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stochastic simulations of an
interacting spin ensemble

We need a model for:
- energy

- evolution
(to build the trajectory / the Markov chain)
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Ising model

the simplest model of interacting spin on a lattice

N
Hspzn = —J E S35

1,7=1

s, = =1
by b
v b
vy v !
rov v !

But where does 5it come from ?



2 interacting spins

Consider two fermions, s1, s3 (e.g. electrons in He) described by a hamiltonian
not depending explicitly on spin:

H = hy+ ho + V1o

=> the eigenstates can be in a factorized form (symm/antisymm under
particle exchange due to the Pauli exclusion principle):

‘P+,—(192) — Tiili(laz) )((192)

In the Hilbert spin subspace we can choose a coupled representation,
referring to the spin sum S, with eigenstates labeled by |S, 5. > :

Y, _(1,2) = ¥{2(1.2) y55(1,2) = $92(1,2) 1S, S, >
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2 interacting spins

Eigenstates

TY? (1,2)[8, 8. >= (s(1)9(2) + (-)°¢(2)9(1)/V2 |8, S, >

where |S§, S, > = Xs5,5.(01,05) have the explicit form:

x1,1 = vy(o1)ve(o2)
1
X10 = \ﬁ [vi (01)v_(02) +v_(01)vs(02)] | Spin triplet: symmetric
X1,-1 = v—(o1)v—(02)

1
X0,0 — E [U+(01)U— (02) — U— (01)U+ (02)] Spin singlet: antisymmetric



2 interacting spins
Energy

<UL _H|T, - >=< T [H|UTY >=< ¢|hl¢ > + < ¢|h[p > +J12+(—1)" K15

= Eo+ Ji2 + (—1)° K12
with the Hartree and the exchange termes:

Jio = (dDyw ) | Vip | (D (2))
K, = (@p(My )| Vi, | pw (1))

The Pauli principle => the energy is affected by spin
even if H does not depend explicitly on it:
<S=0H|S=0>=FE, singlet
<S=1H|S=1>=FE; triplet
Hence:

<S=0H|S=0>-<S=1H|S=1>=F, — E;
: = 2Ky,



2 interacting spins
Energy

The relative order of £, E; depends on Via (Ki2)

In He, with V2= repulsive Coulomb interaction,
E;,>F, (K>D0)

(a part from the ground state, when only singlet is allowed)

But present discussion is independent on the sign of Es — E;



2 interacting spins

Idea: write a model hamiltonian explicitly dependent on
spin (and only dependent on spin) which gives the same
difference between the energy eigenvalues of its
eigenstates as the original one.

Consider the operator:
— ¢l .G, =41g2 _ 3
219 = 5183 =557 —
which is diagonal on the coupled basis, with eigenvalues:

Consider then: HSP'™ = —(Es — E)X12

We have:
<S=0HP"S=0>—-<S=1HP"S=1>=FE, - E,
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Heisenberg hamiltonian

HP" = —(Ey — Ey)Y10

is therefore OK! Defining: J = E; — E; , we have
(going back to the individual basis representation):

HEPIn = —Jsi - 55

J>0 (Es > Et) TT spins favored => ferromagnetic case

J<O (Es < Et) N spins favored => antiferromagnetic case



Heisenberg hamiltonian

Extension to the case of several spins:

(see also: Ashcroft & Mermin, chap. 32,
“Spin hamiltonian and Heisenberg model”)
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Ising model

Consider only the possibility : s; = =1 and nearest neighbor
interaction only, with the same interaction constant J

N
Hspzn = —J E S¢S

2,J=1

J>0 (Es > Et) TT spins favored => ferromagnetic case

J<O (Es < Et) N spins favored => antiferromagnetic case

BN AR AR

E=-J E=+]

(choosing the kind of interaction, we specify the energy model)
13



Ising model on a lattice

lattice containing N sites

lattice site i has associated with it a number s;, where s; = +1 for an “up” (1) spin and s; = —1
for a “down” (]) spin. A particular configuration or microstate of the lattice is specified by the
set of variables {s1, s2,...sn} for all lattice sites.

S
(500 Pt jot it
000 —(O— 00— @
-0 0 0 -0 @O
2o on on SN S AR S

Lowest energy state of the 2D Ising model on a square
lattice with ferromagnetic (J>0) and antiferromagnetic (J<0)
interactions. Solid and open circles correspond to +1 and
-1 spins, respectively.




