Industrializzazione e regolamentazione

di prodotti biotecnologici

Obiettivi formativi

Prospettiva industriale relativa ai requisiti di sviluppo e produzione di prodotti biotecnologici per la cura e la prevenzione di malattie, sia dal punto di vista tecnico che normativo.

Docente

PhD Gabriele Meli

*** FOCUS**

Industrializzazione di processo

Orario lezioni

Modalità di esame

Martedì e Mercoledì 17-19 Teams

Contatto preferenziale

gabriele.meli78@gmail.com

Questo corso contiene informazioni a scopo didattico, non correlate in alcun modo a dati rilevanti per Bracco Imaging S.p.A. e fa riferimento alla formazione personale ed all'esperienza professionale secondo il mio punto di vista.

GABRIELE MELI

- Descrivere una serie di esperimenti che vengono condotti allo scopo di mettere a punto un modello matematico/ statistico (ad es. di regressione);
- Ottimizzazione di prodotti o di processi: si applica per determinare in maniera efficiente l'insieme di condizioni necessarie per ottenere un prodotto o un processo con caratteristiche desiderabili, spesso ottimali.
- Dal momento che la modellizzazione è uno degli strumenti principali per la fase di ottimizzazione, può essere applicato anche alla messa a punto di modelli ottimali.
- Si vuole determinare un insieme di condizioni ottimali, ovvero i valori numerici di una serie di fattori definiti anche parametri operativi.

- I fattori sono variabili che vengono cambiate in maniera controllata per studiare il loro effetto sul processo o sul prodotto e che hanno (possono avere) influenza sulle caratteristiche studiate;
- Le caratteristiche del prodotto o del processo che si vuole ottimizzare vengono chiamate risposte e possono essere definite come variabili dipendenti che descrivono la performance;
- Tipicamente, il DoE offre un approccio multivariato;
- Esistono 2 tipi di variabili: indipendenti (fattori, Xi) e dipendenti (risposte, Yi);
- Il modello che collega le risposte all'effetto dei fattori è chiamato funzione di risposta o, sulla base del suo carattere multivariato, superficie di risposta.

- Questi modelli sono ottenuti a partire dagli esperimenti e dai loro risultati;
- Il termine "disegno" indica che questi esperimenti sono scelti ed eseguiti in maniera accuratamente pianificata e ponderata;
- Il DoE è utilizzato per ottenere un prodotto o un processo con caratteristiche desiderabili e questo significa che si vuole:
 - Comprendere l'effetto dei fattori e/o;
 - Modellare la relazione tra y e x effettuando il minimo numero di esperimenti possibile.

- Si inizia determinando quali possibili fattori possono influenzare la risposta e fino a che punto.
- Il passo successivo è spesso quello di ottenere un modello che descriva in maniera quantitativa l'effetto dei fattori sulla risposta.
- Infine, sulla base del modello si cerca di trovare le condizioni ottimali, ovvero i valori dei fattori che risultano nelle migliori caratteristiche del prodotto, processo o procedura studiati.
- I valori ottimali possono essere i più alti o i più bassi possibile, ma ci possono essere casi in cui uno sia interessato a determinare una regione in cui i risultati siano sufficientemente buoni.

- Si inizia determinando quali possibili fattori possono influenzare la risposta e fino a che punto.
- Il passo successivo è spesso quello di ottenere un modello che descriva in maniera quantitativa l'effetto dei fattori sulla risposta.
- Infine, sulla base del modello si cerca di trovare le condizioni ottimali, ovvero i valori dei fattori che risultano nelle migliori caratteristiche del prodotto, processo o procedura studiati.
- I valori ottimali possono essere i più alti o i più bassi possibile, ma ci possono essere casi in cui uno sia interessato a determinare una regione in cui i risultati siano sufficientemente buoni.

- Nel DoE i fattori possono essere qualitativi e quantitativi.
 - Qualitativi: tipo di catalizzatore; solvente; operatore; packaging;
 - Quantitativi: pH, temperatura, umidità, pressione, agitazione, concentrazione;
- I differenti valori a cui vengono controllati i fattori sono chiamati livelli.
- La selezione dei fattori è in genere il primo step nella definizione di un disegno sperimentale: se non si conosce il processo non si sa quali fattori abbiano un effetto sulla risposta;
- In questo caso, si parte annotando tutti i possibili fattori che potrebbero avere un qualche effetto sulla risposta e si fa uno screening
- Una volta scelti i fattori è necessario fissare i limiti del dominio sperimentale, ovvero i livelli estremi a cui i fattori verranno studiati.

