University of Trieste: GLOBAL CHANGE ECOLOGY a.a. 2019-2020

BIODIVERSITY AND ECOSYSTEM FUNCTIONING Dr. Stanislao Bevilacqua (sbevilacqua@units.it)

Marine Conservation

Conservation on land

First protected forests in India more than 2000 years ago (Talbot, 1984); In Europe (England, Italy, etc.) between XVII and XIX centuries several protected areas were established with the aim of protecting natural resources, but indeed they were hunting reserve only for rich people;

In 1872, the Yellowstone National Park was established as a "place where natural beauty is preserved for the whole society" (Wright, 1996).

Marine conservation

Alberto Gennari 2011 albertogennari68@gmail.com The implementation of Marine Protected Areas (MPAs) is relatively recent: the first MPA was probably the Fort Jefferson National Monument created in Florida in 1935 (Gubbay, 1995).

In 1950s the need for suitable strategies for conservation and management of marine environments and resources has led to increase the number of MPAs worldwide, with 118 MPAs in 1970 in 27 countries and 1306 MPAs in 1994 (Kelleher & Kenchington, 1992, Kelleher *et al.*, 1995)

Key differences between terrestrial and marine ecosystems (1)

Feature	Terrestrial ecosystems	Marine ecosystems
Environmental		
Prevalence of aquatic medium	less	greater
Dimensions of species distribution	two-dimensional	three-dimensional
Scale of chemical and material transport	smaller	greater
"Openness" of local environment (i.e.,		8
rates of import and export)	less	greater
Ecological		5
Phyletic diversity (a and B)	less	greater
Life-history traits	1055	greater
Der capita fecundity of invertebrates and	lower	higher
small vertebrates	lower	Inglici
Per capita fecundity of mammals	low	1034
Difference in dispersal between life stages	less	greater
Importance of pollination syndromes	great	minimal
Rate of response to environmental variability	lower	faster
Sensitivity to large-scale environmental	lower	higher
variability	10 m Cl	mgnor
Population structure		
Spatial scale of propagule transport	smaller	greater
Spatial structure of populations	less open	more open
Reliance on external sources of recruitment	lower	higher
Likelihood of local self replenishment	high	low
Sensitivity to habitat fragmentation	greater	less
Sensitivity to smaller scale perturbations	greater	less
Temporal response to large-scale events	slower (centuries)	higher (decades)

Key differences between terrestrial and marine environments (2)

Trophic

low (few planktivores) slow (many perennials)	high (many planktivores) high (few perennials)
lower	higher
lower	higher
rare	very common
smaller smaller higher	larger larger lower
widespread	spatially focused (e.g., estuaries, coral reefs)
widespread (e.g., deforestation)	spatially focused (e.g., estuaries, coral reefs)
lower (primary producers) higher	higher (predators) lower
	low (few planktivores) slow (many perennials) lower lower rare smaller smaller higher widespread widespread (e.g., deforestation) lower (primary producers) higher

Implications for differences in conservation strategies and reserve networks

Feature	Terrestrial ecosystems	Marine ecosystems
Reserve objectives		
Spatial focus for protection Emphasis on propagule export	within reserves little	within and outside reserves great
State of knowledge		
Taxonomic identification Patterns of species distribution and abundance Geographic patterns of marine ecosystem di- versity	good good good	poor poor to moderate poor
Design criteria		
Movement (connectivity) corridors Importance of connectivity Type Importance of habitat corridors Human managed Constancy/predictability Protection of nonreserve populations	less primarily habitat based greater great high less critical	greater primarily current based lower little low very critical
Reserve size		
Sufficient for local replenishment (single reserve) Habitat diversity necessary for resource requirements	smaller smaller	larger larger
Reserve location		
Sensitivity to biogeographic transitions Importance of import-export processes (i.e., winds, currents)	less less	greater great

Rough timeline	Framing of conservation	Key ideas	Science underpinning	
970 1960		Species Wilderness Protected areas	Species, habitats and wildlife ecology	Mod
1990 1980		Extinction, threats and threatened species Habitat loss Pollution Overexploitation	Population biology, natural resource management	ified from Mace, 2
2005 2000		Ecosystems Ecosystem approach Ecosystem services Economic values	Ecosystem functions, environmental economics	2014
2010		Environmental change Resilience Adaptability Socioecological systems	Interdisciplinary, social and ecological sciences	

