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Abstract
Purpose Surgery is continuously subject to technological and
medical innovations that are transforming daily surgical rou-
tines. In order to gain a better understanding and descrip-
tion of surgeries, the field of surgical process modelling
(SPM) has recently emerged. The challenge is to support
surgery through the quantitative analysis and understanding
of operating room activities. Related surgical process models
can then be introduced into a new generation of computer-
assisted surgery systems.
Methods In this paper, we present a review of the literature
dealing with SPM. This methodological review was obtained
from a search using Google Scholar on the specific keywords:
“surgical process analysis”, “surgical process model” and
“surgical workflow analysis”.
Results This paper gives an overview of current approaches
in the field that study the procedural aspects of surgery. We
propose a classification of the domain that helps to sum-
marise and describe the most important components of each
paper we have reviewed, i.e., acquisition, modelling, analy-
sis, application and validation/evaluation. These five aspects
are presented independently along with an exhaustive list of
their possible instantiations taken from the studied publica-
tions.
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Conclusion This review allows a greater understanding of
the SPM field to be gained and introduces future related
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Introduction

Context

In recent years, due to progress in Information Technology
fields, computer assistance has been developed in health-
care systems. The operating room (OR), in particular, has
undergone significant transformations evolving into a highly
complex and technologically rich environment. Computer-
assisted surgery (CAS) (or computer-assisted intervention
(CAI)) systems have now a vital role to play in current sur-
gical performance. For instance, during surgical planning,
CAS and image-guided surgical systems provide access to
multi-modal imaging technologies, and relevant informa-
tion about the patient. During surgery, they provide visu-
alisation to pre- and intra-operative information about the
patient with respect to the operative field, and also provide
passive or active robotic support. New issues and techno-
logical challenges related to this complex OR and CAS sys-
tems have been discussed by Cleary et al. [1] or Rattner and
Park [2].

This first generation of CAS systems mainly focused
on providing the surgeon with access to medical informa-
tion of the patient before and during surgery, and active or
semi-active robotic assistance. It was, however, outlined that
such assistance would be different according to the surgical
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task, due to different needs and levels of importance. There
was also an increasing need for new tools providing better
resource management in the OR. For instance, surgeons need
to be freed from technical problems through the automatic
handling of software and hardware tools. These requirements
illustrate the main motivation for surgical procedures mod-
els. The need for dedicated model-based systems for surgical
procedures was first outlined for creating surgical simulation
systems [3,4]. The idea of describing the surgical procedure
as a sequence of tasks was first introduced for analysis pur-
poses in minimally invasive surgeries (MIS) [5], as well as
for surgical planning and intra-operative image management
[6] and for robotics systems [7].

Following progress in model-based surgical intervention
systems, understanding of the surgical scenario was proposed
to improve the management of CAS systems. Jannin et al.
[8] defined the term surgical model as “generic or patient-
specific surgical procedures that workflows aim to automate”.
In their work, they stated that model-based systems of surgi-
cal interventions must address behavioural, anatomical and
pathological aspects as well as integrate information about
surgical instruments that can be used with a priori knowl-
edge for the development of the OR of the future. The
term surgical workflow has been defined as “the automa-
tion of a business process in the surgical management of
patients, in whole or part, during which documents, infor-
mation, images or tasks are passed from one participant to
another for action, according to a set of procedural rules”
[9]. The term surgical process (SP) has been defined as “a
set of one or more linked procedures or activities that col-
lectively realise a surgical objective within the context of an
organisational structure” [10]. This term is generally used to
describe the steps involved in a surgical procedure. A surgi-
cal process model (SPM) has been defined as “a simplified
pattern of an SP that reflects a predefined subset of interest
of the SP in a formal or semi-formal representation” [10].
SPMs were first introduced for supporting surgical interven-
tion using a model of surgical progress. Indeed, the precon-
dition for computer-supported surgical intervention is the
specification of the course model describing the operation
to be performed. Being able to identify information such
as activities, steps or adverse events within a surgical inter-
vention and having the possibility of relying on a surgical
model is therefore a powerful tool in helping surgeons. The
use of SPMs may prove effective in facilitating the surgi-
cal decision-making process as well as surgical teaching and
assessment, thereby having a direct impact on patient safety.
It could help in anticipating patient positioning, optimising
operating time or analysing technical requirements. In light
of the growing interest in this field, and for the first time, we
propose in this paper to undertake a methodological review
of the literature focusing on the creation and the analysis of
SPMs.

Search methodology

The review was carried out using Google Scholar to search
on the specific keywords: “surgical process model”, “surgi-
cal process analysis” and “surgical workflow analysis”. In
addition to the Google Scholar results, we added another list
of possible citations that were taken from the references of
the first set of selected publications. We included articles
published in peer-reviewed journals as well as full papers
published in major international conference proceedings that
dealt with the use of SPMs. International conference pro-
ceedings were included since the field is very recent, result-
ing in more conference publications than peer-reviewed jour-
nals. Only English language publications were selected. The
research included was published between 2002 and end of
2012. In order to achieve an overview of the publications
related to the creation and analysis of SPMs, we focused on
publications which aimed to study the procedural dimension
of surgery. The first inclusion criteria used during the selec-
tion process was therefore the fact that works have to take
into account the sequential aspect of the surgical procedure,
i.e., study the duration and sequencing of tasks performed
during the surgery. Moreover, we were interested in pieces
of work that focused at least one part of their analysis on the
act of surgery, beginning when the surgeon performs the first
task on the patient and ending when the surgeon makes the
suture. It was defined as the second inclusion criteria. The
focus was therefore on the surgery, and anaesthesia studies
were not included in this review (for detailed explanation
of similar works not included into the study, please refer to
Sect. 3.). When a project has been published several times
with no change in the dedicated elements of the diagram, the
journal publication and if none, the most recent conference
paper has been used. The entire selection process is shown
on Fig. 1. From an initial selection of N = 272 publications,
a total of N = 46 publications were finally selected for full-
text review.

