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The Ising model
in the canonical ensemble

- Introduction to the Ising model
 - The Ising model in the canonical 

ensemble: application of 
Metropolis Monte Carlo Method

- Implementation in a code
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We need a model for:

- energy 

- evolution 
  (to build the trajectory / the Markov chain)

stochastic simulations of an 
interacting spin ensemble
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stochastic simulations of an 
interacting spin ensemble

We need a model for:

- energy => Ising model

- evolution 
  (to build the trajectory / the Markov chain)
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Ising model

H
spin

= −J

N∑

i,j=1

sisj

si = ±1

             the simplest model of interacting spin on a lattice

But where does it come from ?
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Figure 16.2: One of the 2N possible configurations of a system of N = 16 Ising spins on a square
lattice. Also shown are the spins in the four nearest periodic images of the central cell that are
used to calculate the energy. An up spin is denoted by ↑ and a down spin is denoted by ↓. Note
that the number of nearest neighbors on a square lattice is four. The energy of this configuration
is E = − 8 J + 4 H with periodic boundary conditions.

16.7 ∗Heat Flow

In our applications of the demon algorithm one demon shared its energy equally with all the spins.
As a result the spins all attained the same mean energy of interaction. Many interesting questions
arise when the system is not spatially uniform and is in a nonequilibrium but time-independent
(steady) state.

Let us consider heat flow in a one-dimensional Ising model. Suppose that instead of all the
sites sharing energy with one demon, each site has its own demon. We can study the flow of heat
by requiring the demons at the boundary spins to satisfy different conditions than the demons at
the other spins. The demon at spin 1 adds energy to the system by flipping this spin so that it
is in its highest energy state, that is, in the opposite direction of spin 2. The demon at spin N
removes energy from the system by flipping spin N so that it is in its lowest energy state, that is,
in the same direction as spin N − 1. As a result, energy flows from site 1 to site N via the demons
associated with the intermediate sites. In order that energy not build up at the “hot”end of the
Ising chain, we require that spin 1 can only add energy to the system if spin N simultaneously
removes energy from the system. Because the demons at the two ends of the lattice satisfy different
conditions than the other demons, we do not use periodic boundary conditions.

The temperature is determined by the generalization of the relation (16.8 ), that is, the tem-
perature at site i is related to the mean energy of the demon at site i. To control the temperature
gradient, we can update the end spins at a rate different than the other spins. The maximum
temperature gradient occurs if we update the end spins after every update of an internal spin. A
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In the Hilbert spin subspace we can choose a coupled representation, 
referring to the spin sum     ,  with eigenstates labeled by               :

Consider two fermions,          (e.g. electrons in He) described by a hamiltonian                        
not depending explicitly on spin:

2 interacting spins
s⃗1, s⃗2

H = h1 + h2 + V12

=> the eigenstates can be in a factorized form (symm/antisymm under 
particle exchange due to the Pauli exclusion principle):

Ψ+,−(1,2) = Ψorb
+,−(1,2) χ(1,2)

⃗S

Ψ+,−(1,2) = Ψorb
+,−(1,2) χS,Sz

(1,2) = Ψorb
+,−(1,2) |S, Sz >

|S, Sz >
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Ψorb
+,−(1, 2)|S, Sz >= (φ(1)ψ(2) + (−)Sφ(2)ψ(1))/

√
2

Notiamo però anche che se due qualsiasi delle righe sono fra loro uguali,
il determinante si annulla e quindi una tale funzione d’onda non corrisponde
ad alcun stato fisico. Pertanto tutte le �i devono essere diverse; due (o più)
fermioni identici non possono trovarsi nello stesso stato. Si tratta del noto
principio di esclusione di Pauli.

7.7 Atomi a due elettroni

Supponiamo che lo spin sia separabile dalle coordinate (cosa senz’altro vera se
l’hamiltoniano non contiene termini esplicitamente dipendenti dallo spin). In
tal caso si potrà scrivere

 (1, 2) = �(r1, r2)�(�1,�2) (7.27)

dove � è funzione solo delle coordinate r e � solo degli spin �.
La  (1, 2) è sempre antisimmetrica perchè gli elettroni sono fermioni. Tut-

tavia, è chiaro che è possibile ottenere questo risultato con una � antisimmetrica
e una � simmetrica, oppure con una � simmetrica e una � antisimmetrica. Dati
le autofunzioni di spin del singolo elettrone, ciascuna delle quali ha due valori
possibili che indichiamo semplicemente con v+ e v�, possiamo costruire tre
funzioni simmetriche dello spin:

�1,1 = v+(�1)v+(�2) (7.28)

�1,0 =
1p
2

[v+(�1)v�(�2) + v�(�1)v+(�2)] (7.29)

�1,�1 = v�(�1)v�(�2) (7.30)

e una antisimmetrica:

�0,0 =
1p
2

[v+(�1)v�(�2)� v�(�1)v+(�2)] (7.31)

Quelle simmetriche costituiscono un “tripletto” e corrispondono a uno stato
del sistema a due elettroni con spin complessivo pari a 1, e tre possibili valori
per la sua proiezione lungo z: -1, 0 e +1. Quella antisimmetrica costituisce un
“singoletto” e corrisponde a uno stato con spin complessivo 0.

