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KEY POINTS

� Telemedicine intensive care units (tele-ICUs) cover more than 11% of ICU beds in the
United States and produce enormous quantities of data, which can be used to create ma-
chine learning algorithms.

� Tele-ICU systems including clinical decision support systems have been shown to
improve adherence to ICU best practices.

� Machine learning algorithms exist for sepsis detection, sepsis management, mechanical
ventilation, false-alarm reduction, and ICU outcomes; validation using external data sets is
important.

� Translating ICU machine learning algorithms to the tele-ICU requires the ability to gener-
alize and adapt to a tele-ICU work flow that manages larger populations.
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INTRODUCTION

Over the last half-century, the telemedicine intensive care unit (tele-ICU) has grown
from a daily video conference to a comprehensive high-bandwidth system connecting
more than 11% of intensive care unit (ICU) beds in the United States to remote clini-
cians with real-time exchange and archiving of extensive patient data fed through
algorithmic clinical decision support systems (CDSSs).1,2 Machine learning (ML) has
grown in parallel with the increasing availability of powerful computational resources.
ML algorithms such as neural networks can process enormous quantities of data
through multiple layers of features to elucidate novel interactions (Fig. 1). This article
reviews the history of tele-ICU, examines the current state of ICU and tele-ICU CDSS
(which can encompass predictive, detective, and prescriptive algorithms), and pre-
sents an overview of ML applications in the ICU that may be suitable for tele-ICU
adaptation. In addition, it discusses issues to be considered when implementing
tele-ICU CDSS, including staff perception and acceptance, human factors engineer-
ing, outcome measurement, and the need for rapid and continuous validation
throughout the CDSS lifecycle. The development of clinically useful CDSS is not a sim-
ple task and its adaptation for the tele-ICU can be a formidable challenge, but the
increasing accessibility of ML algorithms and large ICU databases for CDSS develop-
ment and validation provides hope that a renaissance in tele-ICU CDSS may be com-
ing soon.

HISTORY
Telemedicine Intensive Care Unit

The first implementation of tele-ICU care was in 1975, as a 2-way audiovisual link to
provide remote intensivist consultations, with real-time data collected manually by
consultants and outcomes obtained from a post hoc chart review.1 The technology
used did not make any provisions for the automatic acquisition, hardcopy transmis-
sion, or electronic storage of patient data. Furthermore, only 30% of the recommen-
dations made by the remote intensivist were executed and the limited amount of
time spent in direct communication with bedside physicians was considered a
Fig. 1. Neural network example using readily available electronic medical data.



ICU Telemedicine CDSS 485
significant barrier to care.3 These difficulties foreshadowed many of the challenges in
developing effective tele-ICU CDSS.
By 1997, advancements in communications technology facilitated the deployment

of a tele-ICU system capable of rapidly transmitting comprehensive patient data.
Rosenfeld and colleagues4 described a system providing access to real-time bedside
monitor data, laboratory data, scanned hardcopy data (eg, electrocardiograms), daily
video conferencing rounds with bedside physicians, twice-daily nursing discussions,
and rapid bidirectional communication. Compared with 2 historical baseline periods,
the implementation period had significantly lower severity-adjusted ICU mortality,
severity-adjusted hospital mortality, ICU complication rate, and ICU length of stay
(LOS).
It was evident at the time that these systems needed to incorporate tools that alle-

viate the cognitive burden on critical care providers. CDSS were developed using
evidence-based clinical practice guidelines and protocols, disseminated using Web-
based tools, and integrated into order entry systems.5 Predictive alerts were devel-
oped to detect physiologic trends using vital signs and laboratory data before an overt
clinical deterioration, allowing a small team of providers to monitor many patients. The
clinical information system structured provider input, which was fused with the abun-
dant clinical data generated during routine care to develop a data warehouse for future
data mining and analysis.
As of 2014, continuous tele-ICU coverage was available for 11% of nonfederal hos-

pital ICU beds for adults.2 With tele-ICU coverage projected to grow a rate of 1% per
year, it may have surpassed bedside intensivist coverage since then. Koninklijke Phi-
lips eICU, the successor to the Rosenfeld and colleagues’4 system, is the predominant
tele-ICU implementation in the United States, covering 99.2% of tele-ICU deploy-
ments based on Medicare data through 2010.6

