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INTRODUCTION

Oceans are increasingly threatened worldwide:
only few areas are subject to limited human pres-
sures, whereas most are exposed to multiple and
 possibly interacting sources of stress (Halpern et al.
2008, Claudet & Fraschetti 2010). In this context, Mar-
ine Protected Areas (MPAs) are considered key tools
for ocean conservation strategies (Lester et al. 2009),
playing a major role in reducing cumulative impacts
without compromising social and economic develop-
ment, especially in coastal areas where fishing and

fishing-related im pacts are the main threats (Worm
et al. 2006, Jennings 2009, Halpern et al. 2010).

Several studies have evaluated the consequences
of protection regimes, showing that marine no-take
reserves, if properly designed and managed, can
lead to direct ecological effects with significant in -
creases in fish density, size, biomass and richness
(e.g. CIESM 1999, Côté et al. 2001, Halpern &
Warner 2002, Gell & Roberts 2003, Halpern 2003,
Palumbi 2004, Micheli et al. 2004, Claudet et al.
2011). At both temperate and tropical latitudes, no-
take reserves can also positively affect the recovery
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trajectories of disturbed habitats and assemblages,
stressing the critical role of protection in the mitiga-
tion of human impacts (Bevilacqua et al. 2006,
Guidetti et al. 2008, Lester et al. 2009, Libralato et al.
2010, Mumby & Harborne 2010). Attempts to gener-
alize the ecological effects of MPAs have failed, how-
ever, since they can be extremely variable both in
magnitude and direction (Frank et al. 2006, Shears et
al. 2008, Lester et al. 2009, Claudet et al. 2010,
Clemente et al. 2011). The combination of reserve
features (e.g. size, zoning, time span from the institu-
tion, types of habitats included), context (e.g. loca-
tion, conservation goals, socio-economic framework,
compliance, enforcement, stressors outside the MPA),
life history and ecological traits of protected species
(Jennings 2000, Mosqueira et al. 2000, Côté et al.
2001, Micheli et al. 2004, Kaiser 2005, Claudet et al.
2008) can be responsible for this heterogeneity.

In contrast to no-take reserves, multiple-use MPAs
rarely show large protection effects: they can confer
some benefits over open-access areas, but, since
recreational and commercial fishing are allowed, a
significant increase in fishing effort has often been
shown in the presence of partial protection, nullify-
ing ecological benefits (Claudet et al. 2008). Addi-
tionally, in partially protected areas, various non-
extractive uses, such as recreational and tourism
activities, are not regulated in space and intensity,
potentially affecting the overall environmental con-
ditions (Parravicini et al. 2012).

Although both multiple-use MPAs and no-take re-
serves could indirectly mitigate human impacts by in-
creasing the resilience of protected systems (Bellwood
et al. 2004, Hughes et al. 2005), they cannot directly
cope with many external stressors, such as terrestrial
pollution, spread of pathogens, climate change and
marine invasive species (Halpern et al. 2008, Mora &
Sale 2011, Terlizzi et al. 2011, 2012) and they are most
useful when embedded into broader, multisector
management plans (Fraschetti et al. 2011).

A network of MPAs as part of an integrated pack-
age of management approaches is considered a more
effective strategy to significantly decrease cumula-
tive impacts on coastal systems. The key role of a net-
work to provide important links to maintain ecosys-
tem processes and connectivity has been emphasized
during the last decade, while the utility of single, iso-
lated reserves is increasingly questioned (McLeod et
al. 2009). A single reserve may play an important role
in locally enhancing or stabilizing adult marine pop-
ulations and assemblages. But if the reserve is too
small, persistence of populations and assemblages
may require input from surrounding areas (Gaines et

al. 2010) and pressures can easily have detrimental
effects inside its borders (Allison et al. 2003). This
issue is exacerbated in insular assemblages, often
considered unique due to unpredictable patterns of
colonization/extinction, depending on the distance
from other sources of colonists and/or on the size of
islands (MacArthur & Wilson 1967, Benedetti-Cecchi
et al. 2003).

Single, isolated and small MPAs are still common-
place worldwide (Wood et al. 2008), and demonstra-
tion of effective networks is still very scarce. Even
though the total ocean area protected has risen by
>150% since 2003 (Spalding et al. 2008), the recent
increase has been driven by multiple new designa-
tions in a process that still appears more random than
systematic (Wood et al. 2008). In this respect, the
Mediterranean Sea represents an emblematic exam-
ple. Each country has its own guidelines, and there is
no combined legislation or criteria for the establish-
ment of MPAs. Socio-economical constraints together
with the fragmented geopolitical scenario character-
izing the basin still lead to the institution of single,
small and uncoordinated MPAs, with 35% repre-
sented by islands (www.medpan.org). Their planning
is often based on little common sense, with poor eval-
uations and little scientific justification for site selec-
tion. This approach, in many cases, leads to inappro-
priate design, so that as a result many habitats are
unprotected, and spacing between protected sites is
probably too wide to ensure larval exchange (Sala et
al. 2002, Fraschetti et al. 2005). Moreover, there is ev-
idence that management and/or enforcement is still
not adequate in almost half of the Mediterranean
MPAs and so-called ‘paper parks’ are still very com-
mon (Abdulla et al. 2008, Guidetti et al. 2008).

The lack of general conservation strategies coupled
with ineffective management of MPAs prevents the
reversal of habitat loss and degradation. As an exam-
ple, on temperate coasts, there is increasing concern
about the permanent replacement of perennial
canopy-forming algae (i.e. structurally complex and
highly productive habitats), both in the intertidal and
in the subtidal, with opportunistic taxa such as fila-
mentous turf-forming algae, other ephemeral sea-
weeds, mussels and urchin ‘barrens’ (i.e. compara-
tively simpler species assemblages). These regime
shifts relate to the life-cycle traits of opportunistic
species, allowing their persistence in human-domi-
nated seascapes, and drivers and consequences of
anthropogenic forcing have been widely documented
(Perkol-Finkel & Airoldi 2010): modified water quality
(i.e. change in primary production, increasing nutri-
ents, heavy metals and sediment loads) and overfish-
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ing are considered key drivers of these regime shifts
triggering the loss of marine canopy-dominated habi-
tats (Gorman & Connell 2009).

Here, we investigated patterns of spatio-temporal
variation in subtidal sessile assemblages and in as-
semblages associated with intertidal canopy-formers
of a partially protected area compared with assem-
blages of a no-take reserve over a decade, in the
Tremiti Archipelago, a remote MPA with limited en-
forcement. Our hypothesis was that even though the
no-take reserve has limited enforcement, it can still
play a role in protecting the ecosystem from human
pressures due to its isolation. However, we anticipated
that effects of protection greatly depend on the habi-
tats and that, in the presence of limited regulation and
compliance, isolation per se is likely to produce idio-
syncratic outcomes in mitigating human impacts, ac-
cording to habitat features and to the nature of pres-
sures existing within and outside the MPA.

MATERIALS AND METHODS

Study area

The study was carried out in the Tremiti Archipel-
ago (42° 07’ N, 15° 29’ E), situated in the Adriatic Sea,
about 22 km off the Gargano coast in the Apulia
region, Italy (Fig. 1). The MPA was designated in
1989 and covers a surface of about 1466 ha. It is a
multiple-use MPA formed by a group of 5 islands.

Under Italian law, the MPA shows a gradient of
restrictions (e.g. Villa et al. 2002), with areas with a
partial protection regime located around the main
group of islands in the Archipelago (i.e. S. Domino, S.
Nicola, Cretaccio, Caprara). Within these areas most
human activities (e.g. bathing, diving, boat traffic,
recreational fishing) are allowed, although profes-
sional fishing is subjected to authorization. The no-
take area is confined to the uninhabited island of
Pianosa, about 20 km from the other 4 islands. Here,
all human activities are forbidden, except authorized
scientific research.

Approximately 500 people represent the resident
population within the Archipelago. However, due to
the touristic usage of the whole area, the MPA is tra-
ditionally affected by a number of related human
activities (e.g. diving, boat traffic and anchoring,
sewage discharges) with overfishing considered one
of the major threats (www.medpan.org). The imple-
mentation of an adequate management plan is still
under development (Abdulla et al. 2008), and the
persistence of poaching is still presumed, even
within the no-take zone, due to the difficulties (e.g.
lack of financial support) of the management body to
ensure routine surveillance.

Sampling design and data collection

Sampling was carried out 5 times at 3 locations
from 2001 to 2010 (May 2001, September 2002, Sep-
tember 2003, May 2006, July 2010) on sessile assem-
blages associated with both the Cystoseira canopy
(mainly C. amentacea) of the rocky intertidal and the
shallow rocky subtidal. One location corresponded to
the no-take zone (P), and 2 locations were selected as
control areas in the partially protected area (C1 and
C2) (Fig. 1). Controls (Cs) were chosen at random
from a set of possible locations, to provide compara-
ble habitats to those occurring in the reserve (in
terms of depth, type and slope of the substratum and
wave exposure). Three sites (approximately 100 to
300 m apart from each other) were randomly sam-
pled at each location. This is an ecological context in
which testing for differences in the patterns of distri-
bution of assemblages can be particularly challeng-
ing in view of the difficulty in selecting comparable
control/reference lo ca tions. We acknowledge these
limitations, and we cannot exclude that several pro-
cesses relevant to assemblages of rocky substrate
could operate differently at the different islands.

The understory assemblages of the Cystoseira
canopy were sampled at each site. Ten 20 × 20 cm
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Fig. 1. Map of the study area showing the Marine Protected
Area (MPA) gradient of protection together with sampling
locations. P: no-take location; C1 and C2: control locations in 

partially protected zone
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randomly located quadrats were sampled to estimate
the in situ abundance of sessile organisms. Visual
estimates were made by dividing each quadrat into
twenty-five 4 × 4 cm sub-quadrats to help counting.
The percentage cover was evaluated after the visual
estimation of the cover of the Cystoseira canopy fol-
lowing its removal. The total number of taxa and
their relative abundance were assessed giving a
score from 0 (absence) to 4 (totally covered) to each
taxon present on each sub-quadrat and adding up
these values over the 25 sub-quadrats (Meese &
Tomich 1992, Dethier et al. 1993). Final values were
expressed as percentages. Organisms that were not
easily identifiable at species level were collapsed
into higher taxonomic groups or into morphological
groups (Steneck & Dethier 1994; see Table 1 present
study for more details). Mobile animals (e.g. gas-
tropods, polychaetes, peracarid crustaceans) were
not considered in the analyses.

In the shallow subtidal, assemblages at 4 to 7 m
depth were sampled photographically using a Niko -
nos V underwater camera, 28 mm focal length, close-
up macro-system and 2 SB 105-Nikon electronic
strobes. To prevent problems due to loss of samples or
blurred photographs, 13 randomly located quadrats of
16 × 23 cm were photographed at each site and 10 of
them were used in subsequent  laboratory analyses.
The slides were analysed under magnification, and
percentage cover values of each taxon were estimated
according to the procedure described above for the
intertidal assemblages. Destructive samples were col-
lected for later identification of organisms present in
the slides. Organisms not identified at species level
were collapsed into higher taxonomic groups or into
morphological groups. Full taxonomic details are re-
ported in Table 1.

Since the differences in specific human activities
between the main group of islands compared with
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Habitat               Taxon

CU/S                  Articulated corallines [AC]
CU/S                  Acetabularia acetabulum [Ace]
CU/S                  Actinians [Att]
CU/S                  Amphiroa rigida [Amp]
CU/S                  Anadyomene stellata
S                         Ascidia mentula
CU                      Balanidae [Bal]
CU/S                  Balanophyllia europea [Beu]
CU                      Bivalves [Biv]
S                         Botryocladia sp.
S                         Caryophillia sp.
CU                      Ceramiales [Cer]
CU/S                  Coarsely branched algae
CU/S                  Champia sp. [Cha]
S                         Chondrosia reniformis [Cho]
CU/S                  Cirripeda [Cir]
S                         Cladocora cespitosa
CU                      Clavularidae [Cla]
CU/S                  Cliona sp. [Cli]
CU                      Cliona celata
S                         Codium bursa [Cbu]
S                         Codium effusum
CU                      Colpomenia sinuosa
CU/S                  Corallina sp. [Cor]
CU/S                  Cutleriales [Cut]
CU/S                  Dark filamentous algae [DFA]
CU/S                  Dictyotales [Dic]
CU/S                  Didemnidae [Did]
CU/S                  Diplosoma listerianum [Dli]
S                         Dumontiaceae
S                         Dysidea spp.
CU/S                  Encrusting bryozoans [EB]
CU/S                  Encrusting calcareous rhodophytes [ECR]
S                         Encrusting red sponges [ERS]

Habitat               Taxon

CU                      Encrusting sponges undefined [ES]
CU                      Erect bryozoans
S                         Flabellia petiolata
CU/S                  Gastrochaena dubia [Gdu]
S                         Gelidiales
CU/S                  Green filamentous algae [GFA]
CU/S                  Halimeda tuna [Htu]
S                         Hemimycale sp.
CU/S                  Hydrozoa [Hyd]
CU/S                  Hypnea musciformis [Hyp]
CU/S                  Ircinia sp.
CU/S                  Laurencia complex [Lau]
CU/S                  Liagora viscida
S                         Lithophaga lithophaga
S                         Massive dark sponges [MDS]
S                         Microcosmus sp.
CU/S                  Padina pavonica [Pad]
S                         Palmophyllum crassum
S                         Petrosia ficifromis
CU/S                  Peyssonnelia spp. [Pey]
S                         Phallusia fumigata
CU                      Rivularia sp.
CU/S                  Serpuloidea [Ser]
S                         Sphaerococcus spp.
S                         Spondylus sp.
CU/S                  Stoloniferi
S                         Stypocaulaceae [Sty]
S                         Terpios fugax
S                         Thin ramified bryozoans [TRB]
S                         Tricleocarpa fragilis [Tri]
CU/S                  Thin tubular or sheet-like
CU/S                  Valonia macrophysa [Vma]
CU/S                  Vermetidae [Ver]
CU/S                  Wrangelia penicillata

Table 1. List of taxa found in both habitats. CU: Cystoseira understory (intertidal); S: subtidal. Abbreviations used in canonical 
analysis of principal coordinates are given in brackets
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the no-take zone (e.g. sewage discharge, visiting
vessels) could influence the water quality of coastal
waters, we analysed monthly averaged primary
 production (PP) from January 2003 to December
2010, obtained from satellite-derived data (http://
coastwatch . pfel. noaa. gov). Vertically integrated PP
was calculated by applying the method of Behrenfeld
& Falkowski (1997) to the surface chlorophyll a con-
centration. Photosynthetically available radiation and
sea-surface temperature (SST) were provided by the
moderate-resolution imaging spectrometer (MODIS)
carried aboard NASA’s Aqua spacecraft. SST was
derived from the Pathfinder Version 5 advanced very
high resolution radiometer (AVHRR) data set (Casey
et al. 2010). Time series data were extracted from
monthly averages centred on the main group of
islands and the no-take zone.