- Molto spesso si sceglie un dominio simmetrico, anche se in alcuni casi questo può non essere possibile o addirittura desiderabile.
- Un passaggio fondamentale nell'organizzazione del DoE è la scelta delle risposte da studiare;
- Normalmente si vuole studiare più di una risposta contemporaneamente e può succedere che le condizioni ottimali per una siano in conflitto con quelle per le altre ed in questo caso è necessario mediare.

- Nella sua accezione più classica, ottimizzazione significa trovare il valore per ciascun fattore studiato che corrisponda alla risposta più alta (es. massima resa di un prodotto desiderato) o più bassa (minima resa di una impurezza).
- Non sempre, tuttavia, questa è la scelta migliore: può capitare che il massimo della superficie di risposta si trovi in una zona particolarmente ripida, per cui piccole variazioni dei fattori possono provocare brusche diminuzioni della y; in questo caso, può essere opportuno scegliere un valore più basso di risposta, ma in una regione in cui la superficie sia più piatta (maggiore robustezza).
- Esistono disegni che ottimizzano allo stesso tempo la risposta e la robustezza (Taguchi).

Organizzazione del DoE

Ci sono due tipi di strategie multivariate per l'ottimizzazione:

- 1. Sequenziale
- 2. Simultanee
- Le strategie simultanee consistono nell'effettuare un numero relativamente alto di esperimenti secondo uno schema prestabilito (disegni fattoriali). In queste strategie, i dati sperimentali sono utilizzati per mettere a punto dei modelli e, a loro volta, questi modelli per stimare le condizioni sperimentali ottimali (corrispondenti alla massima o minima risposta).
- Una strategia sequenziale consiste nel condurre pochi esperimenti alla volta e utilizzare i risultati di questi esperimenti per decidere quali esperimenti fare in seguito. Il più famoso è il metodo <u>Simplex</u> in cui si parte da 3 esperimenti organizzati a triangolo e di volta in volta ci si muove in direzione opposta all'esperimento che ha dato i risultati peggiori.

Organizzazione del DoE

- In genere, i modelli che si utilizzano sono di secondo ordine e contengono termini quadratici e interazioni binarie;
- In principio si potrebbero utilizzare anche polinomi di ordine superiore, ma nella pratica questo è raramente necessario per descrivere un prodotto o un processo;
- Un esempio di modelli nel caso di due variabili potrebbe essere:

$$y = b_0 + b_1 x + b_2 x_2 + b_{12} x_1 x_2$$

- Un termine noto b₀
- Termini di primo e secondo ordine per x_1 e x_2
- Un termine di interazione x_1x_2

Spesso si lavora con fattori codificati, ovvero scalati affinché la loro variabilità sia compresa, ad esempio, tra -1 e +1; in questo caso, lo zero coincide con il valore medio dell'intervallo; b_0 quindi rappresenta il valore della risposta in corrispondenza del centro del campo (0).

Modelli di regressione

L'utilizzo di metodi di regressione per il calcolo dei coefficienti permette di:

- Verificare se tutti i termini del modello sono necessari;
- Validare il modello;
- Stimare il valore dei coefficienti del modello in maniera più precisa possibile;
- Cercare di ottenere il più piccolo errore di previsione possibile attorno al valore ottimale;

In genere si usa la regressione lineare multipla (MLR) ma si può usare anche la regressione PLS che consiste in una nuova tecnica che generalizza e combina alcune caratteristiche della regressione multipla e dell'analisi delle componenti principali (PCA).

<u>Disegni simultanei (fattoriali)</u>

Si possono distinguere diverse classi di disegni sperimentali

- 1. Disegni in cui l'enfasi viene posta sulla possibilità di determinare quali fattori influenzino la risposta e di stimare l'entità di questa influenza;
- 2. Disegni in cui l'enfasi si pone sulla fase di modellamento;
- 3. Disegni di miscele;
- 4. Disegni in cui non sia possibile controllare esattamente i livelli dei fattori in studio. In questo caso, si cercherà di selezionare il migliore sottoset di esperimenti tra quelli possibili, attraverso un disegno D-ottimale.