Machine Learning in Critical Care

As the tele-ICU came of age, researchers developed novel uses for ML in critical care.
Hart and Wyatt7 assessed the ability of neural networks trained on 174 cases of chest
pain to predict myocardial infarctions in a validation set of 73 cases, but found a false-
negative rate of 27%. Doig and colleagues8 developed a back-propagation associ-
ated-learning neural network using 27 features from 422 patients to model ICU mor-
tality, but found it equivalent to logistic regression when used on training and
validation sets. The investigators suggested larger data sets would allow prediction
of ICU mortality with greater than 95% sensitivity and specificity. ML methods were
applied in multiple other critical care contexts over the next 15 years with limited
impact because of the small underlying data sets and lack of external reproducibility.
The last decade’s advances in computing power and the availability of large clinical

databases have allowed dramatic advancements in the application of ML to medicine.
Ting and colleagues9 described a deep learning system trained on 494,661 retinal im-
ages that accurately classifies diabetic retinopathy, possible glaucoma, and age-
related diabetic retinopathy with an area under the receiver operating characteristic
curve (AUROC) greater than 0.93 in all cases compared with professional graders.
Moreover, external validation had an AUROC range of 0.889 to 0.983 using 10 addi-
tional data sets.
Electronic medical record (EMR) and tele-ICU adoption have exponentially

increased the amount of digitally archived medical data. The large, rich, heteroge-
neous data sets that result have been used to develop novel clinical insights.10,11

The deidentification of data sets has facilitated dissemination of data that were previ-
ously sequestered, such as the Medical Information Mart for Intensive Care database
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(MIMIC-III)12 and the eICU Collaborative Research Database (eICU-CRD).13 The
development of generalizable medical ML algorithms will only be possible using
such large, comprehensive, heterogeneous, and granular data sets.
STATE OF CLINICAL DECISION SUPPORT SYSTEMS IN THE TELEMEDICINE INTENSIVE
CARE UNIT

All tele-ICU outcome studies have been observational with predominantly pretest/
posttest designs.14,15 Tele-ICU implementations have differed significantly between
studies and findings have been mixed. Highlighting the importance of effective imple-
mentation through clinical transformation, 2 major studies that failed to show signifi-
cant benefit reflected poor cultural adoption: the tele-ICU team was prohibited from
managing patients outside of code situations in approximately two-thirds of interven-
tion patients.16,17 Furthermore, studies have precluded analysis of the relative impact
from individual factors in tele-ICU care, including CDSS.18 Two studies met inclusion
criteria for a systematic review, which found that tele-ICU care was associated with
reductions in ICU mortality, hospital mortality, ICU LOS, and hospital LOS.19

In 2011, Lilly and colleagues20 also found associations between tele-ICU care and
increased adherence to best-practice guidelines (for prevention of venous thrombo-
embolism [VTE], stress ulcers, cardiovascular complications, and ventilator-
associated pneumonia) and lower risk of catheter-related bloodstream infection and
ventilator-associated pneumonia. Lower tele-ICU mortalities persisted after adjusting
for these differences, which were estimated to account for 25% of the hospital mor-
tality and 30% of the ICUmortality declines. A 2014 multicenter pretest/posttest study
further showed associations of tele-ICU care improvements in best-practice adher-
ence and decreased mortality and LOS.21

It is reasonable to presume that CDSS deployment is a significant factor in
improving best-practice adherence. Although the CDSS algorithms used in tele-ICU
systems are proprietary, a number have been described in the literature. It is important
to recognize that the work flow for tele-ICU clinicians is not identical to that of bedside
staff, and therefore the design for tele-ICU CDSS may differ from bedside tools.
Notably, a core feature of tele-ICU is population management, and many tools are
designed to facilitate tele-ICU staff shifting roles as needed for a large population of
ICU patients. Furthermore, no CDSS tool will improve outcomes without effective inte-
gration into work flow and a collaborative environment to support care at the bedside.

