
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

II Semestre 2019

Lecture 3: Concurrent Modeling

[Many Slides due to J. Deshmukh, Toyota]

Functional Components

2

1. Classical model of computation: Functional or Transformational
Programs

� Start from a given input,

� Produce a certain output and then terminate

� Desired functionality can be described by a mathematical function

� Emphasis is on data computation

Reac1ve Components

3

2. Reac7ve Programs:

� It maintains and internal state

� Con?nuously interact with the environment at a rate decided by
the environment

� Emphasis is on system-environment interac?on; e.g. airline
autopilot, mail-servers, etc.

Synchronous Models

4

u All components execute in a sequence of
rounds in lock-step

u Example:
� Components in a digital hardware circuit with a

central global clock

� Fixed-step Simulation Models of Discrete
Components in Simulink

u Benefit: system design is simpler if we use a simple round-based
computa7on

u Challenge: How do we ensure synchronous execu7on when components
may execute on different hardware?

Synchronous languages

5

Simple Representation of a Synchronous Component

6

Input
Names and
Types

State Variables
Declaration and
initialization

Output
Names and
Types

Component

Update action
that happens in
each round

(Boolean = { 0, 1})
u Input variable: in of type Boolean
u Output variable: out of type Boolean
u State variable: x of type Boolean,

ini7alized to 0
u In each round, component updates

output from the state and state from
input

Simplest synchronous component: delay

7

bool in bool out
bool x := 0

out:=x ; x:= in

u Initialize state to 0
u Repeatedly execute rounds
u In each round:

� Choose value for input (provided from
environment, e.g. by user)

� Execute update code

Execu1on of “Delay”

8

bool in bool out
bool x := 0

out:=x ; x:= in

1 / 0
1

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
10

u Time needed to execute update is negligible compared to arrival times
between consecutive inputs

u Synchronous execution is a logical abstraction
� Execution time of update code is 0
� Production of outputs, updates to state and arrival of inputs happen instantaneously

u With multiple components, assume all execute synchronously and
simultaneously

u Burden on design-time to validate hypothesis

Synchrony hypothesis

9

u SRC is defined as a tuple: (𝐼, 𝑂, 𝑋, 𝑈), where:

Let’s Formalize an SRC

10

Symbol Designation Examples

𝐼 Set of Inputs { 𝑖𝑛}

𝑋 Set of State Variables 𝑥

𝑂 Set of Outputs {𝑜𝑢𝑡}

𝑈 Set of Updates 𝑜𝑢𝑡 ≔ 𝑥
𝑥 ≔ 𝑖𝑛

u Let the set of input, output, and state values be 𝑄! , 𝑄" , 𝑄#
u Semantics of the initialization function:

� At time/round 0, maps the state variables to some specified value (or values) in 𝑄!
u Semantics of the update function (some sequence of conditionals and

assignments):
� A set 𝑅 of transitions where each transition is of the form: 𝑞

"/$
q%, where 𝑞 is the old

value of the state variables, 𝑞′ is the new value of the state variables, 𝑖 is the value of
the input in that round, and 𝑜 is the value of the output

� 𝑅 is a subset of 𝑄!×𝑄&×𝑄'×𝑄!

Seman1cs of updates & ini1aliza1on

11

What are the 𝑄! , 𝑄", 𝑄# for these SRCs?

12

bool in bool out
bool x := 0

out:=x ; x:= in

bool in
int out

int y:= 0
bool z:= 0

out:=y ;
if (z==0)

y:= y + 1
else

y:= y-1
z := in

𝑄& = 0,1 , 𝑄! = 0,1 , 𝑄' = {0,1}
𝑄& = 0,1 , 𝑄! = int×{0,1} , 𝑄' = int

0
$/$

0

0
&/$

1

1
$/&

0

1
&/&

1

Transitions for Delay

13

bool in bool out
bool x := 0

out:=x ; x:= in

Composition of Synchronous Components

14

bool in1 bool out1bool x1 := 0

out1:=x1 ; x1:= in1

bool in2 bool out2bool x2 := 1

out2:=x2 ; x2:= in2

Delay sequentially composed with Delay

Composi1on of Synchronous Components

15

bool in1 bool out1bool x1 := 1

out1:=x1 ; x1:= in1

bool in2 bool out2bool x2 := 0

out2:=x2 ; x2:= in2

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
1

1 / 1
11

1 / 0
1

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
10

Delay 1

Delay 2

Observe:
1) in2 is the same as

out1 in every
round

2) Ignoring first 2
rounds, outputs
of d2 are the
inputs to d1
delayed by 2
rounds

What does this model achieve?