Figure 2 shows the Google Scholar results before the
selection process only. We can see that the SPM creation
and analysis field is very recent. It has evolved in particular
from 2007, evidence of the recent evolution of the field.

SPM taxonomy

In order to clarify the review and the discussions, we propose
a model for describing and classifying the methods using five
components and their corresponding elements (Fig. 3). Each
of the five components addresses one major aspect of the
SPM methodology, and every element that results can be
instantiated with its set of possible values. The first compo-
nent is the modelling, i.e., what is studied and is modelled,
where the goal is to describe and formalise the work domain.

123



Int J CARS (2014) 9:495–511 497

Fig. 1 Process used in the selection of publications for full-text review

Fig. 2 Evolution of the number of papers in the field from 2002 to
December 2012

The second component is the data acquisition performed by
human observations or by sensor systems. The third is the
analysis that tries to make the link between the acquired data
and the information that we want to model. Another compo-
nent specifies the different applications of the systems based

on SPMs and finally, the last component describes the dif-
ferent kind of validation and evaluation studies that were
conducted for assessing these systems. The whole review is
organised according to diagram of Fig. 3. In the following
subsections, each part of the diagram is explained in detail.

Granularity level

The whole SPM methodology, and especially the acquisition
and modelling components, is organised around the concept
of granularity level. A granularity level is defined as the level
of abstraction at which the surgical procedure is described.
MacKenzie’s group [5,11,12] proposed a model of the surgi-
cal procedure that consists of different levels of granularity:
the procedure, the step, the substep, the task, the subtask and
the motion. Each (sub)task can for instance be broken down
into various motions and forces primitives. They then used
a hierarchical decomposition to structure the complex envi-
ronment and the interaction between the surgical team and
new technologies. Because of the marked differences in the
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Fig. 3 General overview of the field

Fig. 4 Different levels of granularity of a surgical procedure

terminology used in the papers studied, in this paper, we will
use the following terminology for describing the different
granularity levels of surgical procedures (Fig. 4). The high-
est level is the procedure itself. The procedure is composed of
a list of phases. A phase is similar to the notion of Lo et al.’s
[13] surgical episode, defined as the major types of events
occurring during surgery. Each phase is composed of several
steps. A step is considered to be a sequence of activities used
to achieve a surgical objective.

A step has been often called “task” in the literature. An
activity is defined as a physical task. This level appears to be
identical to a surgeme, previously defined as a well-defined
surgical motion unit [14]. Each activity is composed of a list
of motions. The motion can be considered to be a surgical
task involving only one hand trajectory but with no seman-
tics. One assumption is that each granularity level describes
the surgical procedure as a sequential list of events, except
for the surgical procedure itself and for lower levels where
information may be continuous.

Modelling

This first component describes and explains the work domain
of the modelling, i.e., what is studied and what is modelled.
Two elements are crucial for identifying the work domain: (1)

the granularity level at which the surgical procedure is stud-
ied and (2) the operator(s) involved in the surgical procedure
on whom the study will focus. A third element can be added
is (3) formalisation. In many cases, a formalisation phase is
required for representing the knowledge collected before the
analysis process can take place. Knowledge acquisition is
part of the underlying methodology of this component. It is
the process of extracting, structuring and organising knowl-
edge from human experts.

Granularity level

Information that is studied (i.e. information that is modelled)
is laid out on the granularity level axis defined in Fig. 4.
Investigations have concentrated on the activity level, but
all granularity levels have been studied. At the highest level,
the global procedure has been studied [15–18], as well as the
phases [13,19–30], the steps [8,9,31–36] and the motions
[14,37,38]. Some studies integrated two or more of these
granularity levels in their modelling [5,7,12,18,39,40]. No
low-level information has been considered here.

Operator

The information that is studied involves one or more of the
actors of the surgery: the operator studied may be the surgeon,
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Fig. 5 Different levels of formalisation of the surgery

the nurse, the anaesthetist, the patient or several of these
operators.

Formalisation

Formalisation is necessary for allowing automated han-
dling and processing by computers. It is also necessary
for bottom-up approaches to have a representation of the
sequence of surgery through ontologies or a simple list
of phases/steps/activities. At the highest level, we find the
heavyweight ontologies, which have been used to represent
the detailed context of a SPM study [21,33,36,39,41,42].
A heavyweight ontology is a lightweight ontology, i.e., an
ontology based on a hierarchy of concepts and relations,
enriched with axioms used to fix the semantic interpreta-
tion of concepts and relations. Then, in the category of light-
weight ontologies, we find UML class diagrams and/or XML
schemas [8,9,43,44]. Both approaches define entities and the
relation between these entities. We then find all 2D graph
representations, which have been used mostly with hierar-
chical decompositions, state transition diagrams and non-
oriented graphs. Lastly, at the lower level, simple sequential
[16–20,22,24,25,29,45] or non-sequential lists [14,37,38]
were also used, suggesting a list of words for representing
one or many levels of the surgery’s granularity (Fig. 5).