Patient Acuity

Williams and colleagues22 described a 3-level color-coded acuity system for tele-ICU
patients that incorporated time since ICU admission, vital sign stability, active titration
and level of vasoactive agents, initiation of mechanical ventilation, emergent interven-
tions, deescalation of therapies, safety concerns, and readiness for ICU transfer. The
acuity category determined the frequency of tele-ICU nursing rounds and prioritized
workflow. Other acuity scores for delirium, pain, and agitation evaluate ICU patients
for corresponding factors related to screening, treatment, and adverse drug events,
and present data in a dynamically changing dashboard for the population monitored.23

However, the specific components are proprietary and not detailed in the tele-ICU
literature.

Laboratory and Ordering Alerts

Tele-ICU deployments provided alerts for abnormal laboratory results before EMRs
were widely used.20 Medication dose adjustments can be prompted by creatinine
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clearance changes and computerized provider order entry can detect allergies and
drug interactions.5

Best-practices Adherence

Routine monitoring of best practices based on clinical guidelines in domains such as
VTE prophylaxis, stress ulcer prophylaxis, low tidal volume ventilation, b-blocker use,
and glycemic control allows for real-time nonadherence notification and routine
administrative auditing.10 A retrospective multicenter study from 2009 to 2013 showed
that adherence to best practices for VTE prophylaxis, low tidal volume ventilation, and
glycemic control for tele-ICU patients significantly increased.11 Remote screening
with EMR prompting has been found to increase the likelihood of sedation interruption
and spontaneous breathing trials, with an associated decrease in duration of mechan-
ical ventilation, ICU LOS, and hospital LOS.24 The rate of 3 hospital-associated infec-
tions did not differ despite remote screening for adherence to a ventilatory bundle and
daily assessment of the need for central venous and urinary catheters.

Ventilator Management

Kalb and colleagues25 studied the impact of tele-ICU–directed daily ventilator rounds
in 11 hospitals with varying levels of ICU staffing. The rounds assessed adherence to
low tidal volume ventilation but also addressed ventilator settings, sedation strategies,
spontaneous breathing trials, and readiness for ventilator liberation. The intervention
was associated with significant increase in low tidal volume ventilation adherence,
from 29.5% before implementation to 44.9% after 9 months, and the improvement
persisted 6 months later (52.0%). There was also an associated improvement in the
Acute Physiology and Chronic Health Evaluation IV (APACHE-IV)–adjusted ICU mor-
tality ratio (0.94 vs 0.67 after 9 months).

Sepsis Screening and Management

Rincon and colleagues26 described the implementation of a tele-ICU nurse–driven
program to facilitate early identification of patients with severe sepsis and prompt initi-
ation of bundled care based on what were considered best practices at the time. From
2006 to 2008 the tele-ICU nurses manually performed 89,921 screens between 10
hospitals and identified 5437 patients with severe sepsis. Screening was associated
with increases in timely antibiotic administration (74% vs 55%), serum lactate mea-
surement (66% vs 50%), 20 mL/kg fluid bolus administration (70% vs 23%), and cen-
tral line placement (50% vs 33%). The evolving definition of sepsis and its standard of
care over the last several years exemplify a common issue in developing robust CDSS
tools with validation for syndromes that are not firmly defined.27

Automated sepsis screens with 90% sensitivity and 80% specificity have reduced
the burden of manually screening patients but still have a low positive predictive value
because of the small population at risk.27 Randomized controlled trials of automated
sepsis monitoring systems in a single academic tertiary care center without tele-ICU
found no significant differences in median time to new antibiotics, fluid administration,
time to completion of a sepsis bundle or individual elements, ventilator-free days, ICU-
free days, ICU LOS, hospital LOS, ICU mortality, and in-hospital mortality.28,29 Never-
theless, automated sepsis screening remains an area of active research and develop-
ment in the tele-ICU.30

Physiologic Instability Alerts

The proprietary algorithms implemented by tele-ICU providers have not been
described in detail in the published literature. However, they claim the ability to detect
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early signs of physiologic instability and notify providers.21 An association between
shorter alarm response times and shorter ICU LOS was found based on observational
data.21 However, use of a tele-ICU model does not guarantee a timely response to
physiologic instability alarms.31