<u>Disegni simultanei (fattoriali)</u>

- Il DoE utilizzato principalmente a questo scopo (caso 1) è il disegno fattoriale completo a due livelli;
- In questo tipo di disegni, ogni fattore viene controllato su due livelli e gli esperimenti sono condotti sfruttando tutte le possibili combinazioni di questi due livelli
- Questi DoE permettono di valutare l'effetto dei fattori e delle interazioni;
- Il è un modello di primo ordine che includa le interazioni binarie: $y = b_0 + b_1$ xmodello ipotizzato $+b_2 x_2 + b_{12} x_1 x_2$
- I due livelli rappresentano i confini del dominio sperimentale.

<u>Disegni Fattoriali completi e frazionari</u>

- Il numero degli esperimenti sarà legato a tutte le combinazioni possibili dei fattori presi in considerazione;
- Quindi considerando 2 livelli (+ e -) tale numero sarà uguale a 2ⁿ (n= n° fattori);
 Fattori: 1) temperatura 2) concentrazione 3) catalizzatore
 2³= 8 esperimenti da condurre
- Quando il numero dei fattori aumenta, aumenta allo stesso tempo il numero di esperimenti da fare: 2¹⁰ =1024 esperimenti per 10 fattori;
- In questi casi, si svolge sono una parte degli esperimenti e il disegno che si ricava si chiama fattoriale frazionato;
- Il fatto di eseguire solo una parte degli esperimenti fa sì che si perdano informazioni su alcune o tutte le interazioni: questo accade quando lo scopo principale è identificare quali fattori abbiano effetto sulla risposta.

- I fattori sono variabili che vengono cambiate in maniera controllata per studiare il loro effetto sul processo o sul prodotto e che hanno (possono avere) influenza sulle caratteristiche studiate;
- La selezione dei fattori è in genere il primo step nella definizione di un disegno sperimentale: se non si conosce il processo non si sa quali fattori abbiano un effetto sulla risposta;
- Nel DoE i fattori possono essere qualitativi e quantitativi.
 - Qualitativi: tipo di catalizzatore; solvente; operatore; packaging;
 - Quantitativi: pH, temperatura, umidità, pressione, agitazione, concentrazione;
- I differenti valori a cui vengono controllati i fattori sono chiamati livelli.

- Una volta scelti i fattori è necessario fissare i limiti del dominio sperimentale, ovvero i livelli estremi a cui i fattori verranno studiati;
- Molto spesso si sceglie un dominio simmetrico;
- Normalmente si vuole studiare più di una risposta contemporaneamente e può succedere che le condizioni ottimali per una siano in conflitto con quelle per le altre ed in questo caso è necessario mediare.

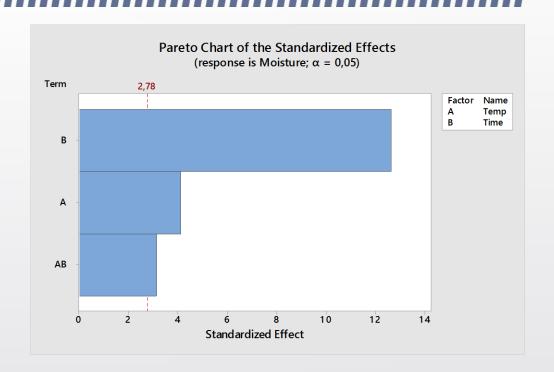
- La selezione dei fattori è in genere il primo step nella definizione di un disegno sperimentale;
- In questo caso, si parte annotando tutti i possibili fattori che potrebbero avere un qualche effetto sulla risposta e si fa uno screening;
- Per far ciò, si utilizza la massima frazione possibile di un disegno fattoriale (disegno saturato) o i corrispondenti disegni di Plackett-Burman che permettono di studiare sino a 48 fattori;
- Questi DoE sono utilizzati anche per determinare l'effetto collettivo di un insieme di fattori sulla varianza di una procedura, senza analizzare in dettaglio i contributi individuali, ad esempio per la verifica della robustezza di un metodo.