16

bool in
int out

int y:= 0

out:=y ;
if (in==0)

y:= y + 1
else

y:= y-1

int c
bool d := 0

if (c ≥ 2)
if (d != 0)

warn:=1;
else

d := 1;
end

else
d := 0;

end

bool
warn

If number of ‘0’ inputs seen by the first component
exceeds the number of ‘1’ inputs it has seen by 2, at any
point in its execution, then the warn output becomes 1

u An SRC is determinis.c if:
� It has a single ini.al state
� Updates ensure that for every state 𝑞 and input 𝑖, there is a unique state 𝑞′ and output 𝑜 such

that (𝑞, 𝑖, 𝑜, 𝑞!) is a transi.on
u Determinism means for same input sequence, you get same state/output

sequence every single .me
u Note:

� Nondeterminism is useful for modeling uncertainty/unknown and compactness

� It is not the same as probabilis.c/random choice!

Deterministic Component

17

u Commonly used to describe behavior of MBD models

Extended State Machines

18

u Does this ESM remind you of something?

Extended State Machines

19

0

1

(in==0)?
→ out ≔ 0

(in==1)?
→ out ≔ 0

(in==1)?
→ out ≔ 1

(in==0)?
→ out ≔ 1

Component Switch: What does this do?

20

bool press int x := 0
bool q := 0

switch (q)
case 0: if (press==1) q:= 1
case 1: if (press==0) & (x < 10)

q:=1; x:= x+1
elseif (press==1) or (x >= 10)

q:=0; x:= 0
end

end

ESM corresponding to Switch SRC

21

off

on

(press==0)?
(press==1)?

(press==0) & (x<10) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) | (x≥10) ?
→ x ≔ 0

q = 0 : off
= 1 : on

u Implicit variable called “mode” that
is a discrete state variable over some
finite enumeration. Here: {on, off}

u SRC transition may correspond to
mode-switch

u Each mode-switch has
guard/update. Example:
� Guard: (press==0) & (x<10) and
� Update: x:= x+1

ESM notation

22

off

on

(press==0)? (press==1)?

(press==0) & (x<10) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) & (x≥10) ?
→ x ≔ 0

u Start in mode off; initial state =
(off,0)

u Sample executions:

ESM execution

23

off

on

(press==0)? (press==1)?

(press==0) & (x<10) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10) ?
→ x ≔ 0

(𝑜𝑓𝑓, 0)
↓ 0

(𝑜𝑓𝑓, 0)
↓ 1

(𝑜𝑛, 0)
↓ 0

(𝑜𝑛, 1)
⋮
↓ 0

(𝑜𝑛, 10)
↓ 0

(𝑜𝑓𝑓, 0)

(𝑜𝑓𝑓, 0)
↓ 0

(𝑜𝑓𝑓, 0)
↓ 1

(𝑜𝑛, 0)
↓ 0

(𝑜𝑛, 1)
⋮
↓ 0

(𝑜𝑛, 5)
↓ 1

(𝑜𝑓𝑓, 0)

ESM transitions could be nondeterministic!

24

off

on

(press==0)? (press==1)?

(press==0) & (x≤10) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10) ?
→ x ≔ 0

u What to do if we want some components to not participate in some rounds?

u Event is a special input/output variable, which can be absent or present

u Event variable has value only if it is present
u Syntax:

Event-triggered Components

25

e? True if e is present
e!a e gets the value of the assignment a

Event-triggered Copy

26

bool in event(bool) flag
bool x := 0

if clock? then
flag!x; x:=in

event(bool) clock

u No need to execute in a round where triggering events are absent

Event-triggered Components

27

event(bool) sec event(bool) min
nat x := 0

if sec? then
x:=x+1;
if (x==60)

min! 1;
x:=0

end
end

Finite-state Components

28

bool in bool out
bool x := 0

out:=x ; x:= in

bool in

int out
int y:= 0
bool z:= 0

out:=y ;
if (z==0)

y:= y + 1
else

y:= y-1
z := in

u Component is finite state if all variables are over finite types

FS Not FS!

