
Lab1_Sampling_TotallySolved

May 3, 2020

1 Lab1: Sampling from random variables

This is an exercise notebook on how to generate random numbers from a random variable given
either its density or its cumulative distribution function (CDF).

We have seen - Direct methods - Acceptance-rejection method
Remember to revise the lecture on sampling before attempting to solve it!

1.1 Pseudo-random number generation

1.1.1 1. Sampling from a uniform distribution

1.1. Linear Congruential Generator (LCG) Define a function sample_from_uniform() that
takes N as input and returns a sequence x1, . . . , xN , where xi ∼ U (0, 1) ∀1 ≤ i ≤ N. Use the
LCG algorithm with a proper choice for parameters a, c and m, which are going to be passed as
input to the function.

Start with a seed z0 ∈ N and define the sequence of integers zi = (a · zi−1 + c)(mod m). Then
ui =

zi
m ∈ [0, 1).

Remember to choose m very large and pick a and c in order to generate a full-period sequence.

In [1]: import numpy as np
import matplotlib.pyplot as plt
import time

In [2]: def sample_from_uniform(N, seed = None, a = 16807, c = 3, m = 2**31-1):

x = np.empty(N)
seed = int(time.time())

x_tmp = seed
for i in range(N):

x[i] = (a*x_tmp+c) % m
x_tmp = x[i]

return x/m

In [3]: N = 100000

U = sample_from_uniform(N)

1

In [4]: kwargs = dict(histtype='stepfilled', alpha=0.8, bins=50)

plt.hist(U, **kwargs);

1.2. χ2-test Once you have generated the N random variates x1, . . . , xN , use the χ2-test to find out
whether H0: "x1, . . . , xN ∼ U (0, 1) and indipendent" can be accepted.

In [5]: from scipy.stats import chisquare
n_bins= 10
n_obs_per_bin, bin_edges = np.histogram(U, bins = n_bins)

In [6]: sign_level = 0.05
chisq, p = chisquare(n_obs_per_bin,(N/n_bins)*np.ones(n_bins))

print(chisq, p)
if p > sign_level:

print("accept the H0")
else:

print("reject H0")

20.729400000000002 0.01390765105417472
reject H0

1.3. Given a interval I = [a, b], how can you sample from U (a, b)?

2

In [7]: a = 1
b = 10

x = a+sample_from_uniform(10)*(b-a)
print(x)

[3.36727406 7.77516699 3.23167358 5.73781609 6.47503428 3.90115912
7.78134907 8.13376923 9.25942595 1.17196332]

1.2 2. Inversion methods

The CDF of a distribution maps a number in the domain to a probability between 0 and 1. Inver-
sion methods apply to random variables whose CDF is invertible.

Intuition: Given a sample x from a random variable X, define u := FX(x). Sample u from
U (0, 1) and obtain a a sample from X by computing as F−1

X (u) = x.

1.2.1 2.1 Exponential distribution:

Define a function sample_from_exp(), which takes as inputs the parameter lambda and the length
of the ouput sequence N. The function should sample from the r.v. X ∼ Exp(λ) using the inversion
method. Recall that u = FX(x) = 1 − exp−λx.

In [8]: def sample_from_exp(param, N, seed = 7):

U = sample_from_uniform(N, seed)
X = -np.log(U)/param

return X

In [9]: l1 = 0.5
l2 = 1
l3 = 2

x1 = sample_from_exp(l1,N = 100000)
x2 = sample_from_exp(l2,N = 100000)
x3 = sample_from_exp(l3,N = 100000)

kwargs = dict(alpha = 0.5, bins = 100)

plt.hist(x1, **kwargs);
plt.hist(x2, **kwargs);
plt.hist(x3, **kwargs);
plt.legend(["0.5", "1", "2"])

Out[9]: <matplotlib.legend.Legend at 0x7f009d711d10>

3

2.1.1. Kolmogorov–Smirnov test KS is one of the most useful and general nonparametric meth-
ods for measuring the goodness of fit of a distribution. The Kolmogorov–Smirnov statistic quan-
tifies a distance between the empirical distribution function of the sample and the cumulative
distribution function of the reference distribution. The null distribution of this statistic is calcu-
lated under the null hypothesis that the sample is drawn from the reference distribution.

