Solution problem set 5

Ex 1) Find all mixed strategy Nash equilibrium of the following game (you have to use the property of the Nash equilibrium in mixed strategies)

		Player 2		
		L	M	R
Player 1	Т	2, 2	0, 3	1, 3
	В	3, 2	1, 1	0, 2

Notation

t is the probability to play T

l is the probability to play L

m is the probability to play M

Player 1's strategy (t, 1-t)

Player 2's strategy (l, m, 1 - l - m)

E(X) expected value from playing the pure strategy X

		Player 2	Player 2		
		L	M	R	
Player 1	Т	2, 2	0, 3	1, 3	
	В	3, 2	1, 1	0, 2	

We start considering all possible cases for player 1:

$$s_1 = (1,0),$$

$$s_1 = (0, 1),$$

$$s_1 = (t, 1 - t)$$
 for $0 < t < 1$

For each one we explore if it can be played in a NE

Case
$$s_1 = (1, 0)$$

it must be: $E(T) \ge E(B)$

Now we look at the expected payoff of player 2 when $s_1 = (1,0)$

$$E(M) = E(R) = 3 > E(L) = 2$$

Then a mixed strategy for player 2 must be of the type (0, m, 1 - m)

Given this possible player 2's strategy we compute the expected payoff of player 1

$$E(T) = 1 - m, E(B) = m$$

In equilibrium $s_1 = (1,0)$ only if $E(T) \ge E(B)$ is satisfied. This is true only if $m \le 0.5$

Therefore all strategy profiles (1,0) (0,m,1-m) with $m \le 0.5$ are Nash equilibria

Note

- 1. there are infinite equilibria (one for each possible value of $m \leq 0.5$)
- 2. This set of equilibria includes the NE in pure strategy {(1,0) (0,0,1)} (Player 1 plays T and Player 2 plays R)

Case
$$s_1 = (0, 1)$$

It must be: $E(B) \ge E(T)$

Now we look at the expected payoff of player 2 when $s_1 = (0, 1)$

$$E(L) = E(R) = 2 > E(M) = 1$$

Then a mixed strategy for player 2 must be of the type (l, 0, 1 - l)

Given this possible player 2's strategy we compute the expected payoff of player 1

$$E(T) = 1 + l, E(B) = 3l$$

In equilibrium $s_1 = (0, 1)$ only if $E(B) \ge E(T)$ is satisfied. This is true only if $l \ge 0.5$

Therefore all strategy profiles (0,1) (l,0,1-l) with $l \geq 0.5$ are Nash equilibria

Note

- 1. there are infinite equilibria
- 2. This set of equilibria includes the NE in pure strategy {(0, 1) (1, 0, 0)} (Player 1 plays B and Player 2 plays L)

Case
$$s_1 = (t, 1 - t)$$
 for $0 < t < 1$

		Player 2		
		L	М	R
Dlavor 1	Т	2, 2	0, 3	1, 3
Player 1	В	3. 2	1.1	0. 2

It must be: E(B) = E(T)

Now we look at the expected payoff of player 2 when $s_1 = (t, 1 - t)$ for 0 < t < 1

$$E(L) = 2$$

$$E(M) = 3t + (1-t) = 1 + 2t$$

$$E(R) = 3t + 2(1-t) = 2 + t$$

We have to explore all the possible classes of player 2's strategy, i.e. for each case we have to verify the equilibrium conditions given that player 1 strategy is of the type (t, 1 - t) for $t \in (0, 1)$.

All these cases are:

- (1,0,0),(0,1,0),(0,0,1)
- (l, 1 l, 0), (l, 0, 1 l), (0, m, 1 m)
- $(l, m \ 1 l m)$

Player 2's expected payoffs

$$E(L) = 2$$

$$E(M) = 1 + 2t$$

$$E(R) = 2 + t$$

		Player 2		
		L	М	R
Dlavor 1	Т	2, 2	0, 3	1, 3
Player 1	В	3, 2	1, 1	0, 2

Note that we can reduce the number of cases. For every $t \in (0, 1)$:

- the expected payoff from L is smaller than the expected payoff from R, (E(L) < E(R)), indeed 2 + t > 2 for t > 0.
- the expected payoff from M is smaller than the expected payoff from R, (E(M) < E(R)), indeed 2 + t > 1 + 2 for t < 1

Then we can eliminate all cases where either L or M or both are played by strictly positive probability.

Then it remains to explore only strategy (0, 0, 1).

In this case the player 1's expected payoffs are

$$E(T) = 1 > E(B) = 0$$
, Then condition $E(T) = E(B)$ does not hold

Final results:

There are two sets of Nash equilibria:

- (1, 0) (0, m, 1-m) with $m \le 0.5$
- (0, 1) (l, 0, 1 l) with $l \ge 0.5$

Note that each set contains an equilibrium in pure strategies, respectively, (1, 0) (0, 0, 1) and (0, 1) (1, 0, 0).

Ex 2)

Each of two firms has a job opening. The firms offer different wages: firm *i* offers wage w_i where $0.5 \cdot w_1 < w_2 < 2 \cdot w_1$.

There are two workers that want to apply for a job.

Each of whom can apply to only one firm. The workers simultaneously decide whether apply to firm 1 or to firm 2.

If only one worker applies to a given firm, that worker gets the job. If both workers apply to one firm, the firm hires one worker at random and the other worker remains unemployed.