Data acquisition

The second component of the diagram, which is also the
first step towards the creation of an SPM, is data acquisition,
i.e., the collection of data on which the models are built.
Four main elements may be distinguished in the acquisition
process: (1) the level of granularity of the surgical infor-
mation that is extracted, (2) the operator(s) on which the
information is extracted, (3) the time when the acquisition
is performed and (4) the recording method. This section is
divided according to these four elements.

Granularity level

Like the Modelling component, the level of granularity of the
surgical information that is extracted allows the acquisition to
be characterised, as it determines in how much detail the SP is
recorded. Studies have focused on the recording of the entire

procedure [17], of the phases [28], of the steps [25,33,39], of
the activities [43,46–51] and of the motions [52]. But efforts
have been made in particular on extracting low-level informa-
tion from the OR: videos [13,15,22,23,31,41,53,54], audio,
position data [21,34,42], hand/tool/surgical staff trajecto-
ries [12,14,24,37,38,40,55], information about the pres-
ence/absence of surgical tools [19,25,32] or vital signs [18].
Several elements of this low-level information can also be
combined [16,20,26,27,29,30,36,45].

Operator

Surgery always directly involves several operators. All staff
members can have an impact on surgery and their roles and
actions can be studied: the nurse [40,55] for trajectory data
extraction and the patient [7–9,16–18,45] for images or vital
signs extraction. Overall studies of the entire surgical staff
have also been proposed [15–17,24,28,29,33,35,45], where
the surgeon, the nurses and possibly the anaesthetist were
included. For tracking systems, this notion can be specified
by defining, in addition to the operator, parts of the human
body involved such as the hand, eye, forehead, wrist, elbow
and shoulder.

Time of acquisition

The precise time of the data acquisition is also a vital piece
of information for discriminating acquisition techniques. In
most of the studies, data are extracted from intra-operative
recordings. In some studies, this was done post-operatively
(retrospective). In the case of the manual collection of infor-
mation, this is done pre-operatively (prospective). Addition-
ally, the term peri-operative generally refers to the three
phases of surgery. Some acquisitions include all of these
three phases to obtain information about the entire patient
hospitalisation process [17,45].

Recording methods

Two main approaches have been proposed: observer-based
and sensor-based approaches (Table 1). Observer-based
approaches are performed by a human observer. For off-line
recording, the observer uses one or multiple videos from the
OR to record retrospectively the surgical procedure [5,12,
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Table 1 List of possible data acquisition methods

Observer-based approaches Sensor-based approaches

Observer-
based
recording
from video
(off-line)

Observer-
based
recording
(on-line)

Manual
collection of
information
(off-line)

Robot-
supported
recording
(on-line)

Video-based
recording
(on-line)

Patient
monitoring
systems
(on-line)

RFID tech-
nologies
(on-line)

Tracking
systems
(on-line)

Audio
recording
systems
(on-line)

19,25,32,33,35–37]. For on-line recording, the observer is
directly in the OR during the intervention [44,46–48,50,51].
Lemke et al. [35] first highlighted the importance of study-
ing OR processes using on-line observer-based approaches
to study both ergonomic and health economic aspects. The
principle is to extract information from the OR using one or
multiple sensors in an automatic way, and to recognise activ-
ities or events based on these signals. Sensors can be of dif-
ferent types, ranging from electrical to optical systems. In the
beginning, studies used sensors based on Radio Frequency
IDentification (RFID) technologies, directly positioned on
instruments or on the surgical staff during the intervention,
to detect the presence/absence of the tools or actors [45,56].
Then, efforts were made to use robot-supported recording
[7,14,34,52], including surgeon’s movements and the use
of instruments. Robots have been used as a tool for auto-
matic low-level information recording. Tracking systems
[20,21,24,30,37,38,40,42,55] have also been used in vari-
ous studies; mainly through eye-gaze tracking systems posi-
tioned on surgeons or through staff member tracking devices.
Other types of methods have also been tested for record-
ing information: patient monitoring systems [16–18,45] and
audio recording systems [29,45]. Finally, the use of on-line
video-based recording, sometimes combined with other data
acquisition techniques, has especially received increased
attention [13,15,16,20,22,23,26,29,31,41,54], with either
wide-angle video camera recording the entire OR or surgi-
cal video camera such as endoscopic or surgical microscope
videos.

Analysis

Analysis methods can be divided into three types: methods
that go from data to final model, methods that aggregate or
fuse information and methods that classify or compare data
to extract a specific parameter. The three approaches are pre-
sented in the following subsections. Additionally, methods
for displaying the analysis results have been studied to obtain
a visual representation after the analysis process.

From data to model

The challenge here is to use the data collected during the
acquisition process to create an individual model (i.e. iSPM)

and to make the link between the acquisition process and
the modelling. Top-down approaches are defined as analyses
that start from a global overview of the intervention using
patient-specific information and a description of high-level
tasks (such as phases or steps) to fine-coarse details (such as
activities or motions). Conversely, bottom-up approaches use
as their input low-level information from sensor devices and
try to extract high-level semantic information. The method-
ology employed for either bridging the semantic gap in the
case of bottom-up approaches or to generalise and formalise
individual recordings in the case of top-down approaches is
based on statistical or data mining concepts. One issue is to
determine whether or not the model needs a training step.
This step is needed for assigning classes to the training set.
In such cases, the creation of the model is not fully auto-
matic and may be entirely manual or a mix between human
intervention and automatic computation.

