equilibrium in mixed strategies

Definition of Nash equilibrium with mixed strategies:

In a normal form game $G = (S_1, \dots, S_n; u_1, \dots, u_n)$ the mixed strategy profile (p_1^*, \dots, p_n^*) is a Nash equilibrium if each player's mixed strategy is a best response to the other players' strategies.

Battle of the Sexes

		Player	2
		Ball (q)	Theatre
Player 1	Ball (r)	2,1	0,0
	Theatre	0,0	1,2

 $p_1 = (r, 1 - r)$ where r is the probability that player 1 chooses Ball $p_2 = (q, 1 - q)$ where q is the probability that player 2 chooses Ball *Player 1's expected payoff is:* $E_{1}(p_{1}) = 2 r q + (1 - r)(1 - q) = r (3q - 1) + 1 - q$ It is increasing in r if (3 q - 1) > 0 i.e. $q > 1/3 \rightarrow BR_1$ is (1, 0) It is decreasing in r if (3 q - 1) < 0 i.e. $q < 1/3 \rightarrow BR_1$ is (0, 1)It is constant and equal 2/3 for $q = 1/3 \rightarrow BR_1$ is $(r, 1 - r) \forall r \in [0, 1]$

		Player	2
		Ball	Theatre
Player 1	Ball	2,1	0,0
	Theatre	0,0	1,2

Consider player 2

$$E_2(p_2) = 1 q r + 2 (1 - q) (1 - r) = q(3 r - 2) + 2 - 2 r$$

It is increasing in q if (3r-2)>0 i.e. $r>2/3 \rightarrow BR_2$ is (1, 0)It is decreasing in q if (3r-2)<0 i.e. $r<2/3 \rightarrow BR_2$ is (0, 1)

It is constant and equal 2/3 for $r=2/3 \rightarrow BR_2$ is $(q, 1-q) \forall q \in [0,1]$

$$\begin{array}{rcrcr} r(q) = & 1 & \text{if } q > 1/3; & q(r) = & 1 & \text{if } r > 2/3; \\ 0 & \text{if } q < 1/3; & 0 & \text{if } r < 2/3; \\ [0,1] & \text{if } q = 1/3 & [0,1] & \text{if } r = 2/3 \end{array}$$

Characterization of mixed-strategy Nash equilibria

Proposition:

- $p^* = (p_1^*, \dots, p_n^*)$ is a mixed-strategy Nash equilibrium if and only if the following conditions are satisfied:
- 1) each action s_j that is played by player *i* with strictly positive probability (according to p_i^*) yields **the same expected payoff** to *i* as strategy p_i^*
- 2) every action s_j' that is played by *i* with probability 0 (according to p_i^*) yields **at most the same expected payoff** to *i* as strategy p_i^*

assuming, in both cases, that other players play as predicted in the Nash equilibrium (p_1^*, \dots, p_n^*)

Useful tips for finding mixed-strategy Nash equilibria

Step 1: Consider player *i*, take a subsets S'_i of its strategies and assume that only these strategies are played by a strictly positive probability

- **Step 2:** Look for the other players' strategies that allow to satisfy conditions 1) and 2), i.e.
- a) The expected payoffs to play each one of the strategies in S'_i are equal to each other:

$$E_i(s_j) = E_i(s_w) \,\forall s_j, s_w \in S'_i$$

b) The expected payoffs to play each one of the strategies that are not in S'_i are not greater than the expected payoff of the strategies in S'_i :

$$E_i(s_j) \le E_i(s_w) \ \forall s_j \in S_i \ /S'_i, s_w \in S'_i$$

- **Step 3:** check if the other players' strategies you have found in step 2 satisfy conditions 1 and 2
- **Step 4:** Repeat this procedure for all possible strategies' subsets of player *i*

		Player	2
		L	R
	Т	2,3	5,0
Player 1	М	3,2	1,4
	В	1,5	4,1

No equilibrium in pure strategies.

There is no equilibrium where player 1 chooses B with strictly positive probability. T strictly dominates B, so whatever player 2 does, player 1 can increase its expected payoff by playing T instead of B. Then $p_{1B} = 0$.

That leaves player 1 choosing among T and M.

		Player	2
		L (by <i>l</i>)	R (by 1 - l)
	T (by prob t)	2,3	5,0
Player 1	M (by $1 - t$)	3,2	1,4
	В	1,5	4,1

That leaves player 1 choosing among T and M.

Let be
$$p_{1T} = t$$
 and $p_{2L} = l$

To play T and M, both with strictly positive probability requires: $E_1(T) = E_1(M) \rightarrow 2l + 5(1-l) = 3l + 1(1-l) \rightarrow l = 4/5$

To play L and R, both with strictly positive probability requires:

 $E_2(L) = E_2(R) \rightarrow 3t + 2(1-t) = 4(1-t), \rightarrow t = 2/5$

Nash Equilibrium:

 $((p_{1T}, p_{1M}, p_{1B}), (p_{2L}, p_{2R})) = ((2/5, 3/5, 0), (4/5, 1/5))$

		Player	2
		L (by <i>l</i>)	R (by $1 - l$)
	T (by prob t)	2,3	1,0
Player 1	M (by 1 – <i>t</i>)	1,2	3,4

Question 2

www.menti.com code 413643

Compute p_{2L} in the mixed Nash equilibrium

Let be
$$p_{1T} = t$$
 and $p_{2L} = l$

To play T and M, both with strictly positive probability requires: $E_1(T) = E_1(M) \rightarrow 2l + 1(1-l) = 1l + 3(1-l) \rightarrow l=2/3$ To play L and P, both with strictly positive probability requires:

To play L and R, both with strictly positive probability requires: $E_2(L) = E_2(R) \rightarrow 3t + 2(1-t) = 4(1-t), \rightarrow t = 2/5$