Intensive Care Unit Readmission Risk

McShea and colleagues32 reported the development of an initial retrospective explor-
atory cohort using 123,848 ICU stays between 2005 and 2007 from the Philips eRe-
search Institute (eRI) database to create a model predicting death or ICU
readmission within 48 hours of ICU discharge. The logistic regression model was
found to have a c-index predicting death of 0.89 and ICU readmission of 0.61.
Subsequently, Badawi and Breslow33 described the development and internal vali-

dation of a different multivariable logistic regression model predicting death or ICU
readmission within 48 hours of ICU discharge. The retrospective cohort was also
derived from the eRI database taking 704,963 patients meeting inclusion criteria at
219 hospitals between 2007 and 2011, with 2:1 allocation to the development and vali-
dation. Of the initial 59 variables considered, the final model included 26 for death and
23 for ICU readmission, 8 of which were known at the time of admission. The readmis-
sion model had a median AUROC of 0.71, whereas the mortality prediction model had
a median AUROC of 0.92; both performed similarly in the development set and valida-
tion set. Compared with prior studies that used a single outcome, separating the
models for readmission and death resulted in better performance.
Badawi and colleagues’34 models were the basis for the Philips eICU Discharge

Readiness Score (DRS), which was later compared with other ICU severity of illness
scores. The eRI database was used to develop a new cohort of 561,478 patients
meeting inclusion criteria at 208 hospitals from 2013 to 2016. The DRS, APACHE-
IV score, and Sequential Organ Failure Assessment (SOFA) score were calculated
hourly from the fourth hour of ICU admission. The DRS showed higher discrimination
for ICU mortality (AUROC, 0.942) than the APACHE-IV score (AUROC, 0.895) and the
SOFA score (AUROC, 0.862). Some of the discrepancies were hypothesized to be
partially related to increasing APACHE-IV and SOFA scores in those who survive
caused by the inclusion of the worst value over the prior 24 hours, compared with
DRS’s inclusion of more recent values reflecting improvement in the clinical
condition.
FUTURE TELEMEDICINE INTENSIVE CARE UNIT APPLICATIONS OF MACHINE
LEARNING

The intersection of so-called big data and clinical decision support has provided an
opportunity for advancements in the creation of and ability to generalize models.
The existing tele-ICU clinical decision support models were generated using classic
logistic regression techniques,33 but novel ML algorithms are being developed from
larger and richer data sets to address a wide variety of clinical dilemmas in critical
care (Table 1).35,36 External validation of these efforts using widely available data
sets such as MIMIC-III12 and eICU-CRD13 will help guide the application of ML to
the tele-ICU going forward.
Although predictive models are often a focus of research, any model predicting a

rare outcome will have a low positive predictive value even if the discrimination is
very high. An overlooked fact in designing and evaluating CDSS is that the target
should only be the unrecognized prevalence of a condition rather than the total prev-
alence as the tool will only be useful in predicting what is not already known to the



Table 1
Recent studies of machine learning applicable to critical care

Sepsis � Numerous studies evaluating a variety of ML methods to predict
sepsis 3–12 h before onset37–42

� Nonblinded randomized controlled trial of a proprietary ML
algorithm (vs EMR severe sepsis alert) showed shorter ICU and
hospital LOS and lower in-hospital mortality43

� Retrospective study of ICU complications before and after
implementation of real-time predictive analytics monitoring display
associated with decrease in sepsis incidence44

� Reinforcement learning model developed to assess optimal
treatment of patients with septic shock (vasopressors vs IV fluids)
predicted higher-value treatments than clinicians45

� Switching-state autoregressive model predicted vasopressor
administration and successful vasopressor weaning46

Mechanical
Ventilation

� Random forest algorithm showed significant agreement with clinical
experts in detecting ventilator asynchrony51

� Multiple ML algorithms identified ventilator dyssynchrony, but the
best-performing model differed by type of event52

� Gradient-boosted decision trees algorithm predicted need for
prolonged mechanical ventilation (AUROC, 0.820) and tracheostomy
(AUROC, 0.830) at time of ICU admission53

� Support vector machine algorithm trained using heart rate variability
and patient-specific calibration data discriminated between light
and deep sedation with 75% accuracy54

False-alarm Reduction � Random forest model trained on human annotated alerts
discriminated between true and false alarms for peripheral oximetry,
blood pressure, and respiratory rate55

� Multiple ML algorithms were used by teams competing to classify
true and false arrhythmia alarms56

