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Functional Components
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1. Classical model of computation: Functional or Transformational 
Programs

� Start from a given input, 

� Produce a certain output and then terminate

� Desired functionality can be described by a mathematical function

� Emphasis is on data computation



Reac1ve Components
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2. Reac7ve Programs:

� It maintains and internal state

� Con?nuously interact with the environment at a rate decided by 
the environment

� Emphasis is on system-environment interac?on; e.g. airline 
autopilot, mail-servers, etc.



Synchronous Models
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u All components execute in a sequence of 
rounds in lock-step

u Example: 
� Components in a digital hardware circuit with a 

central global clock

� Fixed-step Simulation Models of Discrete 
Components in Simulink



u Benefit: system design is simpler if we use a simple round-based 
computa7on

u Challenge: How do we ensure synchronous execu7on when components 
may execute on different hardware?

Synchronous languages
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Simple Representation of a Synchronous Component
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Input 
Names and 
Types

State Variables 
Declaration and 
initialization

Output 
Names and 
Types

Component

Update action 
that happens in 
each round



(Boolean = { 0, 1})
u Input variable: in of type Boolean
u Output variable: out of type Boolean
u State variable: x of type Boolean, 

ini7alized to 0
u In each round, component updates 

output from the state and state from 
input

Simplest synchronous component: delay
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bool in bool out
bool x := 0

out:=x ; x:= in



u Initialize state to 0
u Repeatedly execute rounds
u In each round:

� Choose value for input (provided from 
environment, e.g. by user)

� Execute update code

Execu1on of “Delay”
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bool in bool out
bool x := 0

out:=x ; x:= in

1 / 0
1

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
10



u Time needed to execute update is negligible compared to arrival times 
between consecutive inputs

u Synchronous execution is a logical abstraction
� Execution time of update code is 0
� Production of outputs, updates to state and arrival of inputs happen instantaneously

u With multiple components, assume all execute synchronously and 
simultaneously

u Burden on design-time to validate hypothesis

Synchrony hypothesis
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u SRC is defined as a tuple: (𝐼, 𝑂, 𝑋, 𝑈), where:

Let’s Formalize an SRC
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Symbol Designation Examples

𝐼 Set of Inputs { 𝑖𝑛}

𝑋 Set of State Variables 𝑥

𝑂 Set of Outputs {𝑜𝑢𝑡}

𝑈 Set of Updates 𝑜𝑢𝑡 ≔ 𝑥
𝑥 ≔ 𝑖𝑛



u Let the set of input, output, and state values be 𝑄! , 𝑄" , 𝑄#
u Semantics of the initialization function:

� At time/round 0, maps the state variables to some specified value (or values) in 𝑄!
u Semantics of the update function (some sequence of conditionals and 

assignments): 
� A set 𝑅 of transitions where each transition is of the form: 𝑞

"/$
q%, where 𝑞 is the old 

value of the state variables, 𝑞′ is the new value of the state variables, 𝑖 is the value of 
the input in that round, and 𝑜 is the value of the output

� 𝑅 is a subset of 𝑄!×𝑄&×𝑄'×𝑄!

Seman1cs of updates & ini1aliza1on
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What are the 𝑄! , 𝑄", 𝑄# for these SRCs?
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bool in bool out
bool x := 0

out:=x ; x:= in

bool in
int out

int y:= 0
bool z:= 0

out:=y ; 
if (z==0) 

y:= y + 1
else

y:=  y-1
z := in

𝑄& = 0,1 , 𝑄! = 0,1 , 𝑄' = {0,1}
𝑄& = 0,1 , 𝑄! = int×{0,1} , 𝑄' = int



0
$/$

0

0
&/$

1

1
$/&

0

1
&/&

1

Transitions for Delay
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bool in bool out
bool x := 0

out:=x ; x:= in



Composition of Synchronous Components
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bool in1 bool out1bool x1 := 0

out1:=x1 ; x1:= in1

bool in2 bool out2bool x2 := 1

out2:=x2 ; x2:= in2

Delay sequentially composed with Delay 



Composi1on of Synchronous Components
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bool in1 bool out1bool x1 := 1

out1:=x1 ; x1:= in1

bool in2 bool out2bool x2 := 0

out2:=x2 ; x2:= in2

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
1

1 / 1
11

1 / 0
1

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
10

Delay 1

Delay 2

Observe:
1) in2 is the same as 

out1 in every 
round

2) Ignoring first 2 
rounds, outputs 
of d2 are the 
inputs to d1 
delayed by 2 
rounds 