Contribution of ecological theories to marine conservation

Theory of island's biogeography

(MPAs can be seen as 'islands' of reduced human influence within a 'sea' subject to several human pressures; the larger the more speciose, high isolation - low diversity)

Supply side ecology

Metapopulation theory

Patch dynamic

Great contribution of experimental marine biology and ecology

Supply side ecology, metapopulations, and metacommunities

The importance of life cycles and life histories Inter-habitat harmonization

SLOSS controversy

IBT raised concerns about the opportunity to implement single large or several small reserves

Large areas allow protecting more species than smaller ones. However...Large areas are expensive in terms of management and enforcement. They are politically difficult to propose and sustain

Large areas have higher probability to create social and economic conflicts. They are also more difficult to monitor Uncertainty on the result of conservation in terms of amount of species protected... $S_{R1} \le (S_{R2}+S_{R3})$

A question of size

Pelagos Sanctuary (SPAMI) Year of institution: 1999 Surface: about 90,000 km² Countries: Italy, France, Monaco

Large reserve for large animals or animals requiring a large surface for movements and foraging

A question of size: distribution

The largest marine park in the Mediterranean Sea is the National Marine Park of Sporadi, in the Aegean Sea. Created in 1992, it is devoted to protection of *Monachus monachus*, the Mediterranean monk seal

Small reserves could increase chance in the face of perturbations

Several small interspersed reserves could provide insurance against perturbations (e.g., catastrophic disturbance or demographic events), with recolonization provided by undisturbed sites, or including higher habitat diversification with respect to larger ones and therefore more species

Should We Protect the Strong or the Weak?

If the conservation objective was to maximize the chance of having at least 1 healthy site, then the best strategy was protection of the site at lowest risk. On the other hand, if the goal was to maximize the expected number of healthy sites, the optimal strategy was more complex. If protected sites were likely to spend a significant amount of time in a degraded state, then it was best to protect low-risk sites. Alternatively, if most areas were generally healthy then it was best to protect sites at higher risk. (Game et al., 2008)

Alternative strategies have been proposed, for instance, to protect areas proportional to the risk of pertubation event to increase insurance that catastrophic events will not affect the core of reserves. (Allison et al., 2003)

Notwithstanding, large reserves...

Should....

1 – decrease competition and predation pressure from neighbouring species, with border populations more exposed than those in the centre of the reserve;

- 2 provide a better spatial match with the *home-range* of large carnivorous species;
- 3 include a larger range of environments to allow persistence of different species populations in the long term;

4 – include different subpopulations and, as a consequence, higher intra-specific genetic diversity;

5 – better respond to external disturbace through a buffer effect

Conservation purposes

- → Increase or maintain species diversity
- → Protect vulnerable species
- \rightarrow Protect areas of high endemism or biodiversity hotspots
- → Protect biological uniqueness
- → Protect commercial species (nursery areas, shelter areas, genetic diversity), increasing their abundance (and/or biomass)
- \rightarrow Protect priority habitats
- \rightarrow Education, research, aesthetic and cultural

Often multipurpose MPAs Networks to increase complementarity, or connectivity Restoration purposes

Environmental context: spacing

 Bimodal trend in dispersal strategies, one short distance and long distance.
 Reserves with diameter of 4-5 km, 10-20 km apart are wide enough to retain propagules of short-distance dispersers and far enough to allow long-distance dispersers to be captured. However, limited range of organisms. Habitat continuity.
 Shank et al., 2003

Environmental context

Low area/perimeter ratio could increase exposure of central populations to external influence

Environmental context

Guarnieri et al., 2016 **High level of** anthropization could increase exposure of protected populations and communities to human pressures or impacts

Zonation

Management of MPAs relies, as first, on zonation. This allow to delimit different areas at different protection regimes in order to fulfil conservation purposes and reduce conflicts with neighbouring human populations and influence of human activities

Zonation

A Zone (*no-take, no access*): full protection. The core of the MPA, all human activities are forbidden, except those authorized concerning scientific research and control.

B Zone (partial protecton)

Local fishery with not-impacting gears (selective fishing) could be authorized. Bathing, SCUBA diving frequentation (limited or controlled), entrance, and authorized boating can be allowed.