Build a function ks_test() that assess wheter or not your sample represent a good fit for the
desired distribution. Use the scipy.stats.kstest library.

In [10]: import scipy.stats
from scipy.stats import kstest

'''
alternative : {two-sided, less,greater}
OUTPUTS:
-KS test statistic (D = it compares the observed versus the expected cumulative relative frequencies: maximal absolute difference between these curves)
-p-value: One-tailed or two-tailed p-value
'''

D, p = kstest(x2, 'expon', args= (0,1 / l2), alternative = 'less')
print(D,p)
if p < sign-level, we don't believe that our variable follows a exp distribution in our population
if p > sign_level:

print("accept the H0")
else:

print("reject H0")

4

0.002631918413518841 0.2497855385736959
accept the H0

2.1.2. Generate a sample from a r.v. X such that its CDF is FX(x) = 1 − exp(−
√

x).

In [11]: inv_F = lambda U: (np.log(U))**2

def sample_from_generic_F(inv_F, N, seed = 7):

U = sample_from_uniform(N, seed)
X = inv_F(U)

return X

sample_from_generic_F(inv_F, 10)

Out[11]: array([1.78344197e+00, 1.51094058e-02, 3.17583528e+01, 2.26152560e-04,
3.83476414e+00, 3.76704753e-01, 4.94991131e-02, 5.65239324e-01,
2.66071041e-01, 2.23741721e-03])

Remark: Computing the CDF for a discrete distribution is in general not too difficult: we
simply add up the individual probabilities for the various points of the distribution. For a con-
tinuous distribution, however, we need to integrate the probability density function (PDF) of the
distribution, which is impossible to do analytically for most distributions, making this method
computationally inefficient for many distributions; however, it is a useful method for building
more generally applicable samplers such as those based on rejection sampling.

1.2.2 2.3. Sampling from discrete random variable

Implement the algorithm sample_discrete_rv() which extract random samples xi from a finite
vector p(x) = [p(x1), . . . , p(xn)] assuming ∑i p(xi) = 1.

Remember that sorting the values of p(x) may make the algorithm more efficient. What about
the sorting overhead?

In [12]: import random

def sample_discrete(N,p):
n = p.shape[0]
S = np.cumsum(p)
U = sample_from_uniform(N, seed)

sampled_indexes = np.empty(N)
for j in range(N):

for i in range(n):
if S[i] > U[j]:

sampled_indexes[j] = i
break

return sampled_indexes

5

1.2.3 2.3. Sampling from a truncated distrubution

Generate a sample from a normal distribution truncated to [a, b]. For a distribution F, if you
generate uniform random variates on the interval [F(a), F(b)] and then apply the inverse CDF, the
resulting values follow the F distribution.

In SAS the QUANTILE function , but for many distributions it has to numerically solve for the
root of the equation F(x) = u.

Hint: in scipy the function norm.ppf(p) implements the inverse CDF function, i.e. it solves
numerically the following root finding problem: find x such that F(x) = p, where F is the CDF of
a standard gaussian distribution

In [13]: from scipy.stats import norm

def sample_truncated_norm(N, a, b):
Fa = norm.cdf(a)
Fb = norm.cdf(b)
P = Fa + (Fb-Fa)*sample_from_uniform(N)
X = norm.ppf(P)

return X

a, b = -1, 3
N = 100000
X = sample_truncated_norm(N, a, b)
plt.hist(X, **kwargs);

6

1.3 3. Acceptance-rejection method

Rejection sampling is a basic technique to generate observations from a distribution. The method
works for any distribution in Rm with a density. It’s used where direct methods fail.