Il valore dello spin complessivo determina quindi la simmetria della parte di
spin, e di conseguenza quella della parte configurazionale. La funzione d’onda
configurazionale antisimmetrica tende a “respingere” i due elettroni, in quanto
non permette che essi possano essere vicini (la funzione d’onda tende ad an-
nullarsi quando gli elettroni vengono portati nella stessa posizione). Per e↵etto
della repulsione elettrostatica, ciò fa s̀ı che l’energia risultante sia più bassa
di quella del corrispondente caso simmetrico, in cui gli elettroni hanno elevata
probabilità di trovarsi vicini. Per questo motivo, fra gli stati eccitati dell’elio in
cui uno dei due elettroni si trova in un orbitale 2s, lo stato in cui i due spin sono
allineati (ortoelio, tripletto, parte di spin simmetrica e parte configurazionale
antisimmetrica) ha energia più bassa di quello in cui i due spin sono opposti
(paraelio, singoletto, parte di spin antisimmetrica e parte configurazionale sim-
metrica).
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Spin singlet:  antisymmetric

Spin triplet:  symmetric

2 interacting spins

|S, Sz >

|S, Sz > = χS,Sz
(σ1, σ2)

Eigenstates

where                                  have the explicit form:
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The Pauli principle => the energy is affected by spin
 even if     does not depend explicitly on it:H

< S = 0|H|S = 0 >= Es

< S = 1|H|S = 1 >= Et

singlet
triplet

Hence:

< S = 0|H|S = 0 > − < S = 1|H|S = 1 >= Es − Et

2 interacting spins
Energy

< Ψ+,−|H|Ψ+,− >=< Ψorb
+,−|H|Ψorb

+,− >=< φ|h|φ > + < ψ|h|ψ > +J12+(−1)SK12

= E0 + J12 + (−1)S
K12

= 2K12

J12 = ⟨ϕ(1)ψ(2) |V12 |ϕ(1)ψ(2)⟩
K12 = ⟨ϕ(1)ψ(2) |V12 |ϕ(2)ψ(1)⟩

with the Hartree and the exchange terms:
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The relative order of           depends onEs, Et

In He, with  V12= repulsive Coulomb interaction, 

Es > Et (K > 0)

(a part from the ground state, when only singlet is allowed)

But present discussion is independent on the sign of Es − Et

V12 (K12)

2 interacting spins
Energy
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2 interacting spins

Consider  the operator:
∑

12
= s⃗1 · s⃗2 =

1

2
S2

−
3

4

which is diagonal on the coupled basis, with eigenvalues:

Consider  then: Hspin = −(Es − Et)Σ12

< S = 0|Σ12|S = 0 >= − 3

4
, < S = 1|Σ12|S = 1 >=

1

4

Idea: write a model hamiltonian explicitly dependent on 
spin (and only dependent on spin) which gives the same 
difference between the energy eigenvalues of its 
eigenstates as the original one.

We have:
< S = 0|Hspin|S = 0 > − < S = 1|Hspin|S = 1 >= Es − Et
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is therefore OK! Defining:                   , we have
(going back to the individual basis representation):

Hspin = −(Es − Et)Σ12

Heisenberg hamiltonian

J ≡ Es − Et

H
spin

J>0 (Es > Et )         spins favored => ferromagnetic case

J<0 (Es < Et )         spins favored => antiferromagnetic case

= −Js⃗1 · s⃗2
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Heisenberg hamiltonian

Extension to the case of several spins:

H
spin

= −

N∑

i,j=1

i̸=j

Jij s⃗i · s⃗j

(see also:  Ashcroft & Mermin, chap. 32, 
“Spin hamiltonian and Heisenberg model”)
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Ising model

J>0 (Es > Et )         spins favored => ferromagnetic case

J<0 (Es < Et )         spins favored => antiferromagnetic case

H
spin

= −J

N∑

i,j=1

sisj

si = ±1Consider only the possibility :              and nearest neighbor 
interaction only, with the same interaction constant J
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E = -J E = +J

Figure 16.1: The interaction energy between nearest neighbor spins in the absence of an external
magnetic field.

16.6 The Ising Model

A popular model of a system of interacting variables in statistical physics is the Ising model. The
model was proposed by Lenz and investigated by his graduate student, Ising, to study the phase
transition from a paramagnet to a ferromagnet (cf. Brush). Ising computed the thermodynamic
properties of the model in one dimension and found that the model does not have a phase transition.
However, for two and three dimensions the Ising model does exhibit a transition. The nature of the
phase transition in two dimensions and the diverse applications of the Ising model are discussed
in Chapter 17 .

To introduce the Ising model, consider a lattice containing N sites and assume that each
lattice site i has associated with it a number si, where si = +1 for an “up” (↑) spin and si = −1
for a “down” (↓) spin. A particular configuration or microstate of the lattice is specified by the
set of variables {s1 , s2 , . . . sN} for all lattice sites.

The macroscopic properties of a system are determined by the nature of the accessible mi-
crostates. Hence, it is necessary to know the dependence of the energy on the configuration of
spins. The total energy E of the Ising model is given by

E = −J
N∑

i,j=nn(i)

sisj − H
N∑

i=1

si, (16.6)

where H is proportional to a uniform external magnetic field. The first sum in (16.6) is over all
nearest neighbor pairs. The exchange constant J is a measure of the strength of the interaction
between nearest neighbor spins (see Fig. 16.1). The second sum in (16.6) represents the energy of
interaction of the magnetic moments associated with the spins with an external magnetic field.