C Zona (*buffer area*): general protection Same as B zone, plus anchoring (but within limited specific areas), recreational fishing (but not spearfishing) could be allowed Summary: factors to take into account Protection purpose(s) (seascape, communities/ecosystems, target species) Geographic position, size, shape **Connectivity of protected species or communities (network)** Size of protected populations **Ecological process with the MPA** Human threats from neighbouring areas Socio-economic and cultural context (reduce conflicts and increasing compliance) **Governance and environmental policy**

Marine conservation at global scale

Marine conservation at global scale

The Mediterranean Sea

This is a simple visualisation of MAPAMED, a more advanced visualisation will be part of our new web site soon. Be patient, it is a bit long to download the first time. Nov. 2017 release - If you need access to the dataset please contact reda.neveu@medpan.org

The Mediterranean Sea

There are 1,231 MPAs and OECMs in the Mediterranean covering 179,798 km² which places a surface of 7.14% under a legal designation

Over 72.77% of the surface covered is located in the Western Mediterranean, 90.05% of the total surface covered by MPAs and OECMs are found in EU waters.

9.79% of European waters are covered mostly due to the Natura 2000 at sea network which rarely affords strict restrictive measures. Mostly shallow waters

39.77% of *Posidonia* meadows and 32.78% of Mediterranean coralligenous communities are covered.

65.05% of MPAs of national designations have a marine surface of less than 50 km² (77.17% of all MPAs and OECMs), 69 nationally designated sites have a marine area smaller than 10 km² and 46 are larger than 100 km².

78% of nationally designated MPAs are over 10 years old, which is considered the minimum age for an MPA to reach a certain maturity (even though the time required for an MPA to be effective varies greatly from one area to another) and 46 sites are over 20 years old.

The Italian coasts: implemented

The Italian coasts: next designation

Designation and implementation

Al fine dell'istituzione di un'area marina protetta, un tratto di mare deve innanzitutto essere individuato per legge quale "area marina di reperimento".

Una volta avviato l'iter istruttorio all'area marina di reperimento, questa viene considerata come area marina protetta di prossima istituzione. Le aree marine protette sono istituite con un Decreto del Ministro dell'ambiente che contiene la denominazione e la delimitazione dell'area, gli obiettivi e la disciplina di tutela a cui è finalizzata la protezione.

Per l'effettiva istituzione di un'area marina protetta occorre innanzitutto disporre di un aggiornato quadro di conoscenze sull'ambiente naturale d'interesse, oltre ai dati necessari sulle attività socio-economiche che si svolgono nell'area.

La gestione delle aree marine protette è affidata ad enti pubblici, istituzioni scientifiche o associazioni ambientaliste riconosciute, anche consorziati tra di loro. L'affidamento avviene con decreto del Ministro dell'ambiente, sentiti la regione e gli enti locali territorialmente interessati.

Sheltering

This occurs when one or more target species increase their abundance, size or biomass within the protected areas with respect to fished areas.

Buffering

This occurs when one or more target species exibit less steep seasonal and/or interannual fluctuations within the protected area. Complex causes...reduction of post-recruitment mortality, increase of larval mortality (high density of predators)

Cascading effects

This occur when one or more target species have specific ecological role in stucturing marine communities. Protection, by increasing the abundance of this species allow them maintaning their role in controlling lower trophic levels, triggering cascading effects.

> Paracentrotus lividus

So, a predator population, enhanced by protection, could control their prey population, which in turn has an effect on basal component of food webs.

Diplodus spp.

Fleshy erect algae Sala et al., 1998 Guidetti, 2006

Phytal fauna

Comparing effects between fish and invertebrates

Halpern, 2003 89 MPAs.

Density, size, biomans and diversity of fish fauna were signifcantly higher within than outside the reserve. Benthic invertebrates, however, showed significant difference only for density and size

Relationship with reserve size

Size again...

Using 58 datasets from 19 **European marine reserves** they showed that reserve size and age do matter: Increasing the size of the no-take zone increases the density of commercial fishes within the reserve compared with outside. **Moreover, positive effects** of marine reserve on commercial fish species and species richness are linked to the time elapsed since the establishment of the protection scheme. (Claudet et al, 2008)

Effects on benthos

Mediterranean MPAs – subtidal rocky reefs

The role of enforcement

Issues

Effective protection require three main points:

1) as first, MPAs should be sited to fulfil well-defined conservation purposes. This in turn will guide positioning and subsequent conservation strategies. The aims of MPAs should take into account connectivity, population dynamics, diversity distribution and, last but not least, the context to reduce socio-economic conflicts and external human pressures.

2) effective protection cannot fall outside considerations of geopolitical and large scale governance constraints, resources availability to maintain governace of reserves, and therefore enforcement, to avoid creation of 'paper reserves'
3) adaptive management is unavoidable; habitats distribution could change, zonation could require refinements, and monitoring is mandatory to detect changes and implement actions, modifying strategies, or simple to insure that conservation target are being achieved (Airamè et al., 2003)

Necessary but not sufficient...