As part of supervised approaches, simple Bayes classifier
with Linear Discriminant Analysis [14] and neural networks
[38] have been tested in the case of activity/step/phase recog-
nition. Signal processing tools have been used for analysing
patient vital signs [16,18] or audio recordings [29]. In the
case of top-down analysis, description logic has been tested
[21,33,35,39,42], as well as model instantiation [8], deci-
sion tree [9], inference engine [36] or workflow engine
[28]. In the case of bottom-up analysis, graphical proba-
bilistic models have often been used to describe dependen-
cies between observations. Bayesian networks (BN) have
recently proven to be of great interest for such applications,
with an extension in the temporal domain using Dynamic
BNs (DBN). Temporal modelling allows the duration of
each step and of the entire process during its execution
to be evaluated. Many time series models, such as Hidden
Markov Models (HMM) or Kalman filter models, are par-
ticular examples of DBNs. Indeed, HMM, which are statis-
tical models used for modelling non-stationary vector times
series, have been widely used in SPM analysis [15,31,32].
The dynamic time warping (DTW) algorithm has also been
often tested with success because of its ability to pre-
cisely wrap time series [19,26]. Computer vision techniques
have also been used for extracting high-level information
before using supervised approaches such as neural networks
[20], Support Vector Machines (Support Vector Machines)
[22], Bayesian networks [26], HMMs/DTW [23,26,27,54]
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or Linear Dynamical System, spatio-temporal features and
multiple kernel learning (Haro et al. 2012). Computer vision
techniques have also been mixed with description logic [41].
SVMs have been employed before the use of time series
analysis [15]. Statistical analysis [45], sequential analysis
[7,34,52], trajectories data mining [24], times automata [40]
or model checking [55] have also been used. Dealing with
heterogeneous sources, a multi-objective Bayesian frame-
work has finally been implemented for feature selection, and
supervised classifiers were then launched [30].

As part of unsupervised approaches, no extensive work
has been undertaken. Only a motif discovery approach has
been used [37] that does not need any a priori model.

Finally, an SPM whose data acquisition and modelling
stay at the same level of granularity is also possible. In
such cases, the goal of the analysis is not to create a real
model, but to perform either aggregation/fusion or compari-
son/classification.

Aggregation–fusion

The goal here is to create a global (i.e. generic) model (gSPM)
of a specific procedure representing a population of surgical
procedures by merging a set of SPMs. One possibility is to
merge similar sequences as well as filter infrequent ones to
create average SPs in order to obtain a global overview of the
surgery. Another is to create gSPMs that represent all possi-
ble transitions within SPs. A synchronisation stage may be
necessary for both approaches in order to be able to merge
all SPs. Generally, probabilistic or statistical analyses have
been used for the fusion [5,44], but multiple sequence align-
ment has also been tested [43] within text mining approaches
to automatically analyse post-operative procedure reports as
well as patient files.

Comparison–classification

The principle is to use an SPM methodology to highlight a
specific parameter (i.e. meta-information) that explains dif-
ferences between populations of patients, surgeons or sys-
tems. Simple statistical comparisons (such as average, num-
ber of occurrence or standard deviation) have been used
[12,17,51] to compare populations. Similarity metrics have
also been proposed by Neumuth et al. [49] to compare differ-
ent SPs. DTW along with the K-Nearest Neighbour (KNN)
algorithm have been tested within unsupervised approaches
[46].

Display

Once data are acquired and the model is designed, it is gen-
erally useful to have a visual representation of the data to

explore them qualitatively and to illustrate the results. How-
ever, complex data structures sometimes prevent straightfor-
ward visualisation. High-level task recordings of SPMs can
be displayed according to two types of visualisations: tem-
poral and sequential aspects [47]. Temporal display focuses
on the duration of each action, whereas sequential display
focuses on the relation between work steps. Moreover, in the
sequential display, one possibility is to create an exhaustive
tree of each possible sequence of work steps. Sensor-based
recordings are easier to visualise. As it is represented by time
series data, an index plot can be used (e.g. in Forestier et al.
[46]). The idea of an index plot is to display the sequence
by representing an activity as a rectangle of a specific colour
for each value, and a width proportional to its duration. An
information sequence can be easily visualised, and a quick
visual comparison can be performed (Fig. 6).

Clinical applications

The analysis and modelling of surgical procedures cover mul-
tiple surgical specialities, issues and challenges. Five major
applications in particular have been the focus of increased
attention: (1) evaluation of surgical tools/systems/approaches,
(2) training and assessment of surgeons (3) optimisation of
OR management (4) context-aware systems and (5) robotic
assistance. We first present the surgical specialities that have
been covered by these systems, and then, the five main appli-
cations are detailed. A final subsection presents other poten-
tial applications.

Surgical speciality

SPMs have been applied to many surgical specialities, but
minimally invasive surgery (MIS), including endoscopic
and laparoscopic procedures and neurosurgical procedures
have been preferred. Within laparoscopic and endoscopic
procedures, Cholecystectomy and Functional Endoscopic
Sinus Surgery (FESS) have been widely studied. Works can
also be found in eye surgery [23,44,49,50,54], maxillofa-
cial surgery [7], trauma surgery [15,18,45], dental implant
surgery [21], urological surgery [43] and otorhinolaryngol-
ogy (ORL) surgery [44]. In general, systems have been spe-
cific to a surgical speciality or even a particular surgical inter-
vention, but a few papers have described more generic sur-
gical systems.

Applications

Evaluation of tools/surgical approach/systems: The evalu-
ation of surgical tools or systems was the first application
targeted by research laboratories, at the request of surgeons
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Fig. 6 Index plot used in Forestier et al. [46] representing the activities of the right (R) and left (L) hand for a population of 24 lumbar disc
herniation surgeries performed by junior (a) and senior (b) surgeons

[5,12,35,43,44,48,50,57]. The analysis methods used in
such cases were the comparison and classification methods.