If J > 0, then the states ↑↑ and ↓↓ are energetically favored in comparison to the states ↑↓
and ↓↑. Hence for J > 0, we expect that the state of lowest total energy is ferromagnetic, that
is, the spins all point in the same direction. If J < 0, the states ↑↓ and ↓↑ are favored and the
state of lowest energy is expected to be antiferromagnetic, that is, alternate spins are aligned. If
we subject the spins to an external magnetic field directed upward, the spins ↑ and ↓ possess an
additional internal energy given by −H and +H respectively.

An important virtue of the Ising model is its simplicity. Some of its simplifying features are
that the kinetic energy of the atoms associated with the lattice sites has been neglected, only
nearest neighbor contributions to the interaction energy have been included, and the spins are
allowed to have only two discrete values. In spite of the simplicity of the model, we will find that
it exhibits very interesting behavior.

(choosing the kind of interaction, we specify the energy model)
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Ising model on a lattice

Figure 2: Lowest-energy states of the two-dimensional Ising model with ferromagnetic (left) and
antiferromagnetic (right) interactions. Solid and open circles correspond to up an down spins,
respectively.

The coupling constants Jij are often restricted to be non-zero only for lattice sites i, j that are
nearest neighbors. Here the spin vectors are three dimensional, but anisotropies can lead to effective
spin models in which the spin orientations are confined to within a plane, as illustrated in Fig. 1,
or along a single axis.

The simplest spin model is the Ising model, in which the spins have only two possible orientations
along a chosen axis; ”up” or ”down”. Denoting the degrees of freedom σi = ±1, the energy is

E =
∑

i,j

Jijσiσj − h
∑

i

σi, (17)

where we have also included an external magnetic field. The interaction Jij is again often (but not
always) non-zero only between nearest neighbors. Ising couplings can arise in a system of S = 1/2
quantum spins when anisotropies make the interactions in one spin direction dominant, e.g., only
Sz

i Sz
j may have to be considered. There is also a plethora of other physical situations that can be

mapped onto Ising models with various forms of the interaction Jij and the field h in Eq. (17), e.g.,
binary alloys (where σi correspond to the two species of atoms) and atoms adsorbed on surfaces
(where σi correspond to the presence of absence of an atom on a surface).

Considering nearest-neighbor interactions only and zero external field, the energy is

E = J
∑

⟨i,j⟩

σiσj , (18)

where ⟨i, j⟩ denotes a pair of nearest-neighbor sites i, j. In sums like thse one normally counts each
interacting spin pair only once, i.e., if the term ⟨i, j⟩ is included in the sum, the term ⟨j, i⟩ is not.
Denoting by σ the whole set of spin configurations {σ1, . . . ,σN}, where N is the total number of
spins in the system, the thermal expectation value of a function A(σ) is

⟨A⟩ =
1

Z

∑

σ

A(σ)e−E(σ)/T , (19)

Z =
∑

σ

e−E(σ)/T . (20)

For ferromagnetic interactions (i.e., J < 0) when T → 0 there are only two contributing spin con-
figurations; those with all spins pointing up or down. For antiferromagnetic interactions (J > 0)
there are also two lowest-energy configurations if the lattice is bipartite, i.e., if the system can

5

Lowest energy state of the 2D Ising model on a square 
lattice with ferromagnetic (J>0) and antiferromagnetic (J<0) 
interactions. Solid and open circles correspond to +1 and 
-1 spins, respectively.

J <0 J >0 

CHAPTER 16. THE MICROCANONICAL ENSEMBLE 565

E = -J E = +J

Figure 16.1: The interaction energy between nearest neighbor spins in the absence of an external
magnetic field.

16.6 The Ising Model

A popular model of a system of interacting variables in statistical physics is the Ising model. The
model was proposed by Lenz and investigated by his graduate student, Ising, to study the phase
transition from a paramagnet to a ferromagnet (cf. Brush). Ising computed the thermodynamic
properties of the model in one dimension and found that the model does not have a phase transition.
However, for two and three dimensions the Ising model does exhibit a transition. The nature of the
phase transition in two dimensions and the diverse applications of the Ising model are discussed
in Chapter 17 .

To introduce the Ising model, consider a lattice containing N sites and assume that each
lattice site i has associated with it a number si, where si = +1 for an “up” (↑) spin and si = −1
for a “down” (↓) spin. A particular configuration or microstate of the lattice is specified by the
set of variables {s1 , s2 , . . . sN} for all lattice sites.

The macroscopic properties of a system are determined by the nature of the accessible mi-
crostates. Hence, it is necessary to know the dependence of the energy on the configuration of
spins. The total energy E of the Ising model is given by

E = −J
N∑

i,j=nn(i)

sisj − H
N∑

i=1

si, (16.6)

where H is proportional to a uniform external magnetic field. The first sum in (16.6) is over all
nearest neighbor pairs. The exchange constant J is a measure of the strength of the interaction
between nearest neighbor spins (see Fig. 16.1). The second sum in (16.6) represents the energy of
interaction of the magnetic moments associated with the spins with an external magnetic field.