What does this model achieve?
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bool in
int out

int y:= 0

out:=y ; 
if (in==0) 

y:= y + 1
else

y:=  y-1

int c
bool d := 0

if (c ≥ 2)
if (d != 0)

warn:=1;
else

d := 1;
end

else
d := 0;

end

bool 
warn 

If number of ‘0’ inputs seen by the first component 
exceeds the number of ‘1’ inputs it has seen by 2, at any 
point in its execution, then the warn output becomes 1



u An SRC is determinis.c if:
� It has a single ini.al state
� Updates ensure that for every state 𝑞 and input 𝑖, there is a unique state 𝑞′ and output 𝑜 such 

that (𝑞, 𝑖, 𝑜, 𝑞!) is a transi.on
u Determinism means for same input sequence, you get same state/output 

sequence every single .me
u Note:

� Nondeterminism is useful for modeling uncertainty/unknown and compactness

� It is not the same as probabilis.c/random choice! 

Deterministic Component
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u Commonly used to describe behavior of MBD models

Extended State Machines
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u Does this ESM remind you of something?

Extended State Machines
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0

1

(in==0)?
→ out ≔ 0

(in==1)?
→ out ≔ 0

(in==1)?
→ out ≔ 1

(in==0)?
→ out ≔ 1



Component Switch: What does this do?
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bool press int x := 0
bool q := 0

switch (q) 
case 0: if (press==1) q:= 1
case 1: if (press==0) & (x < 10)

q:=1; x:= x+1 
elseif (press==1) or ( x >= 10)

q:=0; x:= 0
end

end



ESM corresponding to Switch SRC
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off

on

(press==0)?
(press==1)?

(press==0) & (x<10) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) | (x≥10) ?
→ x ≔ 0

q = 0 : off
= 1 : on



u Implicit variable called “mode” that 
is a discrete state variable over some 
finite enumeration. Here: {on, off}

u SRC transition may correspond to 
mode-switch

u Each mode-switch has 
guard/update. Example:
� Guard: (press==0) & (x<10) and 
� Update: x:= x+1

ESM notation
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off

on

(press==0)? (press==1)?

(press==0) & (x<10) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) & (x≥10) ?
→ x ≔ 0



u Start in mode off; initial state = 
(off,0)

u Sample executions:

ESM execution
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off

on

(press==0)? (press==1)?

(press==0) & (x<10) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10) ?
→ x ≔ 0

(𝑜𝑓𝑓, 0)
↓ 0

(𝑜𝑓𝑓, 0)
↓ 1

(𝑜𝑛, 0)
↓ 0

(𝑜𝑛, 1)
⋮
↓ 0

(𝑜𝑛, 10)
↓ 0

(𝑜𝑓𝑓, 0)

(𝑜𝑓𝑓, 0)
↓ 0

(𝑜𝑓𝑓, 0)
↓ 1

(𝑜𝑛, 0)
↓ 0

(𝑜𝑛, 1)
⋮
↓ 0

(𝑜𝑛, 5)
↓ 1

(𝑜𝑓𝑓, 0)



ESM transitions could be nondeterministic!
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off

on

(press==0)? (press==1)?

(press==0) & (x≤10) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10) ?
→ x ≔ 0



u What to do if we want some components to not participate in some rounds?

u Event is a special input/output variable, which can be absent or present

u Event variable has value only if it is present
u Syntax: 

Event-triggered Components

25

e? True if e is present
e!a e gets the value of the assignment a 



Event-triggered Copy
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bool in event(bool) flag
bool x := 0

if clock? then 
flag!x; x:=in

event(bool) clock



u No need to execute in a round where triggering events are absent

Event-triggered Components
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event(bool) sec event(bool) min
nat x := 0

if sec? then 
x:=x+1;
if (x==60)

min! 1;
x:=0

end
end



Finite-state Components
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bool in bool out
bool x := 0

out:=x ; x:= in

bool in

int out
int y:= 0
bool z:= 0

out:=y ; 
if (z==0) 

y:= y + 1
else

y:=  y-1
z := in

u Component is finite state if all variables are over finite types

FS Not FS!



u Statecharts (Harel, 1987), a nota.on for concurrent composi.on of hierarchical 
FSMs, has influenced many of these tools. 