Training and assessment of surgeons All junior surgeons cur-
rently train with the teaching help of senior surgeons. This
is a very time-consuming, interactive and subjective task.
The need for new automatic training systems using tools for
the evaluation of surgeons has motivated extensive research
into the objective assessment of surgical skills [58,59]. Sur-
gical expertise has been widely studied in the literature. It is
usual to distinguish technical from non-technical skills [60].
Technical skills include motor skills as well as procedural
and conceptual knowledge [61]. Non-technical skills include
cognitive skills and interpersonal skills [60]. Surgical process
modelling is a methodology which allows some aspects of
motor skills (timing or trial-error loops, for instance) and
some aspects of procedural knowledge to be assessed. The
ability to recognise simple movements, activities, steps or
phases precisely is a very powerful tool in automating surgi-
cal assessment. Surgical training may also benefit from SPM
methodology since it allows access to a formal description of
the entire procedure, or a possible surgical scenario inside a
population of cases (as represented by gSPM). For a complete
discussion on the motivations of objective skill evaluation,
one can refer to Reiley et al. [58].

Optimisation of OR management The need for perioperative
surgical workflow optimisation has emerged [16,62], espe-
cially regarding the specifications of the OR of the future
[1]. With the increased number of CAS systems and new
technologies, being able to manage and coordinate all these
systems correctly is becoming vital. The optimisation of
physical and human resources can reduce efforts and there-
fore improve patient outcomes, reduce hospital’s costs and
increase efficiency. Moreover, being able to identify different
phases within the OR could be useful to know how to assign
staff, prepare patients or prioritise OR clean-ups. Better man-
agement relying on surgical information can also provide
useful communication information [63].

Context-aware systems Many CAS systems, such as aug-
mented reality (AR) systems or new imaging protocols, have
been developed recently and integrated in the OR. Some lim-
itations have been outlined. They are mainly used for a short
period of time only, and the visualisation of additional infor-
mation strongly depends on the current state of the interven-
tion. Moreover, surgeons have to deal with adverse events
during operations, arising from the patient him/herself but
also from the management of the operation. The idea is to be
aware of the current surgical situation in order to adapt assis-
tance accordingly (e.g. in Sudra et al. [42]). Additionally,
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difficulties can be detected and risk situations better han-
dled. For instance, variations of live signals can be used to
warn surgical staff in the detection of anomalies.

Robotic assistance Many pieces of research have demon-
strated the importance of robots in assisting surgery, and par-
ticularly using SPMs [7,34,52,55]. Surgical robots play a
vital role in improving accuracy in surgical procedures. Two
families of robots have been introduced for intra-operative
assistance: semi-active and active robots. Semi-active robots
make the link between surgeon and patient. Surgeons perform
their tasks outside the OR using the robot which reproduces
the surgeon’s hand movement on the patient. These types
of robots are used for specific tasks only such as biopsies
or endoscopies for MIS. Active robots are used directly in
the OR to replace the surgeon for certain tasks. Both types
of robots could benefit from SPMs in supporting these tasks
using predefined models. The use of robotic assistance also
aims to compensate for the lack of human resources in many
hospitals, and in particular the lack of nurses [40,55]. The
new generation of robots that are currently being tested are
able to pinpoint the progress of the intervention by auto-
matically acquiring data from the surgical environment and
creating SPMs.

Two other applications that have often been implicit in
multiple publications are the automatic generation of post-
operative reports and the help in pre-operative planning.

Post-operative reports are paper or electronic files that are
generated post-operatively by the surgeon for documenting
surgical procedures. Procedures are described as a succes-
sion of actions and steps that are manually included in a
“log-file” for further filing. This step of the procedure is very
tedious and time-consuming. The idea behind automating
this process is to automatically extract as much information
as possible from the surgery with the help of multiple sen-
sors and to create prefilled reports [23,64]. All studies that
retrieve information from the OR, regardless of their level of
granularity, have potentially the possibility of automatically
creating prefilled reports.

For helping pre-operative planning, the goal is to bet-
ter anticipate adverse events and possible problems during
surgery by using formalised knowledge acquired by previous
interventions and also by having an idea of all the possibili-
ties offered by SPs. Aggregation and fusion techniques may
be helpful in such cases for creating gSPMs.

Validation–evaluation

We distinguish validation, defined as studying whether the
system or method is actually doing what it is intended
to do, from evaluation, defined as the study of the added
value of a system or a method. Each aspect of the SPM
methodology is subject to validation. The design of a val-

idation study includes (1) the specification of a validation
goal, (2) the definition of input parameters, (3) the com-
putation or estimation of a reference (validation data sets)
against which the results of the method to be validated will
be compared, (4) the definition of validation metrics that
will quantify the comparison and (5) the operator using the
system [65].

Two main aspects have been validated by the selected
publications: the data acquisition process and the modelling
phase. Validation data sets consist of fully simulated data
from computers, data provided by simulated ORs, from phan-
toms or real data directly from surgical interventions and
patients. Computer simulations are one way of validating
data that are easy to create, process, analyse and control, but
are usually far from clinical reality. Similarly, virtual environ-
ments (simulated ORs) are also quite far from reality. While
both approaches allow real flexibility for validating systems,
it remains very difficult to model realistically a surgical envi-
ronment, such as haptic feedbacks, anaesthesiological con-
straints or surgeon/patient interaction. Moreover, even if the
simulation is close to reality, the human factor is missing and
could be an issue for applications that are intended to be used
in real OR environments. The third possibility is to use real
surgical devices on phantoms instead of humans. Even if the
environment is closer to reality than complete virtual envi-
ronments, it remains a part of the procedure that is not realis-
tic. The validation strategies generally consist of leave-one-
out or k-fold cross-validation approaches. The comparison
metrics are the recognition rate (accuracy), reproducibility,
specificity and sensitivity.