If J > 0, then the states ↑↑ and ↓↓ are energetically favored in comparison to the states ↑↓
and ↓↑. Hence for J > 0, we expect that the state of lowest total energy is ferromagnetic, that
is, the spins all point in the same direction. If J < 0, the states ↑↓ and ↓↑ are favored and the
state of lowest energy is expected to be antiferromagnetic, that is, alternate spins are aligned. If
we subject the spins to an external magnetic field directed upward, the spins ↑ and ↓ possess an
additional internal energy given by −H and +H respectively.

An important virtue of the Ising model is its simplicity. Some of its simplifying features are
that the kinetic energy of the atoms associated with the lattice sites has been neglected, only
nearest neighbor contributions to the interaction energy have been included, and the spins are
allowed to have only two discrete values. In spite of the simplicity of the model, we will find that
it exhibits very interesting behavior.
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and ↓↑. Hence for J > 0, we expect that the state of lowest total energy is ferromagnetic, that
is, the spins all point in the same direction. If J < 0, the states ↑↓ and ↓↑ are favored and the
state of lowest energy is expected to be antiferromagnetic, that is, alternate spins are aligned. If
we subject the spins to an external magnetic field directed upward, the spins ↑ and ↓ possess an
additional internal energy given by −H and +H respectively.

An important virtue of the Ising model is its simplicity. Some of its simplifying features are
that the kinetic energy of the atoms associated with the lattice sites has been neglected, only
nearest neighbor contributions to the interaction energy have been included, and the spins are
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Ising model:
interesting quantities 
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Ising model: energy
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additional internal energy given by −H and +H respectively.

An important virtue of the Ising model is its simplicity. Some of its simplifying features are
that the kinetic energy of the atoms associated with the lattice sites has been neglected, only
nearest neighbor contributions to the interaction energy have been included, and the spins are
allowed to have only two discrete values. In spite of the simplicity of the model, we will find that
it exhibits very interesting behavior.

Energy in presence of an external magnetic field:

E = −J

N∑

i,j=nn(i)

sisj

No external magnetic field:

or, better, define an average energy per spin: E/N

(nn=nearest neighbor)
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Ising model: magnetization
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For the familiar case of classical particles with continuously varying position and velocity
coordinates, the dynamics is given by Newton’s laws. For the Ising model the dependence (16.6) of
the energy on the spin configuration is not sufficient to determine the time-dependent properties
of the system. That is, the relation (16.6) does not tell us how the system changes from one spin
configuration to another and we have to introduce the dynamics separately.

In Problem ?? we simulated the Ising model using a cellular automata approach. The major
limitation of this approach is that it is difficult for the system to sample a representative set of
configurations. In addition, there is no simple measure of the temperature. The demon algorithm
is much more effective at exploring the set of possible configurations, because the energy of the
lattice can fluctuate slightly allowing the lattice to sample any configuration with nearly the same
energy. We implement the demon algorithm by choosing a spin at random. The trial change
corresponds to a flip of the spin from ↑ to ↓ or ↓ to ↑.

Because we are interested in the properties of an infinite system, we have to choose appropriate
boundary conditions. The simplest boundary condition in one dimension is to choose a “free
surface” so that the spins at sites 1 and N each have one nearest neighbor interaction only. In
general, a better choice is periodic boundary conditions. For this choice the lattice becomes a ring
and the spins at sites 1 and N interact with one another and hence have the same number of
interactions as do the other spins.

What are some of the physical quantities whose averages we wish to compute? An obvious
physical quantity is the magnetization M given by

M =
N∑

i=1

si, (16.7)

and the magnetization per spin m = M/N . Usually we are interested in the average values ⟨M⟩
and the fluctuations ⟨M2⟩−⟨M⟩2. We can determine the temperature T as a function of the energy
of the system in two ways. One way is to measure the probability that the demon has energy Ed.
Because we know that this probability is proportional to exp(−Ed/kT ), we can determine T from
a plot of the logarithm of the probability as a function of Ed. An easier way to determine T is to
measure the mean demon energy. However, because the values of Ed are not continuous for the
Ising model, T is not proportional to ⟨Ed⟩ as it is for the ideal gas. We show in Appendix 16.8
that for H = 0 and the limit of an infinite system, the temperature is related to ⟨Ed⟩ by

kT/J =
4

ln
(
1 + 4 J/⟨Ed⟩

) . (16.8)

The result (16.8) comes from replacing the integrals in (16.5) by sums over the possible demon
energies. Note that in the limit |J/Ed| ≪ 1, (16.8) reduces to kT = Ed as expected.

Program demon implements the microcanonical simulation of the Ising model in one dimension
using spin flip dynamics and periodic boundary conditions. Once the initial configuration is chosen,
the demon algorithm is similar to that described in Section 16.3 . However, in contrast to the ideal
gas, the spins in the one-dimensional Ising model must be chosen randomly.

PROGRAM demon
! demon algorithm for the d = 1 Ising model in zero magnetic field

“Order parameter”:  total magnetization, or -better-
average magnetization per spin:

m =
M

N
=

1

N

N∑

i=1

si

−1 ≤ m ≤ +1
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The ground state energy per spin  
(ferromagnetic case,  thermodynamic limit  (N large), no ext. field) is:   

 E0/N = -  2J
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Phase transitions in magnetics

Phase transitions are observed in surprisingly simple 
systems, e.g. on a lattice of interacting spins si (magnet

vectors). Interaction energy of nearest neighbours pair is 
    Eij = -J (si sj ) . 