Research is demonstrating that marine reserves are powerful management and conservation tools, but they are not a panacea; They cannot alleviate all problems, such as pollution, climate change, or overfishing, that originate outside reserve boundaries. Marine reserves are thus emerging as a powerful tool, but one that should be complemented by other approaches.

The answer to the question, "how much is enough" is the holy grail of conservation in both marine and terrestrial ecosystems. The goal of marine reserves is to ensure the persistence of the full range of marine biodiversity—from gene pools to populations, to species and whole ecosystems—and the full functioning of the ecosystem in providing goods and services for present and future generations. Because there will always be opportunity costs to conservation, there is a limit to how much we can conserve.

(Lubchenco, 2003)

University of Trieste: GLOBAL CHANGE ECOLOGY a.a. 2019-2020

BIODIVERSITY AND ECOSYSTEM FUNCTIONING Dr. Stanislao Bevilacqua (sbevilacqua@units.it)

Main EU Directives on marine environments

Main international regulations and agreements

 BD EU Bird Directive (EU Parliament and Council Directive 2009/147/EC on the conservation of wild birds)

- CBD Convention of Biological Diversity
- CFP Common Fisheries Policy (EU Parliament and Council Regulation No. 1380/2013 on the Common Fisheries Policy)
- EUSAIR Union Strategy for the Adriatic and Ionian Region
- HD EU Habitat Directive (EU Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora)
- HELCOM Baltic Marine Environment Protection Commission
- MSFD EU Marine Strategy Framework Directive (EU Parliament and Council Directive 2008/56/EC establishing a framework for community action in the field of marine environmental policy)
- MSPFD EU Framework Directive on Maritime Spatial Planning (EU Parliament and Council Directive 2014/89/EC establishing a framework for maritime spatial planning)
- OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic

 WFD EU Water Framework Directive (EU Parliament and Council Directive 2000/60/EC, establishing a framework for Community action in the field of water policy)

Water Framework Directive

DIRECTIVE 2000/60/EC (D.Lgs. 152/2006)

The purpose of this Directive is to establish a framework for the protection of inland surface waters, transitional waters, coastal waters and groundwater which:

- (a) prevents further deterioration and protects and enhances the status of aquatic ecosystems and, with regard to theirwater needs, terrestrial ecosystems and wetlands directly depending on the aquatic ecosystems;
- (b) promotes sustainable water use based on a long-term protection of available water resources;
- (c) aims at enhanced protection and improvement of the aquatic environment, inter alia, through specific measures for the progressive reduction of discharges, emissions and losses of priority substances and the cessation or phasing-out of discharges, emissions and losses of the priority hazardous substances;
- (d) ensures the progressive reduction of pollution of groundwater and prevents its further pollution, and
- (e) contributes to mitigating the effects of floods and droughts

Monitoring the status of waters every six years to achieve a good quality status Operational monitoring: water bodies at risk or not in good status Surveillance monitoring: water bodies Investigative monitoring: water bodies not in good status to understand and clarify causes

Habitat Directive

Directive 92/43/EEC D.P.R. 357/1997

The aim of this Directive shall be to contribute towards ensuring biodiversity through the conservation of natural habitats, and species of particular relevance. Report every six years. A coherent European ecological network of special areas of conservation shall be set up under the title Natura 2000. This network, composed of sites hosting the natural habitat types listed in Annex I and habitats of the species listed in Annex II, shall enable the natural habitat types and the species' habitats concerned to be maintained or, where appropriate, restored at a favourable conservation status in their natural range . The Natura 2000 network shall include the special protection areas classified by the Member States pursuant to Directive 79 /409 /EEC.

Marine habitats of community interest included:

Sandbanks which are slightly covered by sea water all the time * Posidonia beds Submerged or partly submerged sea caves **Estuaries** Mudflats and sandflats not covered by seawater at low tide *Lagoons Large shallow inlets and bays Reefs

Marine 'columns' in shallow water made by leaking gases

Magnoliophyta

Posidonia oceanica	(Linnaeus) Delile	P2	B1
Zostera marina	Linnaeus	P2	B1
Zostera noltii	Hornemann	P2	
Cymodocea nodosa	(Ucria) Ascherson		B1