Few evaluation studies have been conducted and reported
in the literature [21,34,40]. Some papers indirectly showed
the added value of the SPM approach through its use in com-
paring populations of surgical cases performed with different
systems or by surgeons with different surgical expertise. For
these few papers that evaluate their systems, the same possi-
ble limitations as the validation part can be expressed.

Similar works not included in the corpus

From the beginning of the 90s, many clinical studies were
published which used the principle of time-motion analy-
sis. Time was the first information chosen by teams to eval-
uate surgical systems or to assess surgeons. Publications
covering time-motion analysis used off-line observer-based
recording from videos (installed in the OR, on the surgeon)
for acquiring sequences of phases/steps/activities that are
then processed through statistical analysis. The correspond-
ing studies, mainly published in clinical journals, restricted
their analysis to statistical computations of time or num-
ber of occurrences. They were not included in our cor-
pus. Some major examples of publications are listed here:
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Table 2 Classification of time-motion analysis publications, for the data acquisition and the modelling component

Data acquisition Modelling

Granularity
level

Operator +/−
body part

Time of
acquisition

Method for
recording

Granularity level Operator +/−
body part

Formalisation

Time-Motion
analysis

Steps/activities/
motions

Surgeon Intra-operative Observer-based
recording from
video (off-line)

Steps/activities/
motions

Surgeon Hierarchical
decomposition

Table 3 Classification of surgical skills evaluation using robot-supported recording publications, for the data acquisition and the modelling
component

Data acquisition Modelling

Granularity
level

Operator +/−
body part

Time of acquisition Method for
recording

Granularity level Operator +/−
body part

Formalisation

Surgical
skill
evaluation

Motions Surgeon Intra-operative Robot-
supported
recording
(on-line)

Motions Surgeon Sequential
list of
words

[11,57,66–74]. A classification of their data acquisition tech-
niques and modelling is proposed here in Table 2.

Some papers used robot-supported recording, such as the
paper of Hager et al. [75] or Rosen et al. [59]. Fully connected
HMMs were used for classifying hand trajectories to assess
the level of surgeons’ expertise. They were not included in our
corpus since they did not incorporate any sequential aspect
of the surgical processes. An recent review has already been
published on the methods for objective surgical skills’ evalu-
ation [58], which includes all papers using trajectory analysis
for surgical skills assessment. A non-exhaustive list of these
papers is given here: [14,59,75–78]. A classification of their
data acquisition techniques and modelling is also proposed
in Table 3.

Others studies focused on the preprocessing steps before
an SPM analysis. Radrich et al. [79,80] presented a system for
synchronising multi-modal information using various signals
for surgical workflow analysis. Sielhorst et al. [81] synchro-
nised 3D movements before the comparison of surgeons’
activities. Speidel et al. [82] focused on the identification
of instruments in MIS, with the goal of improving current
intra-operative assistance systems.

With a methodology similar to SPM, some other studies
focused on the modelling of the peri-operative process, based
on hospital systems [83,84], hospital data [85,86] or on sur-
gical staff activities [87,88]. Other research focused on the
modelling of the OR environment (inside and outside) but
without looking at the surgery itself [17,89,90]. Their main
objective is the improvement of the quality of patient care
along with greater medical safety by studying flows or activ-
ities. Also, from an anaesthetist’s point of view, work has
been undertaken which looked at the ergonomics and organ-

Fig. 7 Repartition (percentage of publications) of granularity levels of
the modelling

isation inside the OR [91–97]. None of these studies focused
on the surgical process and were therefore not included in
our corpus.

Discussion

Modelling

As we can see from Fig. 7, all granularity levels have been
studied, with a particular focus on steps and activities. More-
over, a consequent number of these studies use multiple gran-
ularity levels in their modelling. This type of approach seems
to be required for creating global SPMs which integrate all
aspects of the surgical procedure.

123



Int J CARS (2014) 9:495–511 505

From the methods used for formalisation, XML schema,
which is a lightweight ontology, defines a grammar that char-
acterises the structure of a document or the type of data used.
XML schemas can be a solution for describing SPMs at a high
level of granularity, but they do not include important con-
cepts such as classes or organisation into a hierarchy. In addi-
tion, they do not provide a relevant solution for representing
the dynamic aspect of the process. As XML schema, the UML
class diagram does not allow unique and uniform entities to
be defined. Both approaches seem to be less suited to the for-
malisation of a surgical context than heavyweight ontologies.
These allow two elements corresponding to the same unit to
be specified. Unlike taxonomies that define classes and the
relations between these classes, ontologies allow inference
rules to be defined. Jannin et al. [8] proposed a model based
on the pre- and post-operative acquisition of data, including
interviews with surgeons. The types of surgical procedure,
steps and actions were extracted and allowed the model to be
created. Lemke et al. [35] first defined a surgical ontology as
a formal terminology for a hierarchy of concepts and their
relationship in the specialised clinical context of surgical pro-
cedures and actions. Later, Burgert et al. [39] proposed an
explicit and formal description of an upper-level-ontology
based on General Ontological Language (GOL) for repre-
senting surgical interventions. These pieces of work were
the first to introduce heavyweight ontologies in the context
of surgery.