Total energy E and magnetization M for a spins 
configuration {s1, s2, ... sn} is obtained by summation

throughout the lattice. In the Heisenberg model every spin
can take arbitrary direction. In the XY model spins rotate in a
plane.

In the Ising model spins have only two possible states +-1 (up or down). As since every spin takes

two values, therefore there are 2n different configurations for n spins. You see below 24 = 16 spin 
configurations for 2x2 lattice.

 E = -4J            E = 4J

+ +   - -          + -   - +

+ +   - -          - +   + -

 E = 0

- +   + -   + +   + +    + -   - +   - -   - -    - -   + -   + +   - +

+ +   + +   + -   - +    - -   - -   - +   + -    + +   + -   - -   - +

For J > 0 the state of lowest energy is when all spins are aligned. The state has macroscopic
magnetizaion, i.e. it is ferromagnetic. The system is degenerate as since several configurations have
the same energy. Entropy S(E) is minimal when spins are aligned and it grows with increasing of E
(and hence degeneracy).

It is supposed that spins interact too with thermostat at 
temperature T. In thermal equilibrium any system
minimizes the F = E - T S value. Therefore at low
temperature Ising spins minimize energy. Interaction aligns
all spin vectors in the same direction, giving huge total 
magnetic fields. At high temperature the system maximizes
entropy (and disorder). Thermal fluctuations break this
order. The randomness of the spin configuration tends to
wash out the large scale magnetism. 
In the 2D Ising model there is a phase transition at Tc =

2.269 from disordered (non-magnetic) to ordered magnetic 
state (see Fig.1).

2D Ising model

20x20 Ising lattice is shown below. Up and down spins are white and black squares. You see
magnetization M (the red curve) and energy E (the blue one) in the right part of the applet and in the
Status bar. You can watch thermal fluctuations, phase transition and clusters formation (or melting)
by changing temperature (choose 200x200 lattice for a 1GHz PC) 
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For J > 0 the state of lowest energy is when all the spins are aligned.

The state has macroscopic magnetization (ferromagnetic).

Ising model: 
configurations and energy
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e.g.
(microstates)
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Ising model: dynamics?

Beside an energy model, we must define a dynamics 
in order to simulate the evolution of the system

(i.e. to generate the trajectory in the phase space,
to generate the configurations of the Markov chain)

 19



Ising model: 
spin flip dynamics

Consider nn 
interactions, choose 
a random spin and
flip it: it’s a new 
configuration    
(a microstate)
Apply Metropolis Monte Carlo method for 
evolution in the canonical ensemble (fix T).
Evolution is driven by the energy change between 
the old and the new configuration,         .
Remark: Is it sufficient to calculate only         , not  E      
at each new configuration!

∆E

Figure 4: Updating attempts for the Ising model (left), where a spin to be flipped is selected at
random (here the one indicated by a circle), and for particles occupying a continuous volume (right),
where a particle to be moved is selected at random and its new position is generated randomly
within a sphere surrounding it (indicated by a gray circle).

The transition probability P (Ci → Cj) in the examples given above can be written as a product of
two probabilities; one for attempting a certain update (selection of the spin to be flipped, or the
particle to be moved and the displacement vector δ⃗) and one for actually carrying out the change
(accepting it). We hence write

P (Ci → Cj) = P attempt(Ci → Cj)P
accept(Ci → Cj). (30)

It is often the case, as it is in the examples mentioned above, that the probability of attempting
each of the possible updates is trivially uniform, i.e., P attempt(Ci → Cj) = constant, independent
of i, j. This part of the transition probability then drops out of the detailed balance condition (29)
and we are left with a detailed-balance condition for the acceptance probabilities;

P accept(Ci → Cj)

P accept(Cj → Ci)
=

W (Cj)

W (Ci)
. (31)

This condition can be fulfilled in a number of ways, among which the most commonly used is the
Metropolis acceptance probability;

P accept(Ci → Cj) = min

[

W (Cj)

W (Ci)
, 1

]

. (32)

In other words, if the new configuration weight is higher (corresponding to lowering the energy of
the system) we always accept the update, whereas if it is lower we accept it with a probability equal
to the ratio of the new and old weights. It can easily be checked that this Metropolis acceptance
probability indeed satisfies the detailed balance condition (31). To determine whether or not to
accept the update when P accept(Cj) < 1, the acceptance probability (i.e., the weight ratio) can be
compared with a ranom number r ∈ [0, 1); if r < P accept(Ci → Cj) the update is accepted, and
otherwise it is rejected. If an update is rejected, the old configuration Ci should be considered the
next configuration in the sequence. The whole procedure of attempting updates and accepting or
rejecting them using the above scheme goes under the name of the Metropolis algorithm, after the
first author of the paper where this method was first introduced.2

Another often used acceptance probability that can be used with the Metropolis algorithm is

P accept(Ci → Cj) =
W (Cj)

W (Ci) + W (Cj)
, (33)

2N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations

by fast computing machines, J. Chem. Phys. 21, 1087 (1953). This paper is recommended reading!