Data analyses

Multivariate analyses

Two separate distance-based permutational multi-
variate analyses of variance (PERMANOVA; Ander-
son 2001, McArdle & Anderson 2001), one for each of
the 2 investigated habitats, were performed to test for
differences in benthic assemblages between P and Cs
across time. The analyses were based on Bray-Curtis
dissimilarities calculated on raw data, and each term
was tested using 4999 random permutations. No
transformation of data was applied be cause our hy-
pothesis focused on the assemblage as it is and did
not require changing the relative importance of rare
or abundant taxa (McArdle & Anderson 2004).

For both analyses, the experimental design con-
sisted of 3 factors: Time (T, 5 levels, random), Loca-
tion (L, 3 levels, random, with 1 protected location
and 2 control locations), Site (S[L], 3 levels, random,
nested in L), with n = 10. Because of the presence of
a single no-take zone (P) and 2 control locations (Cs)
the design was asymmetrical (Glasby 1997). There-
fore, for the analyses, all sources of variation includ-
ing the term L were partitioned into 2 components,
namely the variability between the controls and the
differences between P and Cs. Rocky assemblages of
temperate systems feature strong seasonal fluctua-
tions (Coma et al. 2000). The lack of random dates of
sampling for each of the 5 times included in the
design did not allow a proper separation between the
within-time (i.e. the random effect of the short-term
variability for each time) and the among-time (i.e. the
fixed effect of long-term differences among times)

variations. This prevented us from formally testing
directional changes in assemblages through the
years. The factor T was therefore considered random,
as the relevant hypotheses concerned the differences
between P and Cs and their consistency through the
years. Appropriate denominators for F-ratios were
identified from expected mean squares, and tests
were constructed following the logic of asymmetrical
designs (see Terlizzi et al. 2005 for details).

Non-metric multidimensional scaling ordination
(nMDS) (Kruskal & Wish 1978) of T × L centroids was
plotted to visualize patterns of differences among
locations through time. Centroids were obtained by
calculating principal coordinates (PCO) on the basis
of Bray-Curtis dissimilarity matrices among all pairs
of sample units.

For both intertidal and shallow subtidal assem-
blages, 5 canonical analyses of principal coordinates
(CAP; Anderson & Robinson 2003, Anderson & Willis
2003) were also performed for the L term, calculating
the distance matrix among replicates of the 3 loca-
tions separately for each sampling time. Distinctness
among L groups was assessed using leave-one-out
allocation success (Anderson & Robinson 2003). Indi-
vidual taxa that might be responsible for any group
differences seen in the CAP plot were investigated
by calculating product−moment correlations of origi-
nal variables (taxa) with canonical axes (e.g. Ander-
son & Willis 2003). These correlations of individual
variables with the 2 canonical axes (r1 and r2) were
then represented as lines in the CAP plot. Taxa were
included in the plot only if exceeding an arbitrarily
chosen value of correlation (i.e. ≥ 0.3).

Finally, to test for differences in the spatial hetero-
geneity of assemblages between P and Cs, a per -
mutational analysis of multivariate dispersion
(PERMDISP; Anderson et al. 2006) at the scale of
replicates and sites on the basis of Bray-Curtis dis-
similarity was carried out for the factor T × P vs. Cs.
This approach allowed comparisons of small-scale
patchiness (among replicates) and within locations
(among sites) in assemblage structure between P and
Cs through time.

All analyses were performed using the computer
program PRIMER V6 (Clarke & Gorley 2006), includ-
ing the add-on package PERMANOVA+ (Anderson
et al. 2008).

Univariate analyses

For both intertidal and subtidal data sets, ANOVA
was employed to test for differences in the total num-

r r1
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ber of taxa between P and Cs. ANOVA was also
employed to test for differences in the percentage
cover of canopy formed by Cystoseira spp. in the
intertidal between P and Cs. The design for analyses
was the same employed for PERMANOVA (see sub-
section above).

Temporal variability of assemblages was also as -
sessed as a measure of community stability. ANOVA
on multivariate estimates of temporal variability was
also done for both intertidal and subtidal data sets.
For each data set, values were analysed separately
for each of the 9 sites (i.e. the 3 sites within P and the
6 sites in Cs) using PERMANOVA,
obtaining pseudo-variance compo-
nents associated with the factor T. This
allowed calculation of 9 multivariate
estimates of temporal variability in
assemblages. One-factor asymmetrical
ANOVA was employed to test for dif-
ferences in temporal variability be -
tween P and Cs.

ANOVA was also used to test for dif-
ferences in the PP between the no-
take zone and controls. The design for
analysis consisted of 2 factors, T (8 lev-
els, random) and L (2 levels, fixed,
orthogonal).