Phaeophyta

Cystoseira amentacea	(C.Agardh) Bory including var. stricta Montague	P2	B1
and var. <i>spicata</i>	(Ercegovic) Giaccone		
Cystoseira mediterranea	Sauvageau	P2	B1
Cystoseira sedoides	(Desfontaines) C.Agardh	P2	B1
Cystoseira spinosa	Sauvageau including		
	C. adriatica (Ercegovic) Giaccone	P2	B1
Cystoseira zosteroides	C. Agardh	P2	B1
Laminaria rodriguezii	Bornet	P2	B1
Laminaria ochroleuca	Pylaie		B 1

Rhodophyta

Goniolithon byssoides	(Lamarck) Foslie		
	(nomenclatura non aggiornata) (3)	P2	B1
Lithophyllum lichenoides	Philippi (3)	P2	B1
Ptilophora mediterranea	(H. Huvé) Norris	P2	B1
Schimmelmannia schousboei	(=S. ornata)	P2	B1

Porifera

Petrobiona massiliana Axinella polypoides Axinella cannabina Spongia agaricina Spongia officinalis Spongia zimocca Aplysina cavernicola Aplysina aerophoba Asbestopluma hypogea (1) Geodia cydonium Hippospongia communis Ircinia foetida Ircinia pipetta Tethya aurantium Tethya citrina

Vacelet & Lévi, 1971 Schmidt, 1862 (Esper, 1794) Pallas, 1766 Linnaeus, 1759 Schmidt, 1862 Vacelet, 1959 Schmidt, 1862 Vacelet and Boury-Esnault 1995 (Jameson, 1811) (Lamarck, 1813) Spugna equina (Schmidt, 1862) (Schmidt, 1868) (Pallas, 1766) Sarà e Melone, 1965

P2	B 2
P2	B 2
P2	
P3	B3
P3	B3
P3	B3
P2	B2
P2	
P2	
P2	
P3	B3
P2	
P2	

P2

P2

Cnidaria

Corallium rubrum	(Linnaeus, 1758) Corallo rosso	P3	B2H5
Antipathes dichotoma	Pallas, 1766	P3	B3CB
Antipathes fragilis	Gravier, 1918	P3	B3CB
Antipathes subpinnata	(Ellis & Solander, 1786)	P3	B3CB
Astroides calycularis	(Pallas, 1766)	P2	B2
Gerardia savaglia	(Bertoloni, 1819)	P2	B2
Errina aspera	(Linnaeus, 1767)	P2	

Bryozoa

Hornera lichenoides

P2

Mollusca

Patella ferruginea Patella nigra (1) Gibbula nivosa Dendropoma petraeum Erosaria spurca Luria lurida Schilderia achatidea Zonaria pyrum Tonna galea Ranella olearia Charonia lampas Charonia tritonis Mitra zonata Lithophaga lithophaga

Pinna nobilis Pinna rudis(=pernula) Pholas dactylus

Gmelin, 1791 Patella ferrosa (da Costa, 1771) A.Adams, 1851 (Monterosato, 1884) (Linnaeus, 1758) (Linnaeus, 1758) (Gray in G.B. Sowerby II, 1837) (Gmelin, 1791) (Linnaeus, 1758) (Linnaeus, 1758) (Linnaeus, 1758) (Linnaeus, 1758) Marryat, 1818 (Linnaeus, 1758) (Linnaeus, 1758) Linnaeus, 1758 Linnaeus, 1758

Trottola Elmo Tritone lucido Mitra zonata Dattero di mare Pinna nobile

Dattero bianco

Crustacea

Homarus gammarus	(Linnaeus, 1758)	Astice	P3	B3
Palinurus elephas	(Fabricius, 1787)	Aragosta	P3	B3
Scyllarides latus	(Latreille, 1803)	Cicala grande	P3	B3H5
Scyllarus arctus	(Linnaeus, 1758)	Cicala di mare	P3	B3
Scyllarus pygmaeus	(Bate, 1888)	Cicala minore	P3	B3
Maja squinado	(Herbst, 1788)	Granceola	P3	B3
Ocypode cursor	(Linnaeus, 1758)	Granchio fantasma	P2	B2
Pachylasmus giganteum	(Philippi, 1836)	Pachilasma	P2	
Echinodermata				
Ophidiaster ophidianus	(Lamarck, 1816)		P2	B2
Asterina pancerii	(Gasco, 1860)	Excert entertain and	P2	B2
Centrostephanus				Ex 1
longispinus	(Philippi, 1845)	Riccio di mare a	La Mal	11/100