- I disegni completi a due livelli sono utilizzati per determinare se alcuni fattori e/o le interazioni tra due o più fattori abbiano effetto sulla risposta, e per stimare l'entità di questo effetto
- Si richiede che gli esperimenti vengano condotti a tutte le possibili combinazioni dei due livelli dei k fattori studiati; il numero di questi esperimenti è 2^k ;
- I livelli possono essere rappresentati in diverse maniere ma la modalità più utilizzata è quella di codificarli come –1 (livello più basso) ed 1 (livello più alto), o semplicemente come – e +;
- La stessa notazione si può applicare ai fattori qualitativi, solo che in questo caso –1 non è più piccolo di +1 ma solo differente.

Esempio1: cottura di una torta

Fattori:

- X1= Temp; Livelli= 325 °C (-) 375 °C (+)
- X2= Time; Livelli= 30 min (-) 50 min (+)

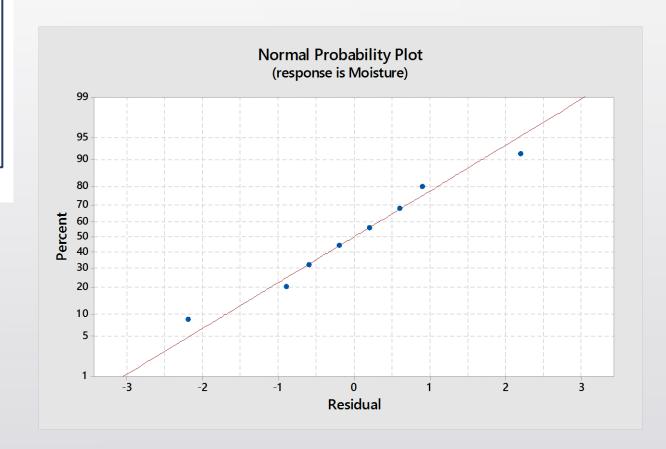

Risposta

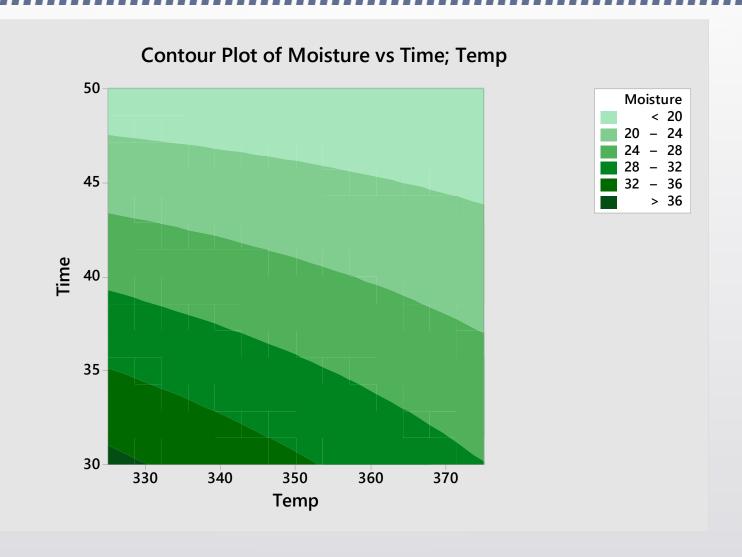
• Y1= Moisture

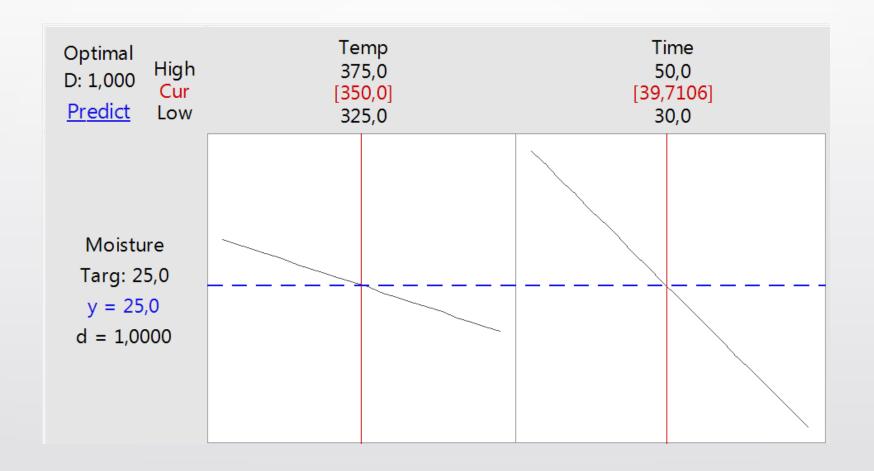
Design Summary

Factors: 2 Base Design: 2, 4
Runs: 8 Replicates: 2
Blocks: 1 Center pts (total): 0