u One of the first tools suppor.ng the Statecharts nota.on is STATEMATE (Harel et 
al., 1990), which subse- quently evolved into Ra.onal Rhapsody, sold by IBM.

u Almost every soUware engineering tool that provides UML (unified modeling 
language) capabili.es (Booch et al., 1998). 

u SyncCharts (Andre ,́ 1996) is a par.cularly nice variant in that it borrows the 
rigorous seman.cs of Esterel (Berry and Gonthier, 1992) for composi.on of 
concurrent FSMs.

u LabVIEW supports a variant of Statecharts that can operate within dataflow 
diagrams

u Simulink with its Stateflow extension supports a variant that can operate within 
con.nuous-.me models. 

FSM Software Tools



Cruise Controller Example
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CruiseController

event second event cruise

event inc

event dec

Clock

Sensor event rotate

Display

nat speed event(nat) cruiseSpeed

ThrottleController

event(real) F

Driver Inputs



u Rotation Sensor: Wheel speed 
sensor or vehicle speed sensor

u Type of a tachometer
u Counts number of rotations per 

second and as the wheel radius 
is known, can compute the linear 
speed of the car

Sensors
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(From Porter and Chester InsPtute slides on Google Image Search)



u ThrottleController is an 
actuator that gets a 
force/torque required to 
adjust the throttle plate 
which leads to tracking the 
desired speed

Actuator
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CruiseController

event second event cruise

event inc

event dec

Clock

Sensor event rotate

Display

nat speed event(nat) cruiseSpeed

ThrottleController

event(real) F



Decomposing CruiseController further
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MeasureSpeed SRC
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event rotate nat speed
nat count := 0, s:=0

if rotate?
count:=count + 1;

if second?
s:= round( K* count);
count:=0;

speed:=s

MeasureSpeed SRC

event second



Asynchronous Components
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Asynchrony

[1] Nicolescu, Gabriela; Mosterman, Pieter J., eds. (2010). 
Model-Based Design for Embedded Systems. 
Computational Analysis, Synthesis, and Design of Dynamic 
Systems. 1. Boca Raton: CRC Press.
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u Synchrony: All components execute in a sequence of rounds in lock-step
u Asynchrony: No lock-step computa7on!
u Natural model for networked, distributed communica7ng components 

execu7ng independently and at possibly different speeds
u As there is no central, global clock, explicit coordina7on is required between 

components
u Examples:

� Processes in distributed computa?on, mul?ple threads in any modern OS
� Interrupt-driven processing



Asynchronous Reactive Component Example
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bool in bool out
bool∅ x:= ∅

Tin: x := in
bool∅ = bool ∪ {∅}

Tout:
x≠ ∅ → { out := x;

x := ∅ } Tasks: Tin,Tout
Guarded 
Update



u Input channel in of type bool
u Output channel out of type bool
u State variable x of type bool+∅. The 

value ∅ indicates empty or null.
u x initialized to ∅
u Input task Tin reads input value into x
u Output task Tout produces output if x 

is not empty

Asynchronous Reactive Component

38

bool 
out

bool in
bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ } 



u Execution Model: In each step only one task 
is executed

u Task can be executed only if it is enabled (i.e. 
if its guard condition is true)

u If multiple guard conditions are true, one 
task is nondeterministically executed

u Sample execution:

∅
'(?$

*!"
0
+,-!$

*!"#
∅
'(?&

*!"
1
'(?$

*!"
0
+,-!$

*!"#
∅

Asynchronous Reactive Component Execution
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bool
in

bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ } 

bool 
out

Buffer



u ARC may have no inputs or 
outputs, just internal tasks
� Update may have no guards

u In each step, execute Tx or Ty
u Sample execution:

0,0 →
8!

0,1 →
8!
(0,2)→

8"
(1,2)→

8!
(1,3)

u Interleaved model of concurrency

Example: Asynchrony + Nondeterminism
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int x:= 0, y≔ 0

Tx: x := x+1
Ty: y:= y+1

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(1,2)



u Set of input channels: I
� ESM representation: in?v, where v is the value 

to be received

u Set of output channels: O
� ESM representation: out!v, where v is the 

value to be written

u Set of state variables X
u Initialization Init which maps state 

variables to initial values

Asynchronous Process/Reactive Component
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bool
in

bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ } 

bool
out



Input Task defines updates of the form: G → x:= E(X,in)
u Guard condition G: some expression over only state variables X; input task 

can be executed only if G is true
u For each in in I, we associate a read-set (X ∪ {in}): variables that can appear 

in E for input task associated with in (rationale: can read value on in only if 
that task is enabled)

u Any state variable can appear in the LHS of the assignment

u Defines a set of input actions of the form: q
'(?0

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’ = E(X↦q, in↦v)  

Updates are different from SRCs! 