Paracentrotus lividus

Riccio di mare a lunghe Riccio di mare di

Condrichthyes

Carcharodon carcharis	(Linnaeus, 1758)	Squalo bianco	P2	B2
Cetorhinus maximus	(Gunnerus, 1765)	Squalo elefante	P2	B2
Isurus oxyrinchus	Rafinesque, 1810	Squalo mako	P3	B3
Lamma nasus	(Bonnaterre, 1788)	Smeriglio	P3	B3
Prionace glauca	(Linnaeus, 1758)	Verdesca	P3	B3
Squatina squatina	(Linnaeus, 1758)	Squadro	P3	B3
Raja alba	Lacépède, 1803	Razza bianca	P3	B3
Mobula mobular	(Bonnaterre, 1788)	Diavolo di mare	P2	B2

Osteichthyes

Acipenser naccarii	Bonaparte, 1836	Storione cobice	P2	B2CBH2H4
Acipenser sturio	Linnaeus, 1758	Storione	P2	B2CAH2H4
[Acipenser transmontanus](2)Richardson, 1836	Storione bianco		CBH5
Huso huso	(Linnaeus, 1758)	Storione ladano	P2	B3CBH5
Alosa alosa	(Linnaeus, 1758)	Alosa	P3	B3H2H5
Alosa fallax	(Lacépède, 1803)	Cheppia	P3	B3H2H5
Aphanius fasciatus	Nardo, 1827	Nono	P2	B2H2
[Aphanius iberus](1)	(Valenciennes, 1846)	Nono iberico	P2	
Hippocampus hippocampus	(Linnaeus 1758)	Cavalluccio marino	P2	CD
Hippocampus ramulosus	Leach, 1814	Cavalluccio marino	P2	CD
Syngnathus abaster	Risso, 1826	Pesce ago di Rio		B3
[Cottus gobio]	(Linnaeus, 1758)	Scazzone		H2

Sciaena umbra	Linnaeus, 1758	Corvina	P3	B3
Umbrina cirrosa	(Linnaeus, 1758)	Ombrina	P3	B3
Knipowitschia panizzae	(Verga, 1841)	Ghiozzetto di laguna		H2
[Padogobius martensi]	(Günter, 1861)	Ghiozzetto padano		B3
[Padogobius nigricans]	(Canestrini, 1867)	Ghiozzetto di ruscello		H2
[Pomatoschistus canestrini]	(Ninni, 1883)	Ghiozzetto cenerino	P2	B3H2
Pomatoschistus				
marmoratus	(Risso, 1810)	Ghiozzetto marmorizzato		B2
Pomatoschistus microps	(Kroyer, 1838)	Ghiozzettobaltico		B2
Pomatoschistus minutus	(Pallas, 1770)	Ghiozzetto minuto		B2
Pomatoschistus tortonesei	Miller, 1968	Ghiozzetto di Tortonese	P2	
Anguilla anguilla	(Limacus, 1758)	Anguilla	P3	
Epinephelus marginatus	(Lowe, 1834)	Cernia bruna	P3	
Thunnus thynnus	(Linnaeus, 1758)	Tonno	P3	
[Valencia hispanica](1)	(Valenciennes, 1846)		P2	
[Valencia letourneuxi](1)	(Sauvage, 1880)		P2	
Xiphias gladius	Linnaeus, 1758	Pesce spada	P3	

Reptilia

Caretta caretta
Chelonia mydas
Eretmochelys imbricata
Lepidochelys kempii
Dermochelys coriacea
Trionyx triunguis (1)

Tartaruga marina
Tartaruga verde
Tartaruga embricata
Tartaruga bastarda
Tartaruga liuto