StdOrder	RunOrder	CenterPt	Blocks	Temp	Time	Moisture
1	1	1	1	325	30	34,8
2	2	1	1	375	30	28,7
6	3	1	1	375	30	27,5
5	4	1	1	325	30	39,2
8	5	1	1	375	50	16,6
7	6	1	1	325	50	18,5
3	7	1	1	325	50	16,7
4	8	1	1	375	50	16,2


- Tutti i fattori hanno impatto sulla risposta;
- L'interazione ha impatto sulla risposta.


_				
Λnal	VCIC	A+ \/	OFF OF	nco
Anal	V 212	OI V	alla	1100
	,			


Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	3	564,25	188,085	62,18	0,001
Linear	2	534,61	267,305	88,37	0,000
Temp	1	51,00	51,005	16,86	0,015
Time	1	483,60	483,605	159,87	0,000
2-Way Interactions	1	29,65	29,645	9,80	0,035
Temp*Time	1	29,65	29,645	9,80	0,035
Error	4	12,10	3,025		
Total	7	576,35			

Model Summary

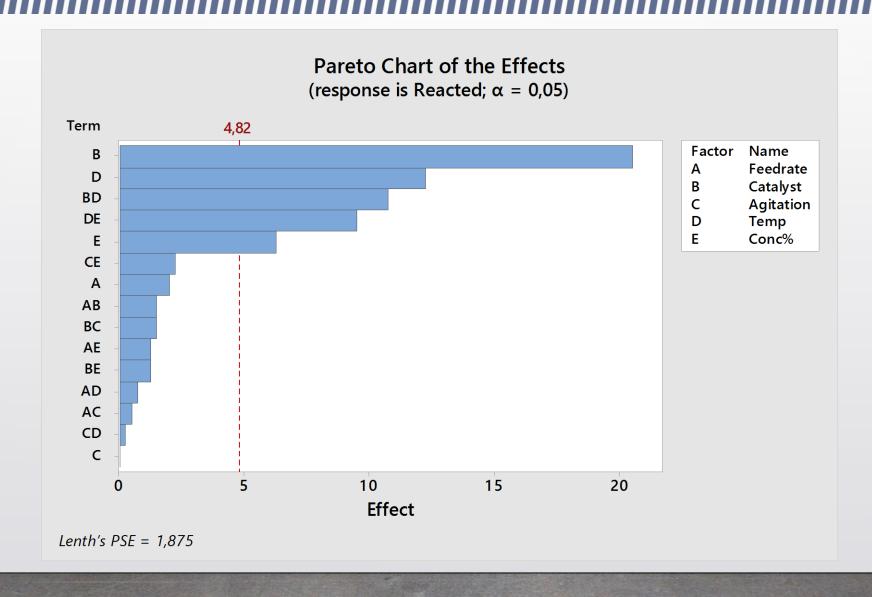
S	R-sq	R-sq(adj)	R-sq(pred)
1,73925	97,90%	96,33%	91,60%