Formalisation is crucial to be able to compare and share
studies between different centres. Even though two cen-
tres acquire data about the same surgical procedure using
the exact same terminology, a heavyweight ontology is still
needed to be able to use both sets of data in a shared study,
since this is the only way to ensure that a term has a single
meaning in both studies. A heavy and rich formalisation is
the key for the future analysis of SPMs to tackle all these
issues.

Data acquisition

Both observer-based and sensor-based data acquisition
approaches present advantages and drawbacks. Within
observer-based approaches, the data acquisition process can
be supported by two levels of knowledge: the description
relies on a priori knowledge available or to fixed protocol
created by local experts. In the first case, standard surgi-
cal terms are reported for describing surgery, whereas in the
second case, the first step consists of building up its own
vocabulary. The related models are in most cases not based
on ontology, and they are thus not an efficient formal repre-
sentation of the knowledge and are also not easily sharable
between centres. Moreover, the major concern of the on-line
observer-based approach is the need for manual labelling. At

the same time, it is the best way for recording finer details
and capturing a high semantic level, which makes this tech-
nique advantageous compared to sensor-based approaches.
Finally, observer-based approaches have the capacity to cover
high granularity levels for describing surgery, from the lower
level (time) to the highest, allowing the observer to take
on the responsibility of acquiring semantic information.
On the other hand, it is a very time-consuming and costly
approach

Sensor-based approaches are now increasingly adopted.
For motion detection using tracking systems, the main draw-
back is that it relies on tools only and rare movements may
not be efficiently detected due to the lack of dedicated train-
ing. Compared to other data acquisition techniques, analyses
of videos would have a source of information that does not
have to be controlled by a human. Videos are a very rich
source of information, as demonstrated in laparoscopy by
Speidel et al. [41]. Using image-based analysis, it is pos-
sible to acquire relevant information about surgery without
disturbing the flow of the intervention. Unfortunately, cur-
rent image-based algorithms, even with progress in computer
vision, do not allow the well-known semantic gap to be cap-
tured in full. For instrument use models, in spite of high
detection accuracies, the major concern is that the recording
of signals is not automatic when RFID tags are not used. In
practice, RFID tags are too intrusive, and some vital infor-
mation such as the anatomical structures treated are missing.
Eye-gaze tracking systems are interesting because they take
into account the perceptual behaviour of the surgeon, but
it would require large modifications during the intervention
course not to alter the clinical routine as it stands. Gener-
ally speaking, all type of sensors additionally installed in
the OR show promising results for the challenge of work-
flow recovery, but the main drawback is the modification of
the OR set-up and the need to manage such new devices.
Also, they do not have this ability to capture information
with semantic meanings, but have the advantage of record-
ing live signals automatically or semi-automatically, which is
less time-consuming and allows the design of context-aware
systems.

Currently, no papers cover multiple levels of granularity,
which shows the difficulty of combining different data acqui-
sition methods at different granularity levels. Multiple sen-
sors can be used for instance for both capturing videos and
the positions of instruments, but the combination of observer-
based and sensor-based approaches turns out to be very dif-
ficult to set-up. We see from Fig. 8 that no predominant tech-
niques have been used.

Analysis

The choice of analysis methods that allow one to go from
data to model is vital in SPM methodology. Bottom-up

123



506 Int J CARS (2014) 9:495–511

Fig. 8 Repartition (% of
publications) of data acquisition
techniques

Fig. 9 Repartition (% of publications) of the type of approaches used
for “data to model” approaches

approaches are the most current (Fig. 9). They allow a bridg-
ing of the semantic gap between numeric and symbolic data.
Based on a preliminary formalisation, these methods all use
supervised techniques based on a training stage, except for
the work of Ahmadi et al. [19]. People report recognition
rates of from 70 up to 99 %, but these values are very diffi-
cult to compare due to the differences of validation strategies
as well as the number and type of data used. The two oth-
ers approaches (approaches that stay at the same granularity
level and top-down approaches), even if they have still not
completely demonstrated their interest for the field, are now
more and more used.

The category of aggregation/fusion analysis method is
important because it is a smart way of creating gSPMs that
can be used as a supplementary tool for assisting surgeons.
It allows creating procedural knowledge models based on
an automated SPM analysis. The problem is that it only

represents the SPMs that are studied and may not cover
all SP possibilities. No extensive work has been performed
while this type of approach suggests good prospects in the
future. Efforts must therefore be made here for integrating
and automating average models of surgical processes in clin-
ical routines.

Similar to the previous category of the analysis approach,
comparison and classification using surgical processes has
not yet motivated many studies, but it may be a direction that
needs to be considered. Comparisons of tool uses, surgeons
or surgery performance using these kinds of methods allow a
quantitative validation and assessment of the impacts on the
surgical procedure.

Applications

We have restricted in the diagram potential applications to
the 5 most common ones cited in the papers. Addition-
ally, when multiple applications were cited in the papers,
we only used the main, clearly identified one. Figure 10
shows the repartition of applications as well as the surgical
specialities.

Most of the SPM studies were performed in the context of
neurosurgery or endoscopy/laparoscopy. This is not surpris-
ing, as neurosurgery and MIS have been the most common
applications used for computer-assisted surgery research. In
the case of endoscopic and laparoscopic procedures, surgi-
cal procedures are often highly standardised, they are widely
documented and have inter-patient variability which remains
very low. Data are also easily available for engineers for this
surgical speciality. In neurosurgical procedures, data can also
be easily acquired. In the case of eye surgery, new studies are
using this surgical speciality because of the very short and
standardised procedures.
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Fig. 10 Repartition (% of
publications) of surgical
specialities (a) and clinical
applications (b)

The distribution of applications is more uniform than the
distribution of surgical specialties. Even if systems aiming at
improving intra-operative assistance predominate, the four
other applications have been seriously and similarly consid-
ered. Ahead of the large number of applications cited in pub-
lications, we see that SPMs can be useful along the entire
surgery timeline, from pre-operative use to post-operative
analysis. They can be used in every medical process and
adapted to every surgical speciality, which shows the poten-
tial importance of SPMs.