Ising model:
Interesting quantities



Ising model: energy

lattice containing N sites
No external magnetic ﬁeld°

E=—-J Z ;S

7.] — 1111 (Z (nn=nearest neighbor)

Energy in presence of an externa,l magnetic field:

E=—-J Z $iS; — HZSZ,

i,J=nn(1)

or, better, define an average energy per spin: E/N
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Ising model: magnetization

1=1

“Order parameter”: total magnetization, or -better-
average magnetization per spin:

M o1&

:N:Nz':lsqj

—1<m< 41

|7

m



Ising model:
configurations and energy

2" different configurations for n spins.

(microstates)
e.g. 2% =16 spin configurations for 2x2 lattice
+ 4+ - - + - -+
i -+  + -
-+  + - 4+ + + + - -+ - - - - - - + - 4+ + -+
++ + 4+ o+ + - -+ o+ - + + 4+ -+

For J > 0 the state of lowest energy is when all the spins are aligned.
The state has macroscopic magnetization (ferromagnetic).

The ground state energy per spin
(ferromagnetic case, thermodynamic limit (N large), no ext. field) 1s:

EoN =- 2J
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Ising model: dynamics?

Beside an energy model, we must define a dynamics
in order to simulate the evolution of the system
(i.e. to generate the trajectory in the phase space,
to generate the configurations of the Markov chain)



Ising model:
spin flip dynamics

Consider nn

. . A
interactions, choose ¢ *-
a random spin and (9O
flip it:it's @ new > &—@—
configuration 1

(a microstate) AR &

Apply Metropolis Monte Carlo method for
evolution in the canonical ensemble (fix T).
Evolution is driven by the energy change between
the old and the new configuration, A F .

Remark: Is it sufficient to calculate only AE' ,not E
at each new configuratigp!



Ising model:
spin flip dynamics

} }

L Lt MR AE = 8]
} }
} }

y by AE =4]
} }
} }

y by AE=0
Y Y
Y Y

y by AE =-4]
Y Y
Y Y

vy by /Py vy AE = -8J
Y Y

The five possible transitions of the Ising model on the square lattice with spin flip
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Ising model:
boundary conditions

Of course we cannot simulate an infinite system
(the thermodynamic limit).
We have two choices for the simulation cell:

- free (open) boundary conditions
- periodic boundary conditions (PBC)

22



Ising model:
free boundary conditions

in a N=LxL spin lattice there are 2L(L-1) nn interactions;
for the ferromagnetic g.s. configuration, for instance, the energy 1is:

+ + + +

+ + + + + + +

+ + + + + + + + +
+ + + + + + + + +

Let’s count the interactions...
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Ising model:
free boundary conditions

in a N=LxL spin lattice there are 2L(L-1) nn interactions;
for the ferromagnetic g.s. configuration, for instance, the energy 1is:

AR
T T
1 T N
+—+ +—+—+ +—+ —+—+
Eo/N=-]  Eo/N=-(12/9)] Eo/N=-(24/16)] .. Eo/N=-J x 2L(L-1)/L?2
= 2J x(1-1/L)
7N

(volume term) (surface term)

Energy per spin in the ground state converges to the value
Eo/N = - 2J 1n the thermodynamic limit
(with deviations ~1/L)
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Ising m

del: PBC

S
%
%
%
%
%

—> > -

#
#
#
#
#

- - _ > i
I :
1 1

The energy 1s a 2N-term sum:
each spin interacts with its NN
within the simulation cell or
with the NN 1mages

- - -

!

#

%

1 1
— | - > - —» | — O

One of the 2V possible configurations of a system of N = 16 Ising spins on a square lattice.

with periodic boundary conditions.
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Ising model: PBC

We have always:

24 = ]6 spin configurations for 2x2 lattice

but the energy for each configuration in case of free boundary conditions

and PBC is different:
b bt
H of spins UP | Degeneracy | Energy | Magnetisation
4 1 -8J 4
A O A B I ; 3 0 .
2 4 0 0
0 I R N A 2 2 | 8J 0
1 4 0 -2
T T T ¢ 0 1 -8J -4
E O E 8] Energy and magnetization of 16 configurations of the 2x2 Ising model
= —_ with PBC

Two different configurations with 2 spins up

Energy per spin in the ground state 1s always equal to the value
Eo/N = - 2J 1n the thermodynamic limit
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Ising model: phase transition

Low T: spin configuration minimizes energy
(if ]>0: spins tend to align => high (absolute) magnetization)

High T: spin configuration maximizes entropy

(=disorder) (spins tend to disalign => low magnetization)
A

existence of a
Critical temperature Tc
<Mz in 2D the model has an
analytical solution:

Tc = 2.269 J/ke




Apply Metropolis Monte Carlo method for evolution
in the canonical ensemble (fix T):

Average magnetization per spin as a function of time for a lattice 10x10 and two different T
Thick :T=0.9T, Dashed :T=2T,

| e |

0.5 1

ooy I H T H T Y ' F R B
HETE A\ H e i o I : S R
o v u ! o W i Wi H
L N .: i ' uoe : u B " ' H
H H i e H Vi i H
H " i
H
H
M H
. i

0 50 100 150 200
Monte Carlo steps per spins

Fluctuations! do, as usual, temporal averages: <M>/N, <E>/N
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2D Ising model

o T: =0.9 Tc T=2*Tc
A 0.5 -
S
\
Il
Z 0.0 O ®
X T=T.
v

05 -

-1.0 ‘ ‘ ‘ ‘ |

0.0 1.0 2. 3.0

T

Magnetisation as a function of the temperature for the 2D Ising model.

(data averaged on time; red lines indicate the T values in the previous plot)
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Magnetization distribution for T<T. (solid) and T/>TC (dashed curve)

(data collected during time evolution, at equilibrium)
30



Ising model: phase transition

Tc also for energy, not only for magnetization:

N
<E>/Eo A E=—J ) sis

| ﬁ i,7=nn(1)

T T

C

P

and also the energy fluctuates during time evolution...

31



Ising model: fluctuations

Fluctuations are intrinsic to the system evolution
and are important!
Linear response functions are related to
equilibrium fluctuations:

(already proved): C = % O= # ((E?) —(E)?)
1
but also:  x = I}}{%% , X = k_T(<M2> —(M)?)

where (M) and (M?) are evaluated in zero magnetic fields.

32



Ising model:

fluctuations and phase transition

Rapid change in <E> and <M> => singularities in C and X

(Large fluctuations near
the phase transition:
Second Order phase transition)

specific heat:

_ O(E)
C= oT

magnetic susceptibility:

0%
= o




993SM - Laboratory of
Computational Physics

lecture 8 - part 2
April 29, 2020

Maria Peressi
Universita degli Studi di Trieste - Dipartimento di Fisica
Sede di Miramare (Strada Costiera 11, Trieste)
e-mail: peressi@ts.infn.it
tel.: +39 040 2240242



mailto:peressi@ts.infn.it

Implementing
the Ising model
in the code



Implementing the Ising model

on a 2D square lattice in the canonical ensemble

zero-field, nearest neighbor interactions only

N

1,7=1

Input parameters are:

e L (linear lattice dimension, which gives the number of spins: N=L*L)
e nmcs (number of total MC steps per spin)
e nequil (number of equilibration MC steps per spin)

e T (temperature of the thermal bath).

36



Implementing the Ising model

program ising
' metropolis algorithm for the ising model on a square lattice
use common
integer :: imcs,ispin, jspin
real (kind = double), dimension(5) :: cum
|ca11 initial (nequil, cum)
I equilibrate system
do imcs = 1,nequil
call metropolis()
end do
I accumulate data while updating spins
do imcs = 1,nmcs
call metropolis()
call data(cum)
end do
call output(cum)

end program ising
37



Ising model on a lattice

L : linear lattice dimension

N = LxL : number of spins

a configuration (a microstate) is the whole
sequence of spins, i.e. the LxL array spin(x,y)

module common

integer, public, dimension(:,:), allocatable :: spin

subroutine initial(nequil,cum)

allocate(spin(L,L))
..... spin(x,y) = 1 ]_
1 p—
else SZ .

spin(x,y) = -1

38



Ising model: magnetization

Total magnetization, or define an average
magnetization per spin:

N
| compute initial magnetization ,

M = 0.0_double

doy = 1,L N
do x = 1,L m—%—ig S
— — /)
..... N N 4
..... 1=1
M =M+ spin(x,y)
end do —1<m<+1
end do

(Instead of the loop over x,y, write: M=sum(spin))
39



Ising model: energy

N
E=—-J Z S¢S * * f

}

i,7=nn(7) * up$ * *

| compute initial energy $ % % *
E = 0.0_double ~ right

doy =1,L voovo oy }

sums = spin(x,up) + spin(right,y)

I calculate the initial energy summing all over pairs
! (for a given spin, consider only the up NN and the right NN

' = NOT the down and the left NN - : each interaction is counted once
E = E - spin(x,y)*sums
end do
end do

40



Ising model: energy with PBC

IR
| periodic boundary conditions
if (y ==1L1) th
S %%r%%%
else
up =y + 1 * * *-——-* * *
end if
do x = 1, O R T B R
if (x == L) then I
I T A
else
right = x + 1
end if * * * *

sums = spin(x,up) + spin(right,y)
I calculate the initial energy summing all over pairs
I (gor a given spin, consider only the up NN and the right NN

' = NOT the down and the left NN - : each interaction is counted once
E = E - spin(x,y)*sums
end do
end do

41



Ising model:
spin flip dynamics

Choose a random spin and flip it:
it's @ new configuration (a microstate)
do ispin = 1,N
! random x and y coordinates for trial spin
call random_number (rnd)

x = int(L*rnd) + 1 = 1 < r< L
call random_number (rnd) - o
y = int(L*rnd) + 1 < 1 < Y < L

Flipis:  spin(x,y) = -spin(x,y)

but do it later, only if you decide to accept the flip (according to Metropolis)
42



Ising model:
energy variations per spin flip

Evolution is driven by the energy change between
the old and the new configuration (Metropolis MC)

dE = DeltaE(x,y) <= energy variation for spin(x,y) {flip
call random_ number (rnd)
if (rnd <= w(dE)) then < w(dE) is e 2E/kBT

spin(x,y) = -spin(x,y)
accept = accept + 1

DeltaE_result = 2*spin(x,y)*(left + right + up + down)
..... 43



Energy variations per spin flip with PBC

function DeltaE(x,y) result (DeltaE_result)
I periodic boundary conditions

if (x == 1) then
left = spin(L,y) Y = L > *
right = spin(2,y)

else if (x == L) then

left = spin(L-1,y) *
right = spin(1,y)

else *
left = spin(x-1,y)

right = spin(x+1,y)
end if o i *
if (y == 1) then Y= 1
up = spin(x,2)
down = spin(x,L)
else if (y == L) then
up = spin(x,1)
down = spin(x,L-1)
else
up = spin(x,y+1)
down = spin(x,y-1)
end if

- - - —b

- - - - - -
— - - — — -

tq

|| — P | 4 - - @ | -

=
p—
&



Ising model:
storage of Boltzmann’s coeff.

I Choosing the interaction parameter J=1,
| possible energy variations per spin flip are -8,-4,0,+4,+8:
do dE = -8,8,4

A $
w(dE) = exp(-dE/T) bbb —— by b aEB=w
end do t }
accept = 0O } }
do 1 =1,5 y A — AE = 4]
cum(i) = 0.0 _double ! *
end do 4 {
vy 4 —» 4 gy ) AE =0
. + +
Convenient to store the + ;
Boltzmann’s coefficient for o St
these discrete values of + +
. . v by —— AE = -8]
energy variations + +
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Ising model:
updating energy and magnetization

subroutine metropolis()
! one Monte Carlo step per spin

c.lfuispin = 1,N DO NOT CALCULATE
EVERYTHING FROM THE
dE = DeltaE(x,y) SCRATCH!

call random_number (rnd)

if (rnd <= w(dE)) then
spin(x,y) = -spin(x,y)
accept = accept + 1

M =M+ 2%spin(x,y) ! factor 2 is to account for the variation:
E=E+ dE L (= (=)+(+))
end if \
end do AF is already a variation

end subroutine metropolis
46



Spin flip dynamics: how
to choose spin to flip?

Random ...
do ispin = 1,N
! random x and y coordinates for trial spin
call random_number (rnd)

x = int(L*rnd) + 1 < 1 < < [
call random_number (rnd) - -
y = int (L*rnd) + 1 < 1 < Yy < [,
or ordered (sequential) ...
do x = 1,L
doy =1,L

spin(x,y) = -spin(x,y)

47



Spin flip dynamics: how
to choose spin to flip?

® ORDERED: in some cases, it could go more
slowly towards equilibrium (see later:
correlation time), but it depends...

® NO appreciable differences in the statistics
at equilibrium

48



Measuring physical quantities:
how to accumulate data!?

subroutine data(cum)
I accumulate data after every Monte Carlo step per spin

real (kind = double), dimension(5), intent (inout) :: cum
cum(1l) = cum(1l) + E

cum(2) = cum(2) + ExE

cum(3) = cum(3) + M

cum(4) = cum(4) + Mx*M

cum(5) cum(5) + abs(M)
end subroutine data

After one MC step per spin for all spins:

do imcs = 1,nmcs
call metropolis() contains the loop over all the spins
call data(cum)

end do

Alternatively, do it after each MC step per individual spin...

49



Measuring physical quantities: how to
accumulate data?
Further remarks...

® Use statistically INDEPENDENT configurations

® (Calculate therefore the CORRELATION TIME
by considering the autocorrelation functions:

Cr(t) =< M(t)M(0) > — < M >2, Cg(t) =< E()E(0) > — < E >*
(Crm(0) ox x, Cg(0) o Cy)

Cr(t) — 0 and Cg(t) — 0 exponentially for t — oo

with a certain decay time 7: consider intervals longer than 7
for statistical averages

50



Autocorrelation functions

CE(t),L=8

1

— = ="

0.8 [

w H U

0.6 & &
049
0.2

0

0.2 : ' :
CM(t), L =8

1 I I

0.8

0.6

0.4

0.2

0

-0.2 L | I !
0 200 400 600 800 1000

t[u.a.]

(NOTE: "critical slowling down” for T' — T¢)

=> configurations change very slowly, and it is difficult to sample enough configurations
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Measuring physical quantities: how to
accumulate data!’
Further remarks...

® see also CORRELATION LENGTH between
magnetic domains, ¢(T)

® close to T, also the correlation length increases
(spin alighments are more correlated), up to
divergence

52



Measuring physical quantities:
which errors?

® necessary to give the ERROR ESTIMATE
corresponding to the measured physical
quantity !!!

® (seeTab. | of D.P.Landau, PRB 13,2997 (1976),
“Finite size behavior of the Ising square lattice”)

® do also BLOCKING (called “coarse grained
technique” in that paper)

53



How to do efficiently
simulations as
a function of T?

® Sometimes EQUILIBRATION time is long...

® |DEA:for T’ close to T, choose as starting
point the equilibrated output of T

(see previous example, reported also on next slide)

54



0.5

How to do efficiently
simulations as
a function of T7?

Magnetization (System : 10%10)

Thick : T=09T, Dashed:T=2T,

-

et

M

o,

b

50

100

150

Monte Carlo steps per spins

200

Magnetization distribution

1 0.5 0 05 1
PM)
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Ising model: size problems

We cannot simulate an INFINITE system!

4.0
Cy

3.0F

L =8 and L = 16|:

0.0 ] ] ] ] |
1.5 2.0 2.5 3.0 3.5

The temperature dependence of the specific heat C' (per spin) of the Ising model
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Ising model: size problems

INTERFACE EFFECTS:
example of energy for HALF UP/HALF DOWN

configurations:

l1=2 E=0 \ARARIK
L=4  E=-I Y Y |A[A
L=8  E=-1.5 Y(Y|A]|A
L=16 E=-1.75 AR AFIR!
L=20 E=-18 “inte?"face”
=32 E=-1.875

for an infinite system: E=-2
We have a (“interface”) term proportional to I/L

57



Ising model: alternative dynamics

® in the SPIN FLIP dynamics the order parameter
is not conserved (M changes during evolution)

® alternative: NN spin exchange (Kawasaki dyn.)
(exchange two NN spins picked at random;
M is conserved; this is equivalent to LATTICE
GAS MODELS with fixed number of particles)

58



Ising model: Kawasaki dynamics

Fixed magnetization : change of thermodynamical en-
semble

No modification of the equilibrium properties

except phase separation




T=10, starting from random configuration

By HeMath - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37327967
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Ising model:

other generalizations

e SPINS: XY, Heisenberg, Potts...

o LATTICES: Square, Triangle, Cubic,
Honeycomb, Kagome....

o INTERACTIONS: Magn. Field, Antiferrom.,
Next Nearest Neighbor (NNN)....

Different behaviour according to the geometry and the kind of interactions.
Example: frustration in the triangular antiferromagnetic Ising model:

X w




T < T.

FIG. 15. (Color online) Behavior of the two dimensional Ising model (top) and XY model (bottom) at 7' < T,, T' = T, and
T > Te. For the Ising model, an 1 spin (s; = 1) is represented by red and a | spin (s; = —1) is represented by blue. For the
XY model, because every spin is determined by 6, so s; = (cosf,sin6), an angle of 27 is represented by red and an angle of
0 by blue. In the low-temperature phase, the Ising model exhibits spontaneous magnetization while in the XY model, vortex
buddies appear (characterized by points where a continuum from blue to red, or viceversa, circle the point. It is worth to notice
that these points are present by pairs with opposite circulation).
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Program:

on

$/home/peressi/comp-phys/Vlll-ising/
[do: $cp /home/peressi/.../Vll-ising/* .]

ising.f90

63



Exercise

(a) Choose L=30,T=2, and initially spin=%x1| randomly. Calculating and plotting
the instantaneous values of the energy E/N and the magnetization M/N
per spin (averaged over the lattice) as a function of Metropolis-MC steps, how
much time (i.e. how many nequil MC steps) is it necessary to equilibrate the
system!?

Hint:
- Since initially spin=x1 randomly, E/N and M/N initially will be far from the
expected equilibrium average value.

First, set nequil=0 and plot instantaneous values of E/N and M/
Estimate nequil from that plot!!! Visualization is important!!!! .|,

Magnetization (System : 10%10)
ick:T=0.9T, Dashed:T=2T,

M

nequil of course depends on T and on the initial situation

Then, set nequil not zero and calculate the time average < E >/N and <M >/N;

increasing the total nmcs, the two quantities should converge...
64



EXxercise

+| randomly. ...

2, and initially spin=

30, T
Plot a snapshot of the spin pattern: does the system appear ordered or

disordered?

(a) Choose L

it should appear ordered...

p ‘ising-up.dat’ ps 3 pt 7,'ising-down.dat’ ps 3 pt 7

Plotting “ising-up.dat” and “ising-down.dat” which contain the coordinates of

spin up and down respectively, one should get something like that:

&
000000000000000000 -

000000000000 000000
B

66666666666
111111

Calculate also c and X.

e
S
000000000000 000000
o

0000000000000000000 ¢
0000000000000000000

s
0000000000000000000 -
0000000000000000000
0000000000000000000 -
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EXxercise

(@) Choose L=30,T=2, and initially spin=%x1 randomly. ...

Calculate also c and X.

(b) Choose T=I and repeat (a). ..




Raw data: traces, covariance and autocorrelation time

Trace: magnetization for T = 2.27.J/kg ~ T (10° sweeps)

| T | | | T
=04 ——

=10
=20 —

AN,
MM’WMHW

<M>

\Im} A Ll :ﬁ%‘#ﬁ*ﬂﬁq
%ﬂ MUAMHH'M.J‘MMMNW“[M
| | | |
0 200 400 600 800 1000 1200
#it/100
Computer simulations in statistical physics - HW 4 - WS 2006/07 - Nils Bliimer (Univ. Mainz) a4 = AN > 17
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Magnetization (10° sweeps)

Tg!
I | I I I |
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- 4=
||.._|..| 5
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Energy (10° sweeps)
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Magnetic susceptibility (10° sweeps)
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Magnetic susceptibility
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Specific heat (10° sweeps)
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Specific heat near T, (10° sweeps)

oy kg/J? = L? (<E®>-<E>?)/(kg T9)
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A few references:
Ising E 1925 Zeitschrift fur Physik 31 253-258

Bethe H 1931 Zeitschrift fur Physik 71 205
Heisenberg W 1928 Zeitschrift fur Physik 49 205
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Universality and critical exponents

) Near T,., we can characterize the behavior of many physical quantities by power law
behavior just as we characterized the percolation threshold (see Table 13.1). For example, we can

write m near T, as

m(T) ~ (T, — T)”, (17.22)

Where(ﬁ is a critical exponent)(not to be confused with the inverse temperature). Various thermo-
dynamic derivatives such as the susceptibility and heat capacity diverge at T.. We write

X~ |T =T, (17.23)

and
C~|T-T.]|“. (17.24)

We have assumed that y and C are characterized by the same critical exponents above and below
T..

Another measure of the magnetic fluctuations is the linear dimension (7T of a typical magnetic
domain. We expect the correlation length £(T) to be the order of a lattice spacing for T' > T..
Because the alignment of the spins becomes more correlated as T" approaches T, from above, £(T')

increases as T approaches T,.. We can characterize the divergent behavior of £(T") near T, by the
( critical exponent v: )

(T) ~ |T — T.| ™. (17.25)

From: Gould-Tobochnich 75



Universality and critical exponents

More precisely, the magnetisation follow a power law close to
the transition only approaching from smaller T:

M =0 T > 1T,

M~ |1—=T/T,|" T <T,

If we use the Reduced temperature : AT = (T — T.)/T.
C ~ |AT|™“
M ~ |AT|P for AT <0
~ AT|™7

X
& ~ |AT|7Y
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Universality and critical exponents

the critical exponents are not independent from each other, because of the
following scaling laws (®):

/YZV(Q_H)a
2=a+20+,
vd = 2 — «,

7:5(5—1)’

so it is only necessary to know two of them to determine the others.

For the 2D Ising model: o 0
B 0.125
Y 1.750
1% 1

® Kerson Huang, Introduction to Statistical Physics (CRC Press)
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Universality and critical exponents

If the heat capacity goes like: C(T') o< |T'—T,|™°

we could plot O(lT) as a function of 7" and make a linear fit:

— = bT
C’(T) a +

and similarly for the other quantities.

BUT: Because we can simulate only finite lattices, a direct fit
of the measured quantities does not yield good estimates

for the corresponding exponents &, V, 3,and Y => we have
to take into account the finite size of the system

=> finite size scaling
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Universality and critical exponents

The shift in the peak position of C and X with respect to the critical temperature
corresponding to the thermodynamic limit is described by: 7.(L) — T.(c0) o< L™*

| | T y T v T T T T T
| | oo
I , 0.44 - Q i
|
| |
: |
[
| 0.43 i
T
A EGU
0.42 - i
e ‘__:.-_.-..:.:" LN . NT = ..:_:‘:‘. . 041 |
' | ' T T T T T
0.00 0.02 0.04 0.06 0.08 0.10
T L—l
FIG. 1. Typical beha,vi(?u‘r of a phy sical quantity A vs tem- FIG. 9. (Color online) Inverse of the critical temperature Tt
perature close to the cr1t1c§,ﬂ point for various system sizes.  vys inverse of lattice size L ™" for the 2D Ising model. The curve
Figure taken from Thiissen™. was fitted with a power law T, ' = Tc;f —bL~Y ¥, and the
[Thijssen, Computational Physics (Cambridge University Press)] critical exponent v was determined.

® From: E. Ibarra-Garcia-Padilla et al., European Journal of Physics 37(6):065103 DOI: 10.1088/0143-0807/37/6/065103
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Universality and critical exponents

(This is referred to percolation)

Because we can simulate only finite lattices, it is difficult to obtain estimates for the critical
exponents «, 3, and v by using the definitions (17.22)—(17.24) directly. We learned in Section 13.4,
we can do a finite size scaling analysis to extrapolate finite L results to L — oo. For example, from
Fig. 17.2 we see that the temperature at which C' exhibits a maximum becomes better defined for
larger lattices. This behavior provides a simple definition of the transition temperature 7,.(L) for
a finite system. According to finite size scaling theory, T.(L) scales as

T.(L) — To(L = 00) ~ aL ™", (17.27)

where a is a constant and v is defined in (17.25). The finite size of the lattice is important when
the correlation length

ET)~L~|T—-T.]|7". (17.28)
As in Section 13.4, we can set T = T, and consider the L-dependence of M, C', and y:
m(T) ~ (T, —T)° — L=P/" (17.29)
C(T) ~ |T —To| =% — LYV (17.30)
X(T) ~ |T —T.|~7 — LY. (17.31)
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Scaled magnetization vs unscaled T' (10° sweeps)
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