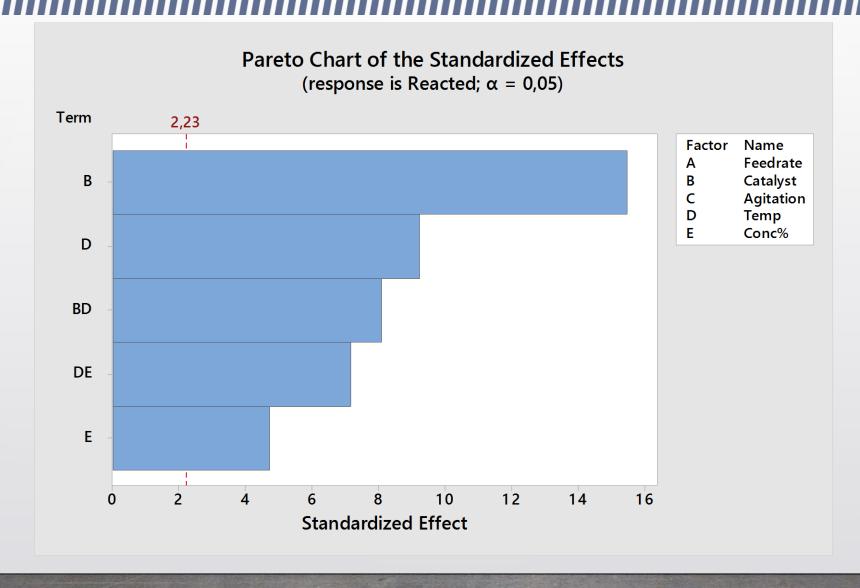
Esempio3: reazione catalitica

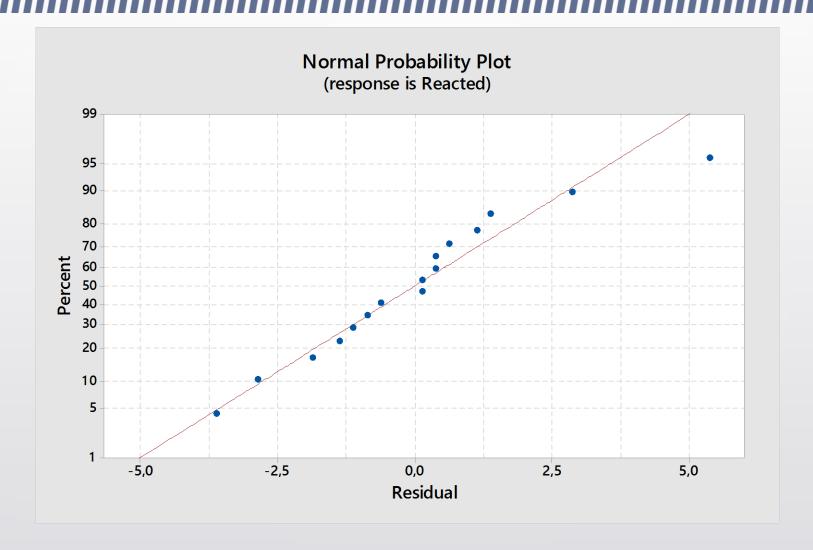
Fattori:

- X1= Feedrate (ml/min);
- X2= catalyst (A; B);
- X3= Agitation (rpm)
- X4= temp (°C)
- X5= conc (%)