RESULTS

In the intertidal, PERMANOVA
showed that differences in assemblage
structure between the reserve and the
controls varied in time (see the T × P
vs. Cs interaction in Table 2). A signif-

icant T × S(L) interaction, indicating significant vari-
ability among sites not varying consistently in time,
was also observed. With all the limits posed by con-
sidering the factor T as random (see ‘Materials and
methods’), the nMDS ordination (Fig. 2A) indicated
progressive separation between the reserve and the
control centroids from 2001 (T1) to 2010 (T5), sug-
gesting a directional change in patterns of variation.
This temporal trajectory was confirmed in CAP
analysis of all times of sampling (see Fig. S1A in the
supplement at www. int-res. com/ articles/ suppl / m466
p021.pdf), here re ported for the sake of brevity
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Source                          Rocky intertidal                            Rocky subtidal
of variation             MS            F             p                  MS            F            p

T                           49846                                           23026                           
L                           18861                                         137460                           

P vs. Cs            24320                                         254296                           
Cs                     13402                                           20634                           

S(L)                       10559                                             7159.2                        
S(P)                     6445.5                                          6105                           
S(Cs)                12616                                             7686.2                        

T × L                     11973        1.29      0.087             12908         1.85      0.0052
T × P vs. Cs      14587.8     1.58      0.0334           13300.8      1.91      0.005  
T × Cs                9358.1     0.84      0.6966          12 514         1.49      0.0766

T × S(L)                  9242.7     6.01      0.0002             6976.1      5.73      0.0002
T × S(P)              5377.5     3.85      0.0002             4121.2      3.76      0.0002
T × S(Cs)          11175        6.94      0.0002             8403.5      6.56      0.0002

Residuals               1537.8                                          1218.4                        
Res. P                 1395.4                                          1095                           
Res. Cs               1609                                             1280.1                        

Table 2. Summary of PERMANOVA testing for the effect of protection on inter-
tidal and subtidal benthic assemblages (see details in the ‘Results’). Analyses
were based on Bray-Curtis dissimilarities, and each test was performed using
4999 permutations of appropriate units. Significant p-values are given in bold.
Terms already involved in significant higher order interactions were not ana-
lysed. T: Time; L: Location; S: Site; P: no-take locations; Cs: control locations

Fig. 2. Non-metric multidimensional scaling ordinations of Time × Location centroids based on Bray-Curtis dissimilarity meas-
ures for (A) intertidal and (B) subtidal assemblages. Black symbols: no-take locations; white symbols: control  locations. The 

numbers from 1 to 5 inside each symbol indicate sampling times
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through the CAP plot of Time 1 and Time 5 (Fig. 3).
Time 1 assemblages within the reserve area were
indistinguishable from those characterizing the con-
trols (Fig. 3A), whereas at Time 5, colonial ascidians
(Didemnidae [Did], Diplosoma listerianum [Dli]) and
other invertebrates (Actinians [Att], Clionidi [Cli],
Hydroids [Hyd]) characterized assemblages within
the no-take zone, whereas assemblages at controls
were structurally dominated by turf-forming algae
(Champia sp. [Cha], Laurencia complex [Lau], dark
filamentous algae [DFA], Articulated Corallines
[AC]) (Fig. 3A).

ANOVA on the total number of taxa showed signif-
icant temporal variability at the scale of sites only
within controls. The analysis did not detect signifi-
cant differences in the number of taxa between the
no-take zone and control areas (Table 3, Fig. 4A).
Furthermore, ANOVA of the percentage cover of
Cystoseira spp. showed no significant differences
between the reserve and the controls, although the
p-value of the T × P vs. Cs interaction was at the limit
of significance (Table 3), suggesting the occurrence
of changes in the cover of Cystoseira through time
(Fig. 4C). A significant T × S(L) interaction was
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Fig. 3. Canonical analysis of principal coordinates (CAP) for the factor Locations based on the distance matrix of sampling units
of (A) intertidal and (B) subtidal assemblages at Time 1 and Time 5. Individual taxa highly correlated with canonical axes are
shown for both Times 1 and 5 in the subtidal, but only for Time 5 for the intertidal (see ‘Results’ for further details). Abbrevia-
tions for taxa used in CAP plots are given in Table 1. Black symbols: no-take locations; white symbols: control locations
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detected for the percentage cover of Cystoseira spp.,
indicating a significant temporal variation of among-
site variability in the abundance of these algae. No
significant differences in patterns of multivariate
temporal variability (F = 1.52, p = 0.29) were detected
between P and Cs (Fig. 4D). Results of PERMDISP
showed a significant T × P vs. Cs interaction at both
investigated scales (replicates, F = 16.07 [p = 0.001];
sites, F = 7.74 [p = 0.001]), indicating significant
changes in spatial heterogeneity of assemblages
through time. Post hoc pair-wise comparisons indi-
cated a general increase through time of spatial het-
erogeneity in the control areas at both investigated
spatial scales, with assemblages showing higher spa-
tial heterogeneity compared to assemblages in the
reserve (Fig. 5A).