- 1) Rapresent this game using the normal form
- 2) Solve for the Nash equilibria (pure and mixed strategies)

Normal form

		Worker 2	
		Firm 1	Firm 2
Worker 1	Firm 1	$0.5 \cdot w_1, 0.5 \cdot w_1$	w_1, w_2
	Firm 2	w_{2}, w_{1}	$0.5 \cdot w_2, 0.5 \cdot w_2$

 $0.5 \cdot w_1 < w_2 < 2 \cdot w_1.$

Notation

- p is the probability that Player 1 plays Firm 1
- q is the probability that Player 2 plays Firm 1
- the player 1's mixed strategy is $s_1 = (p, 1 p)$
- the player 2's mixed strategy is $s_2 = (q, 1 q)$

		Worker 2		
		Firm 1	Firm 2	
Worker 1	Firm 1	$0.5 \cdot w_1, 0.5 \cdot w_1$	w_1, w_2	
	Firm 2	w_{2}, w_{1}	$0.5 \cdot w_2, 0.5 \cdot w_2$	

We compute the expected values for each single action given a strategy of the opponent Player 1

$$E_1(Firm1|s_2) = q\frac{w_1}{2} + (1-q)w_1 = w_1(1-\frac{q}{2})$$

$$E_1(Firm2|s_2) = qw_2 + (1-q)\frac{w_2}{2} = w_2(\frac{1+q}{2})$$

Player 2

$$E_2(Firm1|s_1) = p\frac{w_1}{2} + (1-p)w_1 = w_1(1-\frac{p}{2})$$

$$E_2(Firm2|s_1) = pw_2 + (1-p)\frac{w_2}{2} = w_2(\frac{1+p}{2})$$

Suppose $s_1 = (1, 0)$, p = 1

Player 2's expected profits are:

$$E_2(Firm1|s_1) = \frac{w1}{2}$$

$$E_2(Firm2|s_1) = w_2$$

Given that $w_2 > \frac{w_1}{2}$ the best response for player 2 is $s_2 = (0, 1)$

Given $s_2 = (0, 1)$ (then q = 0) the expected payoff of player 1 are:

$$E_1(Firm1|s_2) = w_1$$

$$E_1(Firm2|s_2) = \frac{w_2}{2}$$

Given that $w_1 > \frac{w_2}{2}$ the best response for player 1 is $s_1 = (1, 0)$

Then $s_1 = (1,0) s_2 = (0,1)$ is a Nash equilibrium

$$E_{1}(Firm1|s2) = w_{1}(1 - \frac{q}{2})$$

$$E_{1}(Firm2|s2) = w_{2}(\frac{1+q}{2})$$

$$E_{2}(Firm1|s1) = w_{1}(1 - \frac{p}{2})$$

$$E_{2}(Firm2|s1) = w_{2}(\frac{1+p}{2})$$

Suppose
$$s_1 = (0, 1) p = 0$$

Player 2's expected profits are:

$$E_2(Firm1|s_1) = w_1$$

 $E_2(Firm2|s_1) = 0.5w_2$

Given that
$$w_1 > \frac{w^2}{2}$$
 the best response for player 2 is $s_2 = (1,0)$

Given $s_2 = (1, 0)$ (q = 1) the expected payoff of player 1 are:

$$E_1(Firm1|s_2) = 0.5w_1$$

$$E_1(Firm2|s_2) = w_2$$

Given that
$$w_2 > \frac{w_1}{2}$$
 the best response for player 1 is $s_1 = (0,1)$
Then $s_1 = (0,1)$ $s_2 = (1,0)$ is a Nash equilibrium

$$E_{1}(Firm1|s2) = w_{1}(1 - \frac{q}{2})$$

$$E_{1}(Firm2|s2) = w_{2}(\frac{1+q}{2})$$

$$E_{2}(Firm1|s1) = w_{1}(1 - \frac{p}{2})$$

$$E_{2}(Firm2|s1) = w_{2}(\frac{1+p}{2})$$

Suppose $s_1 = (p, 1 - p)$ for p ∈ (0, 1)

In this case must be that $E_1(Firm1|s_2) = E_1(Firm2|s_2)$ i.e.

$$w_1\left(1-\frac{q}{2}\right) = w_2\left(\frac{1+q}{2}\right)$$

This is true only if
$$q = \frac{2w_1 - w_2}{w_1 + w_2}$$
, i.e. $s_2 = \left(\frac{2w_1 - w_2}{w_1 + w_2}, \frac{2w_2 - w_1}{w_1 + w_2}\right)$

But for player 2, in order to play such a strategy, the condition

$$E_2(Firm1|s_1) = E_2(Firm2|s_1)$$

must be satisfied, i.e.:

$$w_1\left(1-\frac{p}{2}\right) = w_2\left(\frac{1+p}{2}\right)$$

This is true only if
$$p = \frac{2w_1 - w_2}{w_1 + w_2}$$
, i.e. $s_1 = \left(\frac{2w_1 - w_2}{w_1 + w_2}, \frac{2w_2 - w_1}{w_1 + w_2}\right)$

Then the strategy profile
$$s_1 = \left(\frac{2w_1 - w_2}{w_1 + w_2}, \frac{2w_2 - w_1}{w_1 + w_2}\right)$$
 $s_2 = \left(\frac{2w_1 - w_2}{w_1 + w_2}, \frac{2w_2 - w_1}{w_1 + w_2}\right)$ is a Nash equilibrium.

$$E_{1}(Firm1|s2) = w_{1}(1 - \frac{q}{2})$$

$$E_{1}(Firm2|s2) = w_{2}(\frac{1+q}{2})$$

$$E_{2}(Firm1|s1) = w_{1}(1 - \frac{p}{2})$$

$$E_{2}(Firm2|s1) = w_{2}(\frac{1+p}{2})$$