Risposta


Y1= Reacted

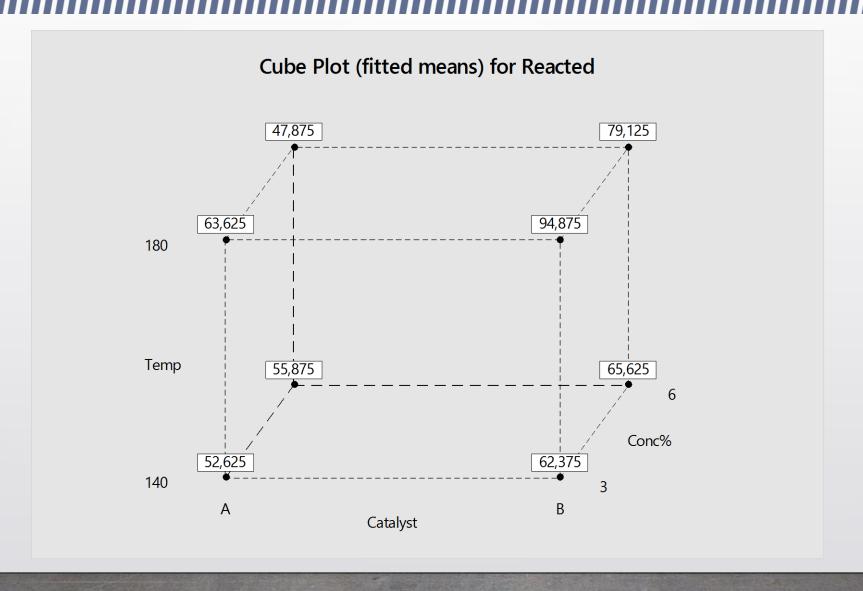

Design Summary


5 Base Design: 5, 16 Resolution: Factors: V Runs: 16 Replicates: 1 Fraction: 1/2

1 Center pts (total): Blocks:

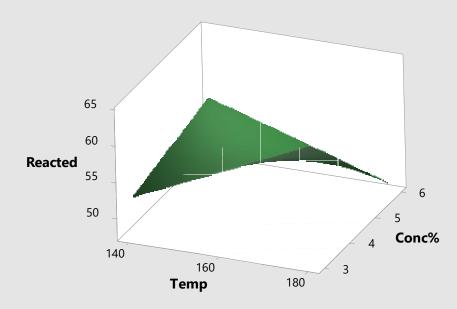
StdOrder	RunOrder	CenterPt	Blocks	Feedrate	Catalyst	Agitation	Temp	Conc%	Reacted
5	1	1	1	10	A	120	140	3	53
13	2	1	1	10	Α	120	180	6	49
1	3	1	1	10	Α	100	140	6	56
15	4	1	1	10	В	120	180	3	95
4	5	1	1	15	В	100	140	6	65
14	6	1	1	15	Α	120	180	3	60
6	7	1	1	15	Α	120	140	6	55
11	8	1	1	10	В	100	180	6	78
9	9	1	1	10	Α	100	180	3	69
8	10	1	1	15	В	120	140	3	61
12	11	1	1	15	В	100	180	3	93
16	12	1	1	15	В	120	180	6	82
3	13	1	1	10	В	100	140	3	63
7	14	1	1	10	В	120	140	6	67
10	15	1	1	15	Α	100	180	6	45
2	16	1	1	15	Α	100	140	3	53

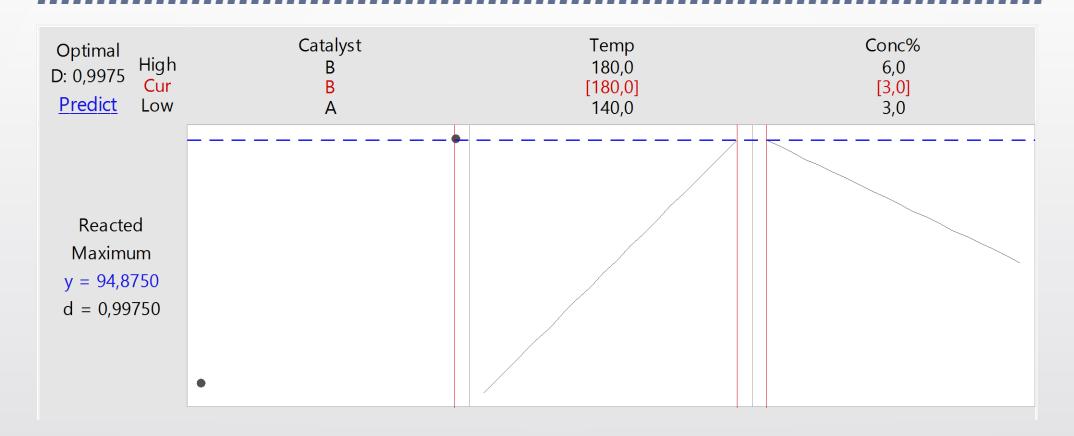
Analysis of Variance


Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	5	3260,75	652,15	92,83	0,000
Linear	3	2437,50	812,50	115,66	0,000
Catalyst	1	1681,00	1681,00	239,29	0,000
Temp	1	600,25	600,25	85,44	0,000
Conc%	1	156,25	156,25	22,24	0,001
2-Way Interactions	2	823,25	411,63	58,59	0,000
Catalyst*Temp	1	462,25	462,25	65,80	0,000
Temp*Conc%	1	361,00	361,00	51,39	0,000
Error	10	70,25	7,02		
Total	15	3331,00			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
2,65047	97,89%	96,84%	94,60%


Fits and Diagnostics for Unusual Observations


				Std	
Obs	Reacted	Fit	Resid	Resid	
9	69,00	63,63	5,38	2,57	R
R Lai	rge residual				

Surface Plot of Reacted vs Conc%; Temp

Hold Values CatalystA