u Statecharts (Harel, 1987), a nota.on for concurrent composi.on of hierarchical
FSMs, has influenced many of these tools.

u One of the first tools suppor.ng the Statecharts nota.on is STATEMATE (Harel et
al., 1990), which subse- quently evolved into Ra.onal Rhapsody, sold by IBM.

u Almost every soUware engineering tool that provides UML (unified modeling
language) capabili.es (Booch et al., 1998).

u SyncCharts (Andre ,́ 1996) is a par.cularly nice variant in that it borrows the
rigorous seman.cs of Esterel (Berry and Gonthier, 1992) for composi.on of
concurrent FSMs.

u LabVIEW supports a variant of Statecharts that can operate within dataflow
diagrams

u Simulink with its Stateflow extension supports a variant that can operate within
con.nuous-.me models.

FSM Software Tools

Cruise Controller Example

30

CruiseController

event second event cruise

event inc

event dec

Clock

Sensor event rotate

Display

nat speed event(nat) cruiseSpeed

ThrottleController

event(real) F

Driver Inputs

u Rotation Sensor: Wheel speed
sensor or vehicle speed sensor

u Type of a tachometer
u Counts number of rotations per

second and as the wheel radius
is known, can compute the linear
speed of the car

Sensors

31

(From Porter and Chester InsPtute slides on Google Image Search)

u ThrottleController is an
actuator that gets a
force/torque required to
adjust the throttle plate
which leads to tracking the
desired speed

Actuator

32

CruiseController

event second event cruise

event inc

event dec

Clock

Sensor event rotate

Display

nat speed event(nat) cruiseSpeed

ThrottleController

event(real) F

Decomposing CruiseController further

33

MeasureSpeed SRC

34

event rotate nat speed
nat count := 0, s:=0

if rotate?
count:=count + 1;

if second?
s:= round(K* count);
count:=0;

speed:=s

MeasureSpeed SRC

event second

Asynchronous Components

35

Asynchrony

[1] Nicolescu, Gabriela; Mosterman, Pieter J., eds. (2010).
Model-Based Design for Embedded Systems.
Computational Analysis, Synthesis, and Design of Dynamic
Systems. 1. Boca Raton: CRC Press.

36

u Synchrony: All components execute in a sequence of rounds in lock-step
u Asynchrony: No lock-step computa7on!
u Natural model for networked, distributed communica7ng components

execu7ng independently and at possibly different speeds
u As there is no central, global clock, explicit coordina7on is required between

components
u Examples:

� Processes in distributed computa?on, mul?ple threads in any modern OS
� Interrupt-driven processing

Asynchronous Reactive Component Example

37

bool in bool out
bool∅ x:= ∅

Tin: x := in
bool∅ = bool ∪ {∅}

Tout:
x≠ ∅ → { out := x;

x := ∅ } Tasks: Tin,Tout
Guarded
Update

u Input channel in of type bool
u Output channel out of type bool
u State variable x of type bool+∅. The

value ∅ indicates empty or null.
u x initialized to ∅
u Input task Tin reads input value into x
u Output task Tout produces output if x

is not empty

Asynchronous Reactive Component

38

bool
out

bool in
bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ }

u Execution Model: In each step only one task
is executed

u Task can be executed only if it is enabled (i.e.
if its guard condition is true)

u If multiple guard conditions are true, one
task is nondeterministically executed

u Sample execution:

∅
'(?$

*!"
0
+,-!$

*!"#
∅
'(?&

*!"
1
'(?$

*!"
0
+,-!$

*!"#
∅

Asynchronous Reactive Component Execution

39

bool
in

bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ }

bool
out

Buffer

u ARC may have no inputs or
outputs, just internal tasks
� Update may have no guards

u In each step, execute Tx or Ty
u Sample execution:

0,0 →
8!

0,1 →
8!
(0,2)→

8"
(1,2)→

8!
(1,3)

u Interleaved model of concurrency

Example: Asynchrony + Nondeterminism

40

int x:= 0, y≔ 0

Tx: x := x+1
Ty: y:= y+1

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(1,2)

u Set of input channels: I
� ESM representation: in?v, where v is the value

to be received

u Set of output channels: O
� ESM representation: out!v, where v is the

value to be written

u Set of state variables X
u Initialization Init which maps state

variables to initial values

Asynchronous Process/Reactive Component

41

bool
in

bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ }

bool
out

Input Task defines updates of the form: G → x:= E(X,in)
u Guard condition G: some expression over only state variables X; input task

can be executed only if G is true
u For each in in I, we associate a read-set (X ∪ {in}): variables that can appear

in E for input task associated with in (rationale: can read value on in only if
that task is enabled)

u Any state variable can appear in the LHS of the assignment

u Defines a set of input actions of the form: q
'(?0

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’ = E(X↦q, in↦v)

Updates are different from SRCs!