ICU Outcomes � Gradient-boosting decision tree model developed using a single-
center 14,962-patient cohort to predict the risk of ICU readmission
was superior to other risk assessments (AUROC, 0.76 vs 0.58–0.65);
validation in MIMIC-III had comparable results (AUROC, 0.71 vs 0.57–
0.58)57

� Random forest model developed using a single-center 6376-patient
cohort to predict hospital-acquired pressure injury had an AUROC of
0.79 for stage 1 and stage 21 injuries58

� Recurrent neural network models developed using a single-center
9269-cardiac surgery patient cohort to predict mortality, renal
replacement therapy, and postoperative bleeding requiring surgery
outperformed other predictors in all outcomes (AUROCs of 0.95 vs
0.71, 0.96 vs 0.72, and 0.87 vs 0.53 respectively). Validation in MIMIC-
III had comparable results59

� Unstructured text data added toMLmodels fromMIMIC-III improved
prediction of death or prolonged ICU stay. Gradient-boosted
machines slightly outperformed random forests, elastic net
regression, and logistic regression60

� Gradient-boosted decision tree model developed using a 53-center
237,173-patient ICU cohort predicted in-hospital mortality well
(AUROC, 0.951 in training subset and 0.943 in validation subset)61
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user.27 One option to address this challenge is by diverting the low-yield but important
screening activity to tele-ICU staff, allowing bedside staff to remain focused on their
clinical activities. The following areas are some that the authors consider to be exciting
and promising avenues potentially applicable in the tele-ICU.
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Sepsis Prediction

Many ML algorithms to predict sepsis from clinical data have been developed:

� An elastic net logistic classifier applied to a single-center 1110-patient cohort to
predict sepsis 4 hours before onset found that high-resolution vital signs com-
bined with sociodemographic and clinical characteristics achieved an AUROC
of 0.78.37

� Coupled hidden Markov models were compared with nonlinear support vector
machine models applied to a single-center 1310-patient cohort from a MIMIC-
III predecessor to predict septic shock during sepsis.38

� InSight, a proprietary MLmodel to predict sepsis 3 hours before onset developed
from a MIMIC-III predecessor,39 was then validated using the larger MIMIC-III
cohort and found to outperform other assessments of sepsis (eg, SOFA scores)
with an AUROC of 0.880 and to still perform well when tested with randomly
missing data.40

� Deep learning models incorporating feedforward neural networks and long short-
term memory to predict sepsis 3 hours before onset were derived using a 5803-
patient cohort from aMIMIC-III predecessor and found to be capable of unsuper-
vised feature extraction with improved performance compared with a proprietary
regression model using hand-crafted features.41

More recently, ML approaches to sepsis detection have been validated in external
data sets and real-world applications. Nemati and colleagues42 developed a modified
Weibull-Cox proportional hazards 65-feature model to predict sepsis 4 to 12 hours
before onset using an internal 2-center 27,527-patient cohort with an AUROC of
0.83 to 0.85 and validated it using a 42,411-patient cohort from MIMIC-III with similar
results (AUROC, 0.79–0.84). Using a larger data set than earlier models allowed pre-
diction over significantly longer periods.
Shimabukuro and colleagues43 performed the first randomized controlled trial of ML

algorithms for sepsis detection in 2016. Although the InSight algorithm used 9 vital
signs during its development,39 the data requirements are flexible and had previously
been evaluated using alternatives.40 Shimabukuro and colleagues’43 model included 6
features (age, blood pressure, heart rate, temperature, respiratory rate, and peripheral
oxygen saturation) measured hourly in the 142 patients randomized during the 3-
month study. Compared with a groupmonitored by the preexisting EMR severe sepsis
alert system, the group monitored by the ML algorithm had significantly lower hospital
LOS (10.3 days vs 13.0 days; P 5 .042), ICU LOS (6.31 days vs 8.40 days; P 5 .030),
and in-hospital mortality (8.96% vs 21.3%; P 5 .018).43 Note that caution must be
taken in generalizing findings from a small, single-center, nonblinded trial; however,
other studies have shown benefits from continuous real-time monitoring with multivar-
iate predictive models for septic shock.44
Sepsis Management