9

∆E
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Ising model: 
spin flip dynamics

CHAPTER 16. THE MICROCANONICAL ENSEMBLE 577

!E = -8J

!E = -4J

!E = 0

!E = 4J

!E = 8J

Figure 16.3: The five possible transitions of the Ising model on the square lattice with spin flip
dynamics.  21



Ising model: 
boundary conditions

Of course we cannot simulate an infinite system 
(the thermodynamic limit).
We have two choices for the simulation cell:

- free (open) boundary conditions
- periodic boundary conditions (PBC)

 22



Ising model: 
free boundary conditions

in a N=LxL spin lattice there are 2L(L-1) nn interactions; 
for the ferromagnetic g.s. configuration, for instance, the energy is:

 23

Let’s count the interactions…



Energy per spin in the ground state converges to the value   
E0/N = - 2J  in the thermodynamic limit 

(with deviations ~1/L)

Ising model: 
free boundary conditions

E0/N = -J x 2L(L-1)/L2 
    = -2J x (1-1/L) 

E0/N=-J E0/N=-(12/9)J E0/N=-(24/16)J ...

(volume term) (surface term)

 24

in a N=LxL spin lattice there are 2L(L-1) nn interactions; 
for the ferromagnetic g.s. configuration, for instance, the energy is:
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Figure 16.2: One of the 2N possible configurations of a system of N = 16 Ising spins on a square
lattice. Also shown are the spins in the four nearest periodic images of the central cell that are
used to calculate the energy. An up spin is denoted by ↑ and a down spin is denoted by ↓. Note
that the number of nearest neighbors on a square lattice is four. The energy of this configuration
is E = − 8 J + 4 H with periodic boundary conditions.

16.7 ∗Heat Flow

In our applications of the demon algorithm one demon shared its energy equally with all the spins.
As a result the spins all attained the same mean energy of interaction. Many interesting questions
arise when the system is not spatially uniform and is in a nonequilibrium but time-independent
(steady) state.

Let us consider heat flow in a one-dimensional Ising model. Suppose that instead of all the
sites sharing energy with one demon, each site has its own demon. We can study the flow of heat
by requiring the demons at the boundary spins to satisfy different conditions than the demons at
the other spins. The demon at spin 1 adds energy to the system by flipping this spin so that it
is in its highest energy state, that is, in the opposite direction of spin 2. The demon at spin N
removes energy from the system by flipping spin N so that it is in its lowest energy state, that is,
in the same direction as spin N − 1. As a result, energy flows from site 1 to site N via the demons
associated with the intermediate sites. In order that energy not build up at the “hot”end of the
Ising chain, we require that spin 1 can only add energy to the system if spin N simultaneously
removes energy from the system. Because the demons at the two ends of the lattice satisfy different
conditions than the other demons, we do not use periodic boundary conditions.

The temperature is determined by the generalization of the relation (16.8 ), that is, the tem-
perature at site i is related to the mean energy of the demon at site i. To control the temperature
gradient, we can update the end spins at a rate different than the other spins. The maximum
temperature gradient occurs if we update the end spins after every update of an internal spin. A
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Ising model: PBC
The energy is a 2N-term sum: 
each spin interacts with its NN 
within the simulation cell or 
with the NN images
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Ising model: PBC
We have always:

� of spins UP Degeneracy Energy Magnetisation
4 1 �8�J 4
3 4 0 2
2 4 0 0
2 2 8�J 0
1 4 0 �2
0 1 �8�J �4

Table 3.1: Energy and magnetisation of 24 states of the zero-field 2×2 Ising model.

Next we can compute all the quantities of interest using Table 3.1. The partition function is given by:

(3.20)Z � 2 e8��J � 12 � 2 e�8��J.

From this equation and (3.8) we find:

(3.21)U � �
1

Z
�2��8� e8��J � 2 ��8��e�8��J�.

We can find the exact values for �E2�, �M�, � |M | �, �M 2� and the dependence of C and � on �J in the
same manner.

In the limit of an infinite large lattice it is also possible to solve the 2D Ising model analytically (see
for instance [10] and [13]): The best known value to date for the critical Temperature is kBTc/J = 2.271
( kBTc/J =4.5108 for 3D).

CurrentValue[FileName] 33

TTC

M

Although  the  origin  of  ferromagnetism  is  quantum  mechanical  in  nature,  the  study  of  the  classical
Ising  spin  model  provides  much  insight  into  the  properties  of  magnetic  systems  in  the  vicinity  of  a
phase  transition.  Exceptions  are  systems  with  T�Tc  and  models  of  iron  and  nickel  where  the
individual spin moments are no longer localised.

The  physical  properties  of  interest  which  we  want  to  extract  from  a  Ising  spin  simulation  are:  The
mean energy �E�, the mean magnetisation �M�,  the heat capacity C and the magnetic susceptibility �.
We  can  estimate  these  properties  at  the  phase  transitions  by  examining  the  critical  exponents  (see
Chapter 5.3) from computer experiments.

� 3.2.2 Enumeration  of the Ising model on a 2×2 lattice

The number of possible states or configurations of the Ising model increases as 2N ,  therefore we can
only enumerate the possible configurations for small N. As an example we calculate various quantities
of interest for a 2×2 Ising model on a square lattice.

Two different configurations with 2 spins up are shown in Figure 3.1

E�0 E�8

Figure 3.1: Examples of Ising configurations on a 2×2 square lattice, with 
boundary conditions.

In Table 3.1 we list the states according to their total energy and magnetisation.
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For J > 0 the state of lowest energy is when all spins are aligned. The state has macroscopic
magnetizaion, i.e. it is ferromagnetic. The system is degenerate as since several configurations have
the same energy. Entropy S(E) is minimal when spins are aligned and it grows with increasing of E
(and hence degeneracy).

It is supposed that spins interact too with thermostat at 
temperature T. In thermal equilibrium any system
minimizes the F = E - T S value. Therefore at low
temperature Ising spins minimize energy. Interaction aligns
all spin vectors in the same direction, giving huge total 
magnetic fields. At high temperature the system maximizes
entropy (and disorder). Thermal fluctuations break this
order. The randomness of the spin configuration tends to
wash out the large scale magnetism. 
In the 2D Ising model there is a phase transition at Tc =

2.269 from disordered (non-magnetic) to ordered magnetic 
state (see Fig.1).

2D Ising model

20x20 Ising lattice is shown below. Up and down spins are white and black squares. You see
magnetization M (the red curve) and energy E (the blue one) in the right part of the applet and in the
Status bar. You can watch thermal fluctuations, phase transition and clusters formation (or melting)
by changing temperature (choose 200x200 lattice for a 1GHz PC) 

Phase transitions in magnetics http://www.ibiblio.org/e-notes/Perc/ising.htm

1 of 3 16-11-2005 1:27

Phase transitions in magnetics

Phase transitions are observed in surprisingly simple 
systems, e.g. on a lattice of interacting spins si (magnet

vectors). Interaction energy of nearest neighbours pair is 
    Eij = -J (si sj ) . 

Total energy E and magnetization M for a spins 
configuration {s1, s2, ... sn} is obtained by summation

throughout the lattice. In the Heisenberg model every spin
can take arbitrary direction. In the XY model spins rotate in a
plane.

In the Ising model spins have only two possible states +-1 (up or down). As since every spin takes

two values, therefore there are 2n different configurations for n spins. You see below 24 = 16 spin 
configurations for 2x2 lattice.

 E = -4J            E = 4J

+ +   - -          + -   - +

+ +   - -          - +   + -

 E = 0

- +   + -   + +   + +    + -   - +   - -   - -    - -   + -   + +   - +

+ +   + +   + -   - +    - -   - -   - +   + -    + +   + -   - -   - +

For J > 0 the state of lowest energy is when all spins are aligned. The state has macroscopic
magnetizaion, i.e. it is ferromagnetic. The system is degenerate as since several configurations have
the same energy. Entropy S(E) is minimal when spins are aligned and it grows with increasing of E
(and hence degeneracy).

It is supposed that spins interact too with thermostat at 
temperature T. In thermal equilibrium any system
minimizes the F = E - T S value. Therefore at low
temperature Ising spins minimize energy. Interaction aligns
all spin vectors in the same direction, giving huge total 
magnetic fields. At high temperature the system maximizes
entropy (and disorder). Thermal fluctuations break this
order. The randomness of the spin configuration tends to
wash out the large scale magnetism. 
In the 2D Ising model there is a phase transition at Tc =

2.269 from disordered (non-magnetic) to ordered magnetic 
state (see Fig.1).

2D Ising model

20x20 Ising lattice is shown below. Up and down spins are white and black squares. You see
magnetization M (the red curve) and energy E (the blue one) in the right part of the applet and in the
Status bar. You can watch thermal fluctuations, phase transition and clusters formation (or melting)
by changing temperature (choose 200x200 lattice for a 1GHz PC) 

but the energy for each configuration in case of free boundary conditions 
and PBC is different:

E = 0 E = 8J
Two different configurations with 2 spins up

Energy and magnetization of 16 configurations of the 2×2 Ising model 
with PBC

Energy per spin in the ground state is always equal to the value   
E0/N = - 2J  in the thermodynamic limit 
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Figure 17.1: The temperature dependence of m(T ), the mean magnetization per spin, for the
infinite lattice Ising model in two dimensions.

b. Repeat for L = 16. Do you need more Monte Carlo steps than in part (a) to obtain statistically
independent data? If so, why?

c. The exact value of E/N for the two-dimensional Ising model on a square lattice with L = 16
and T = Tc = 2/ ln(1 +

√
2) ≈ 2.269 is given by E/N = −1.45306 (to five decimal places). This

value of Tc is exact for the infinite lattice. The exact result for E/N allows us to determine the
actual error in this case. Compute ⟨E⟩ by averaging E after each Monte Carlo step per spin for
mcs ≥ 106. Compare your actual error to the estimated error given by (17.19) and (17.20) and
discuss their relative values.

17.5 The Ising Phase Transition

Now that we have tested our program for the two-dimensional Ising model, we are ready to explore
its properties. We first summarize some of the qualitative properties of infinite ferromagnetic
systems in zero magnetic field. We know that at T = 0, the spins are perfectly aligned in either
direction, that is, the mean magnetization per spin m(T ) = ⟨M(T )⟩/N is given by m(T = 0) = ±1.
As T is increased, the magnitude of m(T ) decreases continuously until T = Tc at which m(T )
vanishes (see Fig. 17.1). Because m(T ) vanishes continuously rather than abruptly, the transition
is termed continuous rather than discontinuous. (The term first-order describes a discontinuous
transition.)