Validation–evaluation

Most of the papers include validation studies (Fig. 11, left)
of the analysis part (69 %), while only 4 % of the papers
validated the acquisition step; 27 % of the papers do not vali-
date their systems at all. When used, validation studies were
performed (Fig. 11, right) using clinical data in most cases
(78 %). Few studies use phantoms, simulated OR or computer
simulations.

Of the 46 publications that were peer-reviewed, only three
of them performed evaluation studies. Table 4 shows the dif-

ferent elements of their evaluation studies. However, no val-
idation combined to evaluation has been conducted at the
same time. This shows that research in the field, while being
under considerable development, has not yet been introduced
into the clinical routine.

Correlations with other information

The correlation of SPMs with other information, such as
patient-specific models, is an important prospect in the field.
Patient-specific models are constructed from pre- and post-
operative patient data such as clinical data or images [98–
101]. Being able to correlate patient outcomes and pre-
operative data with SPM would allow predictions to be made
of the best possible surgical processes.

One other possibility would be to correlate SPMs with
surgeons’ decision-making processes during the interven-
tion. The decision-making process in surgery can be con-
ceptualised by two steps, the assessment and the diagnosis
of the situation that must be used to select a specific action.
The major aspect of the decision-making is that the decision
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Fig. 11 Repartition (% of
publications) of the types of
validation (left) and types of
validation data (right)

Table 4 Classification of the 3 publications performing evaluation studies

Evaluation

System evaluated Validation objective
(Medical context)

Data set Metric Operator

Katic et al. [21] Context-aware
augmented reality
system

Drilling planned
implant

Phantom Medical usability
(questionnaire))
Implant position
comparison

Surgeon

Ko et al. [34] System for
intelligent
interaction scheme
with a robot

Porcine
cholecystectomy

Clinical data Number of voice
commands

Surgeon

Yoshimitsu et al. [40] Scrub nurse robot Endoscopic surgery Clinical data Instrument targeting
time

Nurse

depends on the level of expertise and tasks demanded.
Dedicated models can be designed for surgical decision-
making support by including this aspect. Moreover, correla-
tion between pre- and post-operative interviews of surgeons
with the intra-operative intervention strategy would allow an
analysis of surgeons’ decision-making process to be made,
especially under the pressure of time and a better understand-
ing and anticipation of further adverse events [102–104].

Future of SPM

Despite the potential impacts of SPM on computer-assisted
surgery outlined by the scientific and clinical communi-
ties, such methodology still needs to be deployed in clin-
ical environments and applications and to demonstrate its
added value. Some deadlocks remain. The first concerns the
automatic acquisition and real-time and robust monitoring
of SPs. It seems clear that multi-sensor approaches will be
needed to reach high recognition rates at different granu-
larity levels. Different points of view need to be used from
closed sensors attached to operator’s body, views of the oper-
ative field, signals from OR devices, patient’s intraopera-
tive data to large angle views of the whole operating room.
Another issue relies on the computation of generic SPMs

as the collection and gathering of possible SPs, as followed
within an homogeneous population of surgical cases. Such
generic SPMs constitute real procedural knowledge models
(ref) and are needed to provide systems with a list of pos-
sible scenarios. However, they are limited by the data itself.
Being sure that generic SPMs fully cover inter-patient, inter-
surgeon, inter-OR variability requires large worldwide data
repositories with standardised terminologies and correspond-
ing ontologies. The computation of generic SPMs also faces
strong methodological issues in the aggregation/registration
aspects, as a complex multiple sequence alignment problem.
SPM methodology has the potential of allowing development
of relevant comparison/classification approaches and metrics
that could help understanding of surgical expertise. Whereas
the current developed metrics emphasise differences in prac-
tice, there is a need for methods explaining reasons of such
differences. Finally, SPM methodology also needs to be seen
by the clinicians as a skill augmentation support, a powerful
teaching tool, rather than a “big brother” style-watching eye.
Without a clear understanding of potential added value of
the methodology by the clinicians, as well as a strong ethical
awareness and control of the use of such data, such method-
ology will hardly be accepted by clinicians, increasing time
from bench to bedside.
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Conclusion

Following the growing need for a new generation of CAS
systems, new techniques have emerged based on the mod-
elling of surgical processes. Research studies have been per-
formed towards the development of sophisticated techniques
for optimising, understanding and better managing surgeries
and the OR environment based on SPMs. In this paper, we
have presented a methodological review of the creation and
the analysis of SPMs, focusing on works that modelled the
procedural dimension. To organise the review, we have intro-
duced a classification based on 5 major aspects of the SPM
methodology: acquisition, modelling, analysis, application
and validation/evaluation. Using this classification, we have
presented the existing literature and discussed the different
existing methods and approaches. On the methodological
side, we have shown that efforts still remain to be made
in integrating the different granularity levels into a global
framework. Both bottom-up and top-down approaches need
to be combined. Methods are still needed to combine SPM
into average generic SPMs. This methodological review has
emphasised the possible large impact that SPM methodology
may have in future surgical innovations as well as in surgical
education, planning or intra-operative purposes. However,
the technology is recent and there is still a lot of work to
be done to demonstrate quantitatively its ethical added value
within concrete clinical applications.
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