Komorowski and colleagues45 used a reinforcement learning agent to develop an arti-
ficial intelligence (AI) policy assessing whether vasopressors or intravenous (IV) fluids
are the optimal intervention for a given patient with septic shock. The model was
developed using a single-center 17,083-patient cohort from MIMIC-III, tested using
a 128-center 79,073-patient cohort from the eRI database, and included 48 variables
coded as a time-series over a 72-hour period around the estimated time of sepsis
onset. A Markov decision process (MDP) modeled transitions between 750 discrete
mutually exclusive patient states identified on cluster analysis. The theoretic optimum
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policy identified decisions (limited to actions taken by the clinician in the data set) that
maximized rewards (ie, survival) for solving the MDP.
Bootstrapping evaluation of 500 candidate models and 500 clustering solutions on

theMIMIC-III validation cohort provided the optimal model to be tested against the eRI
database. The AI policy recommended higher vasopressor doses and lower IV fluid
doses on average. Vasopressors were administered in 17% of eRI patients, whereas
the AI policy recommended vasopressors in 30%. Mortality was shown to increase in
a dose-dependent fashion as clinician intervention doses diverged from the AI policy
recommendations.45 An earlier study showed that a switching-state autoregressive
model can predict vasopressor administration and weaning.46

Mechanical Ventilation

Lung protective ventilation decreases mortality in acute respiratory distress syn-
drome, and other causes of respiratory failure,47,48 but the root cause of the difference
is unclear.49,50 The ability of modern mechanical ventilators to generate breath-to-
breath pressure-volume curves offers unique opportunities to create rich high-
bandwidth data sets. ML applied to a data set combining waveform and EMR data
could detect factors affecting patient outcomes and optimize individual ventilator
management.
A random forest model was able to discriminate between ventilator waveforms

showing no asynchrony, delayed termination, and premature termination to a similar
degree as clinical experts (kappa coefficients, 0.90, 0.90, and 0.91 respectively).51

ML algorithms have also been applied to identify ventilator dyssynchrony from wave-
forms, and found to be effective at identifying double-triggered breaths, flow-limited
breaths, and synchronous breaths, although the best model varied by dyssynchrony
(AUROC, 0.89–0.95).52
TELEMEDICINE INTENSIVE CARE UNIT CLINICAL DECISION SUPPORT SYSTEM
CONSIDERATIONS

There is abundant research on factors affecting bedside staff perception and accep-
tance of tele-ICU. Staff appreciate if tele-ICU provides improved workflow, improved
monitoring, rapid availability, specialty expertise, and staff familiarity, but issues of un-
realistic expectations and poor communication were barriers.62–65 More recently Kahn
and colleagues66 found that tele-ICU systems perceived to be “appropriate, respon-
sive, consistent, and integrated with bedside workflows” were associated with
decreased mortality after being deployed. Tele-ICU CDSS must achieve these goals
in addition to being autonomous, generalizable, transparent, coherent, and ideally
educational; a black box is not an adequate decision aide.
These factors must be the foundation of tele-ICU ML CDSS development going for-

ward. Tele-ICU nurses have been reported to care for 30 to 52 patients simulta-
neously,67 with a median of 3 nurses per tele-ICU hub.31 As the number of CDSS
algorithms proliferate, they must be integrated into the tele-ICU workflow, which will
differ significantly from the bedside because of the population-level surveillance taking
place. Human factors engineering may be needed to ensure that CDSS that is effec-
tive at the bedside is not a burden in the tele-ICU.30 CDSS deployment should be stud-
ied routinely using outcomes in both the short term (eg, best-practice adherence) and
long term (eg, mortality). Furthermore, the constantly evolving state of the art in med-
icine requires rapid validation of CDSS models using large data sets as well as
ongoing reevaluation and recalibration as circumstances change. Creating tele-ICU
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ML CDSS will be challenging but has the potential to provide greater impact for more
patients than any single-center CDSS.

SUMMARY

The use of ML in critical care CDSS is a rapidly developing field. The availability of
large, comprehensive, granular data sets is fueling growth in ML algorithms that will
be far more accurate and generalizable than in years past. The tele-ICU provides a
framework to deploy ML algorithms at scale but will require emphasis on usability
for monitoring large patient populations and studies of their effects on patient
outcomes.
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