P2	B2CAD1H2H4
D2	D2CADD1114
P2	B2CADB1H4
P2	B2CAD1H4
P2	B2CAD1H4
P2	B2CAD1H4
P2	

Aves				
Calonectris diomedea	(Scopoli, 1769)	Berta maggiore	P2	L1A1B2
Puffinus puffinus				
yelkouan	(Brünnich, 1764)	Berta minore	P2	L1B2
Hydrobates pelagicus	(Linnaeus, 1758)	Uccello delle tempeste	P2	L1A1B2
Phalacrocorax aristotelis	(Linnaeus, 1761)	Marangone dal ciuffo	P2	L2B3
Phalacrocorax aristotelis		e		
desmaresti		Marangone dal ciuffo		
		ss. mediterranea		L1A1
Phalacrocorax pygmeus	(Pallas, 1773)	Marangone minore	P2	L1A1B2D2
Pelecanus crispus	Bruch, 1832	Pellicano riccio	P2	L2A1B2CAD1D2
Pelecanus onocrotalus	Linnaeus, 1758	Pellicano	P2	L2A1B2
Phoenicopterus ruber	Linnaeus, 1758	Fenicottero	P2	L2A1B2CAD2
Pandion haliaetus	(Linnaeus, 1758)	Falco pescatore	P2	L2A1B3CAD2
Falco eleonorae	Géné, 1834	Falco della regina	P2	L2A1B2CAD2
Numenius tenuirostris	Viellot, 1817	Chiurlottello	P2	L1A1B2CAD1
Larus audouinii	Payraudeau, 1826	Gabbiano corso	P2	L2A1B2D1D2
Sterna albifrons	Pallas, 1764	Fraticello	P2	L1A1B2D2
Sterna bengalensis	Lesson, 1831	Sterna del Ruppel	P2	L1B3
Sterna sandvicensis	Latham, 1878	Beccapesci	P2	L1A1B2

Mammalia

Monachus monachus Eubalaena glacialis Balaenoptera	(Hermann, 1779) (Müller, 1776)	Foca monaca Balena nera	P2 P2	L2B2CAD1D2H2H4 L2B2CAD1H4
acutorostrata	Lacépède, 1804	Balenottera minore	P2	L1B2CAH4
Balaenoptera musculus	(Linnaeus, 1758)	Balenottera azzurra		L1B2CAD1H4
Balaenoptera physalus Physeter catodon	(Linnaeus, 1758)	Balenottera comune	P2	L1B2CAH4
(macrocephalus)	Linnaeus, 1758	Capodoglio	P2	L1B2CAH4
Kogia simus	(Owen, 1866)	Cogia	P2	L1B2CAH4
Ziphius cavirostris	Cuvier G., 1832	Zifio	P2	L1B2CAH4
Tursiops truncatus	(Montagu, 1821)	Tursiope	P2	L1B2CAH2H4
Stenella coeruleoalba	(Meyen, 1833)	Stenella striata	P2	L1B2CAH4
Delphinus delphis	Linnaeus, 1758	Delfino comune	P2	L1B2CAH4
Grampus griseus	(Cuvier G. 1812)	Delfino di Risso	P2	L1B2CAH4
Pseudorca crassidens	(Owen, 1846)	Pseudorca	P2	L1B2CAH4
Orcinus orca	(Linnaeus, 1758)	Orca	P2	L1B2CAH4
Globicephala melaena	(Trail, 1809)	Globicefalo	P2	L1B2CAH4
Steno bredanensis	(Lesson, 1828)	Steno	P2	L1B2CAH4
Balaenoptera borealis(1)	Lesson, 1828	Balena boreale	P2	
Megaptera novaeangliae(1)	(Borowski, 1781)	Megattera	P2	
Mesoplodon densirostrisi(1)	(de Blainville, 1817)	Mesoplodonte	P2	
Phocoena phocoena(1)	(Linnaeus, 1758)	Focena	P2	

Marine Strategy Framework Directive (MSFW)

For the MSFW (2008/CE/56) each EU country has to develop its strategy, in agreement and coordinated with all other countries in each marine region, to achieve and maintain the Good Environmental Status (GES) in 2020.

GES means that the environmental conditions of sea water are adequate to preserve diversity and functioning of seas and oceans, which are expected to be clean, healthy and productive, with a sustainable use of marine resources.

The structure, functions, and processes of marine ecosystems should work allowing their resilience. Species and habitats are protected and their persistence insured, avoiding biodiversity loss due to human activities. Physical-chemical, hydrologic, and geomorphologic features are in good conditions to sustain biodiversity and ecosystem functioning, and matter and energy inputs from human activities do not determine risks for marine biodiversity, ecosystems and environments, and for the human health and human use of resources.