Also in the subtidal, PERMANOVA showed signifi-
cant differences in the multivariate structure of as-
semblages between the reserve and control areas,
varying with time (Table 2). Significant variability at
the scales of Site and Location varying with Time was
also detected (see the T × L and T × S[L] interactions
in Table 2). The nMDS of T × L centroids seems to
suggest consistent patterns of variation (Fig. 2B), with
the control locations showing a great deal of separa-
tion from the reserve. A clearer picture is supplied by
CAP analysis, showing that such differences in the
structure of assemblages were due substantially to
the decreasing contribution of macroalgae in shaping
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Source          df Cystoseira No. of        No. of 
of variation     spp. intertidal taxa subtidal taxa
                               F          p           F         p            F          p

T                     4 11.27   0.004      6.39   0.0116     1.55   0.2822
L                     2   2.01   0.1134    0.84   0.5704   10.95   0.0008
P vs. Cs        1   0.06   0.8472    0.71   0.4082   33.95   0.0004
Cs                 1   7.94   0.0056    1.01   0.4334     2.1     0.1602

S(L)                 6   1.63   0.1724    1.32   0.2842     2.8     0.0304
S(P)               2   2.04   0.1927    1.52   0.2758   10.16   0.0064
S(Cs)             4   1.32   0.3114    1.3     0.3152     1.67   0.2074

T × L               8   1.42   0.2428    0.75   0.6474     3.74   0.006
T × P vs. Cs   4   2.63   0.05        1.14   0.3634     0.42   0.7881
T × Cs           4   0.24   0.905      0.27   0.895       4.05   0.021

T × S(L)        24   5.61   0.0002    4.27   0.0002     1.99   0.003
T × S(P)        8   7.24   0.0001    1.29   0.2535     0.9     0.5158
T × S(Cs)    16   4.79   0.0002    5.93   0.0002     2.44   0.002

Residuals     405                                                                   
Res. P         135                                                                   
Res. Cs       270                                                                   

Table 3. Summary of ANOVA testing for the effect of protec-
tion on percent cover of Cystoseira spp. and on the total
number of taxa in both habitats at each time of sampling.
Significant p-values are given in bold. T: Time; L: Location; 

S: Site; P: no-take locations; Cs: control locations

Fig. 4. Mean number of taxa (±SE) observed respectively in
(A) the intertidal and in (B) the shallow subtidal at each sam-
pling date (Time 1 [T1] to Time 5 [T5]). (C) Mean percent
cover (±SE) of Cystoseira spp. canopy recorded during the
whole period in the intertidal in the no-take and control lo-
cations (see details in ‘Results’) (T1 to T5). (D) Mean tempo-
ral stability (expressed as the mean PERMANOVA pseudo-
variance components associated with the factor Time — see
‘Materials and methods’) (±SE) of intertidal and subtidal as-
semblages. Black bars: no-take locations; white bars: control 

locations
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the subtidal assemblages in the reserve area with re-
spect to those in the controls (Fig. 3B). As for the in-
tertidal, only CAP plots of Time 1 (2001) and Time 5
(2010) were reported (see Fig. S1B in the supplement
for CAP plots of Times 2 to 4). At the end of the study
period, assemblages in the reserve were structurally
dominated by organisms typical of barren areas such
as encrusting calcified rhodophytes (ECR), encrusting
invertebrates like encrusting red sponges (ERS), and
boring sponges belonging to the genus Cliona (Cli).
Control areas were characterized by more complex 3-
dimensional assemblages, with a significantly higher
number of taxa than found in the reserve area
(Table 3, Fig. 4B), mostly represented by erect (Lau-
rencia complex [Lau], Halimeda tuna [Htu], Peysson-
nelia spp. [Pey]), canopy-forming (Dictyotales [Dic]),
turf-forming (articulated corallines [AC], Amphiroa
spp. [Amp], Corallina sp. [Cor], dark filamentous al-
gae [DFA], Padina pavonica [Pad]) algae, massive
dark sponges (MDS) and other invertebrates (Didem-
nidae [Did], hydroids [Hyd], Gastro chaena dubia
[Gdu], encrusting bryozoans [EB]) (Fig. 3B).

ANOVA on estimates of multivariate temporal vari-
ability detected significant differences (F = 15.09, p <
0.01) between the reserve and control areas, the lat-
ter showing higher values of temporal variability

(Fig. 4D). Results of PERMDISP showed a significant
T × P vs. Cs interaction at both scales investigated
(replicates, F = 15.46 [p = 0.001]; sites, F = 6.22 [p =
0.004]), indicating that differences in spatial hetero-
geneity of assemblages between the reserve area
and the controls varied in time. Even if a clear trend
is not identifiable, post hoc pair-wise comparisons
generally indicated significantly higher spatial het-
erogeneity of assemblages in the control areas than
in the reserve, especially at the scale of replicates
(Fig. 5B).

Phytoplanktonic PP significantly differed between
P and Cs, with control areas showing consistently
higher values than the no-take zone (p < 0.001). PP
also showed significant temporal variability (see
Fig. S2 and Table S1 in the supplement at www. int-
res . com/articles/suppl/m466p021.pdf).

DISCUSSION

Our results show that the contrasting effects of pro-
tection over benthic assemblages greatly depend on
habitat features and are possibly driven by the lim-
ited enforcement combined with the isolation of the
reserve.
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Fig. 5. Average (±SE) multivariate dispersion based on dissimilarity matrices of (A) intertidal and (B) subtidal assemblages at
different spatial scales (replicates, sites) for Times 1 to 5 (T1 to T5). Black bars: no-take locations; white bars: control locations. 