42

Output Task: defines updates of the form: G → out := E(X)
u Guard condition G: some expression over only variables in X; output task can

be executed only if G is true
u For each out in O, we associate a write-set {out}: variables that appear on

LHS of the assignment
u Any expression containing only state variables can appear in E

u Defines an output action of the form q
+,-!0

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’
� value v is output on channel out

Updates are different from SRCs!

43

Internal Task: defines updates of the form: G → x := E(X)
u Guard condi7on G: some expression over only variables in X; internal task

can be executed only if G is true
u Any expression containing only state variables can appear in E, only state

variables appear on LHS

u Defines an internal ac7on of the form q→
1

q’
� where q is value of state variables before update, and q sa?sfies G
� value of state variables aker update is q’
� No input is read or output is produced!

Updates are different from SRCs!

44

Asynchronous Merge: Sequence of Actions

45

bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)

Asynchronous Processes can also be represented with extended state machines

u Parallel composition:
Inputs, Outputs, States and
Initialization similar to the
synchronous case

u Input consumption needs
to be synchronized with
output production for the
‘temp’ variable

Composing Asynchronous Processes

47

bool
in

bool∅ x1 := ∅

Tin1: x1 := in

Tout1:
x1 ≠ ∅ → { temp := x1;

x := ∅ }

Buffer

bool∅x2:= ∅

Tin2: x2 := temp

Tout2:
x2 ≠ ∅ → { out := x2;

x2 := ∅ }

Buffer

bool
out

u Defining P1 | P2

u In each step only 1 task executes
u If y is an output channel of P1

and input channel of P2:
u A1: output task for P1 with code:

G1→ U1

u A2: input task for P2 with code:
G2→ U2

u Composition has output task for
y with code: G1 ∧ G2 → U1;U2

Composed DoubleBuffer

48

bool
in

bool∅ x1 := ∅

Tin1: x1 := in
Tout1:
x1 ≠ ∅ → { temp := x1;

x := ∅ }

Buffer

bool∅x2:= ∅
Tin2: x2 := temp
Tout2:
x2 ≠ ∅ → { out := x2;

x2 := ∅ }

Buffer

bool
out

bool in
bool∅ x1 := ∅, x2 := ∅

Tin1: x1 := in
Tout2: x2 ≠ ∅ → { out:=x2; x2 ≔∅}

Double
Buffer

bool
out

Tout1in2: x1 ≠ ∅ → { local bool temp;
temp:=x1; x1 ≔∅;x2:=temp}

Blocking vs. Non-blocking Synchronization

49

int x := 0

Ttmpe: (x is even)→
x:= tmp

P2

int y := 0

Tout: tmp := y;
y:= y+1

P1

int tmp

u Task Tout of P1 can produce a value on the output
only if P2 has an input task that is enabled to
consume the value with some input task

u In this example, once x becomes odd, P2 cannot
consume (no enabled input task) and it blocks
communication

u Process is non-blocking on channel in if at least
one guarded update corresponding to input task
for in is enabled

u Process is non-blocking if for every input channel,
the disjunction of all guards corresponding to
input tasks for that channel is valid or the
Boolean formula 1 (true).

How do you make P2 non-blocking?

Ttmpo: (x is odd)→
x:=tmp

u Common error in asynchronous designs
u Caused by each process waiting for another process to execute a task, but

no task is enabled

Deadlocks

50

P1

bool y1 := 0, z1 := 0

T11: (y1==0)→ y1:= 1;
T12: (y1==1)→ z1 := r2
T13: (z1==1)→ r1 := 1

r1

r2

(0,0),
(0,0)

(1,0),
(0,0)

(1,0),
(1,0)

𝜀T11

T21

bool y2 := 0, z2 := 0

T21: (y2==0)→ y2:= 1;
T22: (y2==1)→ z2 := r1
T23: (z2==1)→ r2 := 1

P2
𝜀