42



Output Task: defines updates of the form: G → out := E(X) 
u Guard condition G: some expression over only variables in X; output task can 

be executed only if G is true
u For each out in O, we associate a write-set {out}: variables that appear on 

LHS of the assignment
u Any expression containing only state variables can appear in E

u Defines an output action of the form q
+,-!0

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’
� value v is output on channel out 

Updates are different from SRCs! 
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Internal Task: defines updates of the form: G → x := E(X) 
u Guard condi7on G: some expression over only variables in X; internal task 

can be executed only if G is true
u Any expression containing only state variables can appear in E, only state 

variables appear on LHS

u Defines an internal ac7on of the form q→
1

q’
� where q is value of state variables before update, and q sa?sfies G
� value of state variables aker update is q’
� No input is read or output is produced!

Updates are different from SRCs! 
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Asynchronous Merge: Sequence of Actions
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bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool 
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)

Asynchronous Processes can also be represented with extended state machines



u Parallel composition: 
Inputs, Outputs, States and 
Initialization similar to the 
synchronous case

u Input consumption needs 
to be synchronized with 
output production for the 
‘temp’ variable

Composing Asynchronous Processes
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bool
in

bool∅ x1 := ∅

Tin1: x1 := in

Tout1:
x1 ≠ ∅ → { temp := x1;

x := ∅ } 

Buffer

bool∅x2:= ∅

Tin2: x2 := temp

Tout2:
x2 ≠ ∅ → { out := x2;

x2 := ∅ } 

Buffer

bool 
out



u Defining P1 | P2

u In each step only 1 task executes
u If y is an output channel of P1

and input channel of P2:
u A1: output task for P1 with code: 

G1→ U1

u A2: input task for P2 with code: 
G2→ U2

u Composition has output task for 
y with code: G1 ∧ G2 → U1;U2

Composed DoubleBuffer
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bool
in

bool∅ x1 := ∅

Tin1: x1 := in
Tout1:
x1 ≠ ∅ → { temp := x1;

x := ∅ } 

Buffer

bool∅x2:= ∅
Tin2: x2 := temp
Tout2:
x2 ≠ ∅ → { out := x2;

x2 := ∅ } 

Buffer

bool 
out

bool in
bool∅ x1 := ∅, x2 := ∅

Tin1: x1 := in
Tout2: x2 ≠ ∅ → { out:=x2; x2 ≔∅}

Double
Buffer

bool 
out

Tout1in2: x1 ≠ ∅ → { local bool temp;
temp:=x1; x1 ≔∅;x2:=temp}



Blocking vs. Non-blocking Synchronization
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int x := 0

Ttmpe: (x is even)→
x:= tmp

P2

int y := 0

Tout: tmp := y;
y:= y+1

P1

int tmp

u Task Tout of P1 can produce a value on the output 
only if P2 has an input task that is enabled to 
consume the value with some input task

u In this example, once x becomes odd, P2 cannot 
consume (no enabled input task) and it blocks
communication

u Process is non-blocking on channel in if at least 
one guarded update corresponding to input task 
for in is enabled

u Process is non-blocking if for every input channel, 
the disjunction of all guards corresponding to 
input tasks for that channel is valid or the 
Boolean formula 1 (true).

How do you make P2 non-blocking?

Ttmpo: (x is odd)→
x:=tmp



u Common error in asynchronous designs
u Caused by each process waiting for another process to execute a task, but 

no task is enabled

Deadlocks
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P1

bool y1 := 0, z1 := 0

T11: (y1==0)→ y1:= 1; 
T12: (y1==1)→ z1 := r2
T13: (z1==1)→ r1 := 1

r1

r2

(0,0),
(0,0)

(1,0),
(0,0)

(1,0),
(1,0)

𝜀T11

T21

bool y2 := 0, z2 := 0

T21: (y2==0)→ y2:= 1; 
T22: (y2==1)→ z2 := r1
T23: (z2==1)→ r2 := 1

P2
𝜀