* p <0.05; ** p <0.01; *** p <0.001
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In the intertidal, significant differences between
assemblages in the reserve and the controls were
detected over time. Temporal variations suggested a
trajectory of change exhibiting an increase in the
cover of the canopy and in the invertebrate compo-
nent of the understory assemblages associated with
Cystoseira in the no-take-zone compared with an
apparent degradation towards turf-dominated as -
semblages in control areas. Both in the NW Mediter-
ranean and in the Adriatic Sea, Fucales has suffered
a long-term decline in the last century due to a com-
bination of direct and indirect human impacts (Thi -
baut et al. 2005, Serio et al. 2006, Hereu et al. 2008a,
Perkol-Finkel & Airoldi 2010). Sala et al. (2012) found
a negative relationship between PP and the abun-
dance of Fucales across the Mediterranean Sea, pos-
sibly resulting from a concurrent loss of Cystoseira in
productive, but densely populated and developed
coastlines and not from a direct association between
algal canopies and PP.

Successful cases of recovery at the ecosystem level
are rare in the Mediterranean. When occurring, they
are often related to the presence of MPAs and, in a
few cases, are associated with changes in benthic
assemblages (Bevilacqua et al. 2006, Guidetti 2006,
Libralato et al. 2010). An example of recovery of a
Cystoseira canopy after protection comes from the
Medes Islands Marine Reserve, where a significant
increase of cover was detected about 15 yr after the
reserve was established and in Port-Cros National
Park (Hereu et al. 2008a,b). In our case, the isolation
of the no-take zone likely guaranteed mitigation
from threats considered to be critical for the canopy,
such as pollution, human trampling and coastal
development (Mangialajo et al. 2008), maintaining
the canopy and allowing positive effects on the asso-
ciated invertebrate fauna. The presence of these
pressures in the main group of islands is potentially
conducive to slow regression of the Cystoseira
canopy and the shift towards turf-forming algae, with
a consequent decrease in assemblage structural com-
plexity and biodiversity loss (Benedetti-Cecchi et al.
1999, 2001, Bulleri et al. 2002). Since dispersion of
Cystoseira appears to be very limited, the recovery of
lost canopies in large areas may prove difficult (Man-
gialajo et a l. 2012) and management initiatives
should be carefully planned to mitigate the effect of
human activities.

Our analyses documented remarkable temporal
stability of the subtidal benthic assemblages in the
no-take zone, which, for at least 10 yr, were persist-
ently characterized by organisms typical of barren
grounds. The lack of apex predators (Sala et al.

2012), possibly linked to the lack of enforcement
allowing illegal fishing practices, is a potential expla-
nation. Predatory fishes can play a major role in
determining the abundance of their prey, strongly
modifying the ecosystem as a whole (Shears & Bab-
cock 2002). In the Mediterranean, these effects have
been observed for sea urchins, which are the major
benthic herbivores on rocky substrates (Sala et al.
1998). In absence of apex predators, subtidal assem-
blages in the no-take area are exposed to intense
grazing pressure (400 g m−2 of the biomass reported
for sea urchins in the reserve area; Sala et al. 2012).
Isolation, combined with lack of enforcement, possi-
bly further limits larval connectivity from upstream
sources and could play a critical role in the persist-
ence of barren substrates in subtidal habitat. Shanks
et al. (2003) conclude that reserves spaced 10 to
20 km apart should be close enough to capture
propagules released from adjacent reserves (or
unprotected locations). The reserve considered here
is >20 km from the rest of the Archipelago (and
>40 km from the coast), and there is evidence that
the oceanographic conditions of the whole area
(Artegiani et al. 1997, Poulain 2001) may prevent any
possibility of the reserve being sustained by outside
sources of larvae and propagules, impairing the
recovery of this low-biodiversity habitat (Kinlan &
Gaines 2003). Conservation priorities for the no-take
zone do not include specific actions for habitat resto-
ration. Quite intuitively, low diversity and productiv-
ity of degraded habitats, such as noted in barren
grounds, are very unlikely to support the rebuilding
of fish populations (Guidetti et al. 2004). Therefore,
the isolation of the no-take zone is likely to lead to
detrimental effects on the recovery of benthic assem-
blages, also impairing beneficial outcomes on fish.

In the subtidal, in control areas where fishing is
allowed, however, more complex 3-dimensional
assemblages have been found, with significantly
higher numbers of taxa than those found in the
reserve area. Other examples demonstrated that top-
down mechanisms are not always the rule within
MPAs, and cascading effects are likely to vary
depending on local conditions and on the character-
istics of the species that are locally dominant (Micheli
et al. 2004, Hernández et al. 2008, Shears et al. 2008).
Our results further reinforce the idea that factors
other than fishing are largely responsible for the
structure of benthic communities. The water-column
features, for example, could be partially responsible
for the observed patterns. The distribution and abun-
dance of marine benthic communities are dependent
on water-column processes, such as PP, affecting the
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transfer of organic material between benthic and
pelagic systems (Hobson et al. 1995). Here, the
higher diversity in subtidal benthic assemblages
could also be triggered by the higher PP values in
control areas compared to the no-take zone. A com-
bination of natural (e.g. upwelling) and human-
 driven (e.g. sewage discharge, visiting vessels,
urbanization) processes may influence the PP values
documented in the main group of islands. However,
further experimental studies are needed to ascertain
the different roles of PP in structuring community
assemblages and in recovery of subtidal versus inter-
tidal habitat. Furthermore, we cannot exclude the
influence of other factors on the structural changes of
assemblages.