Define a funtion rejection_sampling() with takes as input density f(x) of the target distri-
bution. In the basic implementation a uniform g(x) is sufficient.

Sketch:

1. generate y with density r = g(x)
c , where g(x) is a function majorizing the density f (x) and

c =
∫ ∞
−∞ g(x)dx;

2. generate u ∈ U (0, 1);
3. if u ≤ f (y)

g(y) return x = y, otherwise reject and go to step 1.

In [14]: def rejection_sampling(pdf,n=1000,xmin=0,xmax=1):

Calculates the minimal and maximum values of the PDF in the desired
interval. The rejection method needs these values in order to work
properly.

x = np.linspace(xmin,xmax,1000)
y = pdf(x)
pmin = 0.
pmax = y.max()

Counters
naccept = 0
ntrial = 0

Keeps generating numbers until we achieve the desired n
ran = [] # output list of random numbers
while naccept<n:

x = np.random.uniform(xmin,xmax) # x'
y = np.random.uniform(pmin,pmax) # y'

if y<pdf(x):
ran.append(x)
naccept=naccept+1

ntrial=ntrial+1

ran=np.asarray(ran)

return ran,ntrial, pmax

1.3.1 3.1. Beta distribution:

Consider X ∼ Beta(α, β). Define a function sample_from_beta() which takes as input the param-
eters alpha, beta and a integer N and returns a sample of length N. As before, check the fitness
with the KS test.

7

In [15]: a, b = 2 , 5
beta = lambda x: scipy.stats.beta.pdf(x, a, b)

ran, ntrials,pmax = rejection_sampling(beta, n = 10000)

In [16]: xx = np.linspace(0,1,1000)
plt.hist(ran, density = True, bins = 50)
plt.plot(xx, beta(xx))
plt.hlines(pmax, xmin = 0, xmax = 1)
plt.show()

print(ntrials)

24418

3.2. Improve computational efficiency: In order to reduce the overall number of trials required
to obtain a sample of size N, find a more refined function that majorize the Beta distribution of
exercise 3.1.

Optional: implement you refined solution and show the improvement in time w.r.t. N: i.e. time
to the solution for increasing values of N for the simple case and the refined one, both in terms of
reduced rejection rate and overall sampling time.

In [17]: def improved_rejection_sampling(pdf,n=1000, k = 10, xmin=0,xmax=1):
edges = np.linspace(xmin,xmax,k+1)
naccept = 0

8

ntrial = 0
prob = []
pmin = 0.
for i in range(k):

x = np.linspace(edges[i],edges[i+1],100)
y = pdf(x)
pmax = y.max()

prob.append(pmax)
S = np.cumsum(prob)
Keeps generating numbers until we achieve the desired n
ran = [] # output list of random numbers

while naccept<n:
u = np.random.uniform(xmin,xmax)
for i in range(k):

if S[i] > u:
sampled_index = i
break

y = np.random.uniform(pmin,prob[sampled_index]) # y'

if y<pdf(u):
ran.append(u)
naccept=naccept+1

ntrial=ntrial+1

ran=np.asarray(ran)

return ran,ntrial, prob

In [18]: k = 7
ran, ntrials,prob = improved_rejection_sampling(beta, k = k, n = 10000)
print(ntrials)

23169

In [19]: edges = np.linspace(0,1,k+1)
plt.hist(ran, density = True, bins = 50)
plt.plot(xx, beta(xx))
for i in range(k):

plt.hlines(prob[i], xmin = edges[i], xmax = edges[i+1])
plt.show()

9

In []:

In []:

10

	Lab1: Sampling from random variables
	Pseudo-random number generation
	1. Sampling from a uniform distribution

	2. Inversion methods
	2.1 Exponential distribution:
	2.3. Sampling from discrete random variable
	2.3. Sampling from a truncated distrubution

	3. Acceptance-rejection method
	3.1. Beta distribution:

