
LESSON 15.

1. The dimension of an intersection.

Our aim in this Lesson is to prove the following theorem on the dimension of the intersec-

tion of two algebraic varieties.

Theorem 1.1. Let K be an algebraically closed field. Let X, Y ⊂ Pn be quasi–projective

varieties. Assume that X ∩ Y 6= ∅. Then if Z is any irreducible component of X ∩ Y , then

dimZ ≥ dimX + dimY − n.

To prove Theorem 1.1, the main ingredient will be the following theorem, known as

“ Krull’s principal ideal theorem”.

Theorem 1.2. Let R be a noetherian ring, let a ∈ R be a non-invertible element. Then,

for any prime ideal P ⊂ R, minimal over the ideal (a) generated by a, the height of P is at

most 1, i.e. htP ≤ 1. If moreover a is a non-zero divisor, then htP = 1.

We postpone the proof of Theorem 1.2 to the end of this lesson and proceed to the proof of

Theorem 1.1. It will be divided in three steps. Note first that, possibly passing to the closure,

we can assume that X, Y are projective varieties. Then we can assume that X ∩Y intersects

U0 ' An, so, possibly after restricting X and Y to An, we may work with irreducible closed

subsets of the affine space. Put r = dimX, s = dimY .

Step 1. Assume that X = V (F ) is an irreducible hypersurface, with F irreducible poly-

nomial of K[x1, . . . , xn]. The irreducible components of X ∩ Y correspond, by the Null-

stellensatz, to the minimal prime ideals containing I(X ∩ Y ) in K[x1, . . . , xn]. We recall

(Cor. 1.12, Lesson 4) that I(X ∩ Y )=
√
I(X) + I(Y )=

√
〈I(Y ), F 〉. So those prime ideals

are the minimal prime ideals over 〈I(Y ), F 〉. They correspond bijectively to the minimal

prime ideals containing 〈f〉 in O(Y ), where f is the regular function on Y defined by F . We

distinguish two cases:

(i) if Y ⊂ X = V (F ), then f = 0 and Y ∩ X = Y ; since s = dimY > r + s − n =

(n− 1) + s− n, the theorem is easily true in this case;

(ii) if Y 6⊂ X, then f 6= 0, moreover f is not invertible, otherwise X ∩ Y = ∅: hence the

minimal prime ideals over 〈f〉 in O(Y ), which is an integral domain, have all height one by

Theorem 1.2. So for all Z, irreducible component of X ∩ Y , dimZ = dimY − 1 = r + s− n
(Theorem 1.8, Lesson 8).
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Step 2. Assume that I(X) is generated by n − r polynomials (where n − r is the codi-

mension of X): I(X) = 〈F1, . . . , Fn−r〉. Then we can argue by induction on n − r: we first

intersect Y with V (F1), whose irreducible components are all hypersurfaces, and apply Step

1: all irreducible components of Y ∩ V (F1) have dimension either s or s − 1. Then we in-

tersect each of these components with V (F2), and so on. We conclude that every irreducible

component Z has dimZ ≥ dimY − (n− r) = r + s− n.

Step 3. We use the isomorphism ψ : X ∩ Y ' (X × Y ) ∩ ∆An (see Ex.1, Lesson 11).

Note that X × Y is irreducible by Proposition 1.13, Lesson 7. ψ preserves the irreducible

components and their dimensions, so we consider instead of X and Y , the algebraic sets

X × Y and ∆An , contained in A2n. We have dimX × Y = r + s (Proposition 1.11, Lesson

8). ∆An is a linear subspace of A2n, so it satisfies the assumption of Step 2; indeed it

has dimension n in A2n and is defined by n linear equations. Hence, for all Z we have:

dimZ ≥ (r + s) + n− 2n = r + s− n. �

The above theorem can be seen as a generalization of the Grassmann relation for linear

subspaces. However, it is not an existence theorem, because it says nothing about X ∩ Y
being non–empty. But for projective varieties, the following more precise version of the

theorem holds:

Theorem 1.3. Let X, Y ⊂ Pn be projective varieties of dimensions r, s. If r + s − n ≥ 0,

then X ∩ Y 6= ∅.

Proof. Let C(X), C(Y ) be the affine cones associated to X and Y . Then C(X) ∩ C(Y )

is certainly non–empty, because it contains the origin O(0, 0, . . . , 0). Assume we know that

C(X) has dimension r+1 and C(Y ) has dimension s+1: then by Theorem 1.1 all irreducible

components Z of C(X)∩C(Y ) have dimension ≥ (r+1)+(s+1)−(n+1) = r+s−n+1 ≥ 1,

hence Z contains points different from O. These points give rise to points of Pn belonging

to X ∩ Y . The conclusion of the proof will follow from next proposition. �

Proposition 1.4. Let Y ⊂ Pn be a projective variety.

Then dimY = dimC(Y ) − 1. If S(Y ) denotes the homogeneous coordinate ring, hence

also dimY = dimS(Y )− 1.

Proof. Let p : An+1 \ {O} → Pn be the canonical morphism. Let us recall that C(Y ) =

p−1(Y ) ∪ {O}. Assume that Y0 := Y ∩ U0 6= ∅ and consider also C(Y0) = p−1(Y0) ∪ {O}.
Then we have:

C(Y0) = {(λ, λa1, . . . , λan) | λ ∈ K, (a1, . . . , an) ∈ Y0}.

So we can define a birational map between C(Y0) and Y0 × A1 as follows:

(y0, y1, . . . , yn) ∈ C(Y0)→ ((y1/y0, . . . , yn/y0), y0) ∈ Y0 × A1,
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((a1, . . . , an), λ) ∈ Y0 × A1 → (λ, λa1, . . . , λan) ∈ C(Y0).

Therefore dimC(Y0) = dim(Y0×A1) = dimY0 + 1. To conclude, it is enough to remark that

dimY = dimY0 and dimC(Y ) = dimC(Y0) = dimS(Y ). �

We observe that also C(Y ) and Y × P1 are birationally equivalent.

Corollary 1.5. 1. If X, Y ⊂ P2 are projective curves over an algebraically closed field, then

X ∩ Y 6= ∅.
2. P1 × P1 is not isomorphic to P2.

Proof. 1. is a straightforward application of Theorem 1.3.

To prove 2., assume by contradiction that ϕ : P1 × P1 → P2 is an isomorphism. Let L,L′

be two skew lines in P1×P1; since ϕ is an isomorphism, then ϕ(L), ϕ(L′) are rational disjoint

curves in P2, but this contradicts 1. �

If X, Y ⊂ Pn are varieties of dimensions r, s, then r+s−n is called the expected dimension

of X ∩ Y . If all irreducible components Z of X ∩ Y have the expected dimension, then we

say that the intersection X ∩ Y is proper or that X and Y intersect properly.

For example, two plane projective curves X, Y intersect properly if they don’t have any

common irreducible component. In this case, it is possible to predict the number of points

of intersections. Precisely, it is possible to associate to every point P ∈ X ∩ Y a number

i(P ;X, Y ), called the multiplicity of intersection of X and Y at P , in such a way that∑
P∈X∩Y

i(P ;X, Y ) = dd′,

where d is the degree of X and d′ is the degree of Y . This result is the Theorem of Bézout,

and is the first result of the branch of algebraic geometry called Intersection Theory. For a

proof of the Theorem of Bézout, see for instance the classical [Walker, Algebraic curves], or

[Fulton, Algebraic Curves].

Let X be a closed subvariety of Pn (resp. of An) of codimension r. X is called a complete

intersection if Ih(X) (resp. I(X)) is generated by r polynomials, the minimum possible

number.

Hence, if X is a complete intersection of codimension r, then X is certainly the intersection

of r hypersurfaces. Conversely, if X is intersection of r hypersurfaces, then, by Theorem 1.1,

using induction, we deduce that dimX ≥ n− r; even assuming equality, we cannot conclude

that X is a complete intersection, but simply that I(X) is the radical of an ideal generated

by r polynomials.

Example 1.6. The skew cubic (again).
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Let X ⊂ P3 be the skew cubic. The homogeneous ideal of X is generated by the three

polynomials F1, F2, F3, the 2× 2–minors of the matrix

M =

(
x0 x1 x2
x1 x2 x3

)
,

which are linearly independent polynomials of degree 2. Note that Ih(X) does not contain any

linear polynomial, because X is not contained in any hyperplane, and that the homogeneous

component of minimal degree 2 of Ih(X) is a vector space of dimension 3. Hence Ih(X)

cannot be generated by two polynomials, i.e. X is not a complete intersection.

Nevertheless, X is the intersection of the surfaces VP (F ), VP (G), where

F = F1 =

∣∣∣∣∣ x0 x1
x1 x2

∣∣∣∣∣ and G =

∣∣∣∣∣∣∣
x0 x1 x2
x1 x2 x3
x2 x3 x0

∣∣∣∣∣∣∣ .
Indeed, clearly F,G ∈ Ih(X) so X ⊂ VP (F ) ∩ VP (G). Conversely, observe that G =

x0F − x3(x0x3 − x1x2) + x2(x1x3 − x22). If P [x0, . . . , x3] ∈ VP (F ) ∩ VP (G), then P is a zero

of x0x
2
3 − 2x1x2x3 + x32, and therefore also of

x2(x0x
2
3 − 2x1x2x3 + x32) = x21x

2
3 − 2x1x

2
2x3 + x42 = (x1x3 − x22)2 = F 2

3 .

Hence P is a zero also of F3 = x1x3 − x22. So P annihilates x3(x0x3 − x1x2) = x3F2.

If P satisfies the equation x3 = 0, then it satisfies also x2 = 0 and x1 = 0, therefore

P = [1, 0, 0, 0] ∈ X. If x3 6= 0, then P ∈ VP (F1, F2, F3) = X.

The geometric description of this phenomenon is that the skew cubic X is the set-theoretic

intersection of a quadric and a cubic, which are tangent along X, so their intersection is X

“ counted with multiplicity 2”.

This example motivates the following definition: X is a set–theoretic complete intersection

if codimX = r and the ideal of X is the radical of an ideal generated by r polynomials. It is

an open problem if all irreducible curves of P3 are set–theoretic complete intersections. For

more details, see [Kunz].

We conclude this lesson with the proof of Krull’s principal ideal Theorem 1.2.

Proof. Let P be a prime ideal, minimal among those containing (a), let RP be the localiza-

tion. Then htP = dimRP , because of the bijection between prime ideals of RP and prime

ideals of R contained in P . Moreover PRP is a minimal prime ideal over aRP , the ideal

generated by a in RP . So, we can replace the ring R with its localization RP , or, in other

words, we can assume that R is a local ring and that its maximal ideal M is minimal over

(a).
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It is enough to prove that, for any prime ideal Q of R, with Q 6= M, we have htQ = 0.

Indeed this will imply htM ≤ 1. Let j : R → RQ be the natural homomorphism. For any

integer i, i ≥ 1, we consider Qi, and its saturation with Q: Q(i) := j−1(QiRQ), called the

i-th symbolic power of Q. It is Q-primary. We have Qi ⊂ Q(i) and

Q = Q(1) ⊇ Q(2) ⊇ · · · ⊇ Q(i) ⊇ . . . .

We also have

(1) (a) +Q ⊇ (a) +Q(2) ⊇ · · · ⊇ (a) +Q(i) ⊇ . . . .

We observe that in R/(a) there is only one prime ideal, M/(a), because R is local and

M is minimal over (a), therefore R/(a) has dimension 0; since it is noetherian of dimension

0, R/(a) is artinian, and we can conclude that the chain of ideals (1) is stationary, so there

exists an integer n such that (a) +Q(n) = (a) +Q(n+1).

Let q ∈ Q(n): so q ∈ (a) + Q(n+1), and it can be written in the form q = ra + q′, where

r ∈ R, q′ ∈ Q(n+1) ⊂ Q(n). Therefore ra = q − q′ ∈ Q(n); but a /∈ Q (because M is minimal

over (a)), and Q(n) is Q-primary, so r ∈ Q(n). We conclude that Q(n) = aQ(n) +Q(n+1).

We can apply now Nakayama’s lemma (Theorem 1.7 below), and get Q(n) = Q(n+1).

Therefore QnRQ = Qn+1RQ. We apply Nakayama’s lemma again, and we conclude that

QnRQ = (0). So every element of the maximal ideal QRQ of RQ is nilpotent, which implies

that htQRQ = 0.

We recall here the statement of Nakayama’s lemma.

Theorem 1.7. Let I ⊂ R be an ideal contained in the Jacobson radical of R (the intersection

of the maximal ideals). Let M be a finitely generated R-module, let N ⊂M be a submodule.

If M = N + IM , then M = N .

We have applied Nakayama’s lemma the first time in the situation where R is a local ring

and I = (a) ⊂ M, which is the Jacobson radical of R. The R-module M is Q(n) and its

submodule N is Q(n+1). The second time, we are instead in the situation where the ring is

RQ, I = QRQ, the module M is QnRQ and N is (0).

To conclude the proof of the theorem, we observe that the second assertion follows from

the first one, because if P is a prime ideal of height zero, all its elements are zero-divisors.

Indeed, let r ∈ P , r 6= 0; we can find an element t 6∈ P belonging to the intersection ∩iPi
of the prime ideals of height zero different from P (there is a finite number of such ideals

because R is noetherian). Otherwise P ⊂ ∩iPi, but this would imply P ⊂ Pi for some i.

Now observe that rt belongs to the intersection of all minimal prime ideals of R, so rt is

nilpotent: there exists α ≥ 0 such that (rt)α = 0. Since t 6∈ P , it is not nilpotent, so tα 6= 0.
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Hence there is a minimum β ≥ 0 such that rβtα 6= 0 but rβ+1tα = r(rβtα) = 0. This proves

that r is a zero-divisor. �

Exercises 1.8. 1. Let X ⊂ P2 be the union of three points not lying on a line. Prove that

the homogeneous ideal of X cannot be generated by two polynomials.