Increased variability in space and time has been
considered an early warning indicator of stress in
benthic assemblages (Hewitt et al. 2010, Bevilacqua
et al. 2012, Guarnieri et al. 2012). The increased
 heterogeneity assessed both in the intertidal and in
the subtidal assemblages at the end of the studied
period may result from a concurrent increase in
human activities occurring in the Archipelago. Few
data are available to precisely quantify this growth.
The mean annual number of tourists within and
around the MPA was about 20 000 in 2002, while
163 154 tourists were counted in 2009. Also, the mean
annual number of divers went from 2600 to about
5000 individual requests from 2007 to 2009. In the
same period, the mean annual number of recre-
ational fishers within the MPA went from 244 to 516
(data from the Management Direction). In the Medi-
terranean Sea, affected by a long history of human-
induced changes and shifting baselines, the lack of
reliable historical records represents a major limita-
tion for setting meaningful reference conditions that
might assist in assessing recovery. Also, the effects of
the environmental context can potentially further
impair the long-term success of recovery at a given
site (Hawkins et al. 2002). In the absence of data prior
to MPA institution and without a systematic assess-
ment of the intensity and distribution of pressures
inside the MPA, it may be difficult to detect the
causal processes involved in the observed patterns
and, also, to decide upon possible restoration strate-
gies. Legislation concerning the establishment of
MPAs systematically underlines the importance of
monitoring activities in order to assess whether the
declared MPA objectives are achieved. However,
such expectations are often undermined by insuffi-
cient post-implementation institutional support for
monitoring (Davis 2005). Once MPAs have been
established, management effectiveness is seldom

adequately assessed (e.g. Benedetti-Cecchi et al.
2003, Gell & Roberts 2003, Fraschetti et al. 2005, Carr
et al. 2011) and long-term studies, such as the one
reported here, have rarely been conducted.

Protection effects should be expected if adequate
enforcement and compliance with MPA goals are
guaranteed (Agardy et al. 2011). Placing marine
reserves in putative de facto refuges may only pro-
vide supplementary protection against the effects of
anthropogenic activities. The effectiveness of protec-
tion in true de facto refuges has mainly been related
to fish assemblages (Gaines et al. 2010), but little is
known about their utility in other ecological compart-
ments, such as algal canopies and benthic assem-
blages. The effects of protection may be unevenly
distributed among ecological compartments (O’Sulli-
van & Emmerson 2011), or isolation may compromise
larval supply (Johannesson 1988), with detrimental
effects on species with limited dispersion and
increased vulnerability to catastrophic disturbance
events (Gaines et al. 2010).

Our findings showed that ineffective protection in
small, isolated and unregulated MPAs could magnify
the potential risk of the context-dependent effects of
MPAs. Isolation, moreover, may be conducive to eco-
logical drawbacks negatively affecting assemblages.
Since isolation per se does not guarantee the exclu-
sion of human activities and, by definition, may have
critical effects on the connectivity of reserve net-
works, placing new MPAs in de facto refuges may
only lead to limited benefits on biodiversity at a basin
scale. The failure of unregulated putative de facto
refuges to ensure comprehensive protection lies in
the fact that isolation may mitigate specific human
pressures, but not all, and that mitigation effects
could be habitat specific.

Enforcement and compliance are fundamental
aspects of effective MPAs, and the selection of
remote areas without the appropriate support to
avoid illegal activities is not sufficient to insure effec-
tive protection. A systematic analysis of the distribu-
tion and intensity of all activities allowed within
MPAs is critical to increase the effectiveness of con-
servation actions and to provide complementary cri-
teria for conservation priorities regarding alternative
zoning and regulations. In addition, since limited
funding impairs efficient enforcement, more cost-
effective methods may help in controlling the remote
no-take zone, such as remote video-surveillance or
involvement of the local community, volunteers and
private funding (Game et al. 2009).

Much progress still remains to reduce the conflicts
stemming from improper MPA designations (i.e.
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without accounting for human activities). Efficient
conservation planning should be based on scientific
criteria taking into account the human dimension
(Fraschetti et al. 2009, Giakoumi et al. 2011). Imple-
menting an ecosystem-based management approach
(EBM) at regional or national scales within a network
of connected MPAs is a potentially effective compo-
nent and should represent a critical strategy to
reverse the present trajectory of change, providing
simultaneous benefits for the conservation of bio -
diversity and management of resources (Halpern et
al. 2010, Agardy et al. 2011). On the other hand, it is
unlikely that major improvements in marine environ-
mental management will be possible without ade-
quate financial support to put into practice the
knowledge stemming from recent advances in con-
servation science (Knight et al. 2008).
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