In Italy, D.Lgs. n. 190/2010

Development of MSFD

How EU Member States develop marine strategies

Baltic Sea NE Atlantic Ocean Mediterranean Sea ≤ Black Sea

W Mediterranean Sea Adriatic Sea Ionian and Central Mediterranean Sea E Aegean Sea

process to maintain and or achieve GES

Initial assessment

- a) Analysis of main components and features of current environmental state in marine regions and subregions based on 11 descriptors.
- b) Analysis of main human impacts and pressures affecting marine ecosystems in the regions or subregions, their trends and potential cumulative effects
- c) Analysis of socio-economic factors and of uses of marine resources, along with environmental costs of degradation

Descriptors

long-term abundance and

reproduction

8. Concentrations of contaminants give no effects

1. Biodiversity

Species	Population size	Abundance or biomass
	Conditions	Demography Genetic structure
Habitats	Habitat extent	Surface
	Conditions	Conditions of typical species or communities Abundance or biomass

2. Non-indigenous species (NIS)

Abundance and conditions of NIS with a particular focus on invasive species Trends in abundance, frequency of occurrence, and distribution of NIS

Impact of NIS on native species, habitat and ecosystems

Commercially exploited species

Fishing pressure

Reproductive ability of stocks

Age and size distribution

Fishing catches / biomass-catch ratio

Biomass of reproductive stocks – other indices

4. Marine food webs

Proportion of top predators Abundance/distribution of trophic guilds

5. Eutrophication

Nutrient levels

Indirect effects

Large fish predators

Trends in abundance of functionally important guilds

P P P

Direct effect of nutrient overload

Concentration of nutrient in the water column Acculmulatin rates

Chlorophyll concentration in the water column Water turbidity due to phytoplankton Changes in phytoplankton assemblages Dissolved oxygen and extent of depleted areas

6. Sea floor integrity

Physical damage on different substrates

Area of seabed, for each habitat, significantly affected by human activities

7. Hydrographical conditions

Spatial attributes of permanent alterations

Surface of areas permanently alterated

8. Contaminants

Concentration

Concentration of pollutants in environmental matrices

Effects

9. Human health

Level, number, and frequency of contaminants

Effects of pollutants on contaminated ecosystem based on known cause-effect relationships that require monitoring

Number of pollutants and concentration beyond safe threshold definide by law

Frequency of exceeding thresholds

10. Marine litter

Characteristics of marine litter

Impact of litter on marine life

11. Energy inputs

Spatial and temporal distribution of underwater sounds

Trends in the amount of litter thrown in the sea and coastline, including composition, spatial distribution, and origin, if possible

Trends in the composition and distributin of microplastics

Trends in the amount and composition of litter ingested by marine organisms

Year-round proportio and distribution of anthropogenic noise in the affected areas when exceeding levels potentially harmful for marine organisms

Effects

Effects of pollutants on contaminated ecosystem based on known cause-effect relationships that require monitoring

Targets

1. Biodiversity

Species and habitat listed in the HD and other regulations maintain or achieve a good conservation status MPAs maintain or achieve the status of SPAMI A representative and functionally connected network of MPAs covering the 10% of Italian marine waters is implemented

4. Food webs

The status of all components is improved through the achievement of targets for D1,3,5,6 with respect to bone fish, sharks, marine mammals, reptiles, benthic and planktonic communites

5. Eutrophication

Several targets of reduction and regulation of sewage discharge Hypoxia and anoxia are reduced

2. NIS

Early-warning systems in all large harbours

Response system of authorities in harbours and aquaculture farms activated

Import, or movements of NIS for aquaculture tracked Knowledge of NIS impact is increased

6. Sea floor integrity

Impact of construction or deployement of structure on biogenic habitat are reduced Abrasion is avoided on 10% of sea floor suitable for fishing exploitation No fishing on biogenic substrates Vessels for seabed fishing are tracked

2. Commercial species

Mortality by fishing of overexploited species is reduced by 2020 Illegal fishing practices are reduced by 2020 Recreational fishing is regulated and its impact estimated Minimum landing size for commercially exploited sharks

7. Hydrography

Hydrographic effects of on-shore and offshore human structures existing, in construction, or projected are assessed

8. Contaminants

Level of contaminants above thresholds are reduced Knowledge on their impact is increased Frequency of events is reduced

Targets

9. Human health

Pollutant levels exceeding thresholds for safety in seafood from national waters are decreasing Frequency of cases of contamination in seafood from national waters is decreasing

10. Litter

The amount of litter on coasts,
seabed, and in the water column,
including floating, litter is
decreasingThe register on
noise on hum
producing put
the range of 1Ingested items in marine organisms
is decreasingimplemented
A baseline lev
noise (continu
frequency) isKnowledge on the origin,
composition, distribution,
dispersion and impact of marine
litter is increasedThe register on
noise on hum
producing put
the range of 1

11. Energy

The register of underwater noise on human activity producing pulse sounds within the range of 10 Hz-10kHz is implemented A baseline level of ambient

noise (continuos sounds a low frequency) is defined