Esercizio 1

Determinare il calore trasferito per conduzione attraverso una parete di $10m^2$ in mattoni dello spessore di 30cm sottoposta ad una differenza di temperatura di $35^{\circ}C$; assumendo per i mattoni una conducibilità λ =0,465W/m°K.

[542,5 W]

Esercizio 2

Determina il calore trasferito per conduzione attraverso una parete di acciaio con conducibilità termica λ =45W/m°K nelle stesse condizioni dell'esercizio precedente.

[52,5 kW]

Esercizio 3

La parete di un forno è composta dai seguenti strati strato

strato 1: λ₁=1,39 W/m°K spessore d₁=30cm

strato 2: λ₂=0,21 W/m°K spessore d₂=10cm

strato 3: λ_3 =0,70 W/m°K spessore d₃=20cm .

Determinare il calore disperso per ogni m² di parete verso l'esterno, ipotizzando una temperatura per la parete interna di 900°C ed esterna di 60°C.

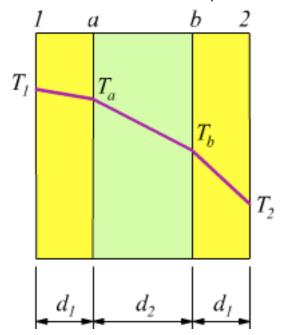
[860 W/m²]

Esercizio 4

Un tubo di acciaio con diametro interno d_i =25,4 mm e spessore sp=4,191 mm viene usato in uno scambiatore di calore. La temperatura della parete interna è di 240°C quella della parete esterna è di 80°C. Se la conducibilità è λ =52W/m°K determinare il calore trasferito per una lunghezza di 5m.

[916,5 kW]

Esercizio 5


La differenza di temperatura alle estremità di una parete piana di 1 m², spessore 10cm e conducibilità λ_1 =5,8 W/m°K è di 50°C. Determinare lo spessore di una parete di conducibilità λ_2 =0,34 W/m°K che determina lo stesso trasferimento di calore allo stesso intervallo di temperatura.

[0,58 cm]

Esercizio 6

Una parete piana è composta dai seguenti strati :

- 20 cm di laterizi λ₁=0,25 W/m°K
- 10 cm di vermiculite espansa λ₂=0,07 W/m°K
- 10 cm laterizi λ₁=0,25 W/m°K

Le temperature estreme sono T₁=25°C e T₂=0°C. Determinare le temperature estreme intermedie ai vari strati.

 $[T_a=17.4 \, ^{\circ}C \, I \, T_b=3.8 \, ^{\circ}C]$