How can we characterize a continuous magnetic phase transition? Because a nonzero m implies
that a net number of spins are spontaneously aligned, we designate m as the order parameter of
the system. Near Tc, we can characterize the behavior of many physical quantities by power law
behavior just as we characterized the percolation threshold (see Table 13.1). For example, we can

Ising model:  phase transition

Tc = 2.269 J/kB 

Low T: spin configuration minimizes energy 
(if J>0: spins tend to align => high (absolute) magnetization)

High T: spin configuration maximizes entropy 
(=disorder) (spins tend to disalign => low magnetization)
          

existence of a 
Critical temperature Tc

in 2D the model has an 
analytical solution:

<|   |>
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Figure 17.1: The temperature dependence of m(T ), the mean magnetization per spin, for the
infinite lattice Ising model in two dimensions.

b. Repeat for L = 16. Do you need more Monte Carlo steps than in part (a) to obtain statistically
independent data? If so, why?

c. The exact value of E/N for the two-dimensional Ising model on a square lattice with L = 16
and T = Tc = 2/ ln(1 +

√
2) ≈ 2.269 is given by E/N = −1.45306 (to five decimal places). This

value of Tc is exact for the infinite lattice. The exact result for E/N allows us to determine the
actual error in this case. Compute ⟨E⟩ by averaging E after each Monte Carlo step per spin for
mcs ≥ 106. Compare your actual error to the estimated error given by (17.19) and (17.20) and
discuss their relative values.

17.5 The Ising Phase Transition

Now that we have tested our program for the two-dimensional Ising model, we are ready to explore
its properties. We first summarize some of the qualitative properties of infinite ferromagnetic
systems in zero magnetic field. We know that at T = 0, the spins are perfectly aligned in either
direction, that is, the mean magnetization per spin m(T ) = ⟨M(T )⟩/N is given by m(T = 0) = ±1.
As T is increased, the magnitude of m(T ) decreases continuously until T = Tc at which m(T )
vanishes (see Fig. 17.1). Because m(T ) vanishes continuously rather than abruptly, the transition
is termed continuous rather than discontinuous. (The term first-order describes a discontinuous
transition.)

How can we characterize a continuous magnetic phase transition? Because a nonzero m implies
that a net number of spins are spontaneously aligned, we designate m as the order parameter of
the system. Near Tc, we can characterize the behavior of many physical quantities by power law
behavior just as we characterized the percolation threshold (see Table 13.1). For example, we can

<E>/E0

1

E = −J

N∑

i,j=nn(i)

sisj

and also the energy fluctuates during time evolution...
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and describe the qualitative behavior of P (E). If the plot of lnP (E) versus E does not yield a
straight line, describe the qualitative features of the plot, and determine a functional form for
P (E).

e. Compute the mean energy for T = 10, 20, 40, 80, and 120 and estimate the heat capacity from
its definition C = ∂E/∂T .

f. Compute the mean square energy fluctuations ⟨(∆E)2 ⟩ = ⟨E2 ⟩ − ⟨E⟩2 for T = 10 and T = 40.
Compare the magnitude of the ratio ⟨(∆E)2 ⟩/T 2 with the heat capacity determined in part (e).

You might have been surprised to find in Problem 17.3d that the form of P (E) is a Gaussian
centered about the mean energy of the system. That is, the distribution function of a macroscopic
quantity such as the total energy is sharply peaked about its mean value. If the microstates are
distributed according to the Boltzmann probability, why is the total energy distributed according
to the Gaussian distribution?

17.4 The Ising Model

One of the more interesting natural phenomena in nature is magnetism. You are probably familiar
with ferromagnetic materials such as iron and nickel which exhibit a spontaneous magnetization in
the absence of an applied magnetic field. This nonzero magnetization occurs only if the temperature
is lower than a well defined temperature known as the Curie or critical temperature Tc. For
temperatures T > Tc, the magnetization vanishes. Hence Tc separates the disordered phase for
T > Tc from the ferromagnetic phase for T < Tc.

The origin of magnetism is quantum mechanical in nature and an area of much experimental
and theoretical interest. However, the study of simple classical models of magnetism has provided
much insight. The two- and three-dimensional Ising model is the most commonly studied classical
model and is particularly useful in the neighborhood of the magnetic phase transition. As discussed
in Chapter 16 , the energy of the Ising model is given by

E = −J
N∑

i,j=nn(i)

sisj − µ0B
N∑

i=1

si, (17.11)

where s = ±1, J is a measure of the strength of the interaction between spins, and the first sum
is over all pairs of spins that are nearest neighbors. The second term in (17.11) is the energy of
interaction of the magnetic moment with an external magnetic field. Because of the neglect of the
other spin components, the Ising model does not give a complete description of ferromagnetism,
especially at temperatures well below Tc.

The thermal quantities of interest for the Ising model include the mean energy ⟨E⟩ and the
heat capacity C. As we have discussed, one way to determine C at constant external magnetic
field is from its definition C = ∂⟨E⟩/∂T . An alternative way of determining C is to relate it to
the statistical fluctuations of the total energy in the canonical ensemble (see Appendix 17.31):

C =
1

kT 2

(
⟨E2 ⟩ − ⟨E⟩2

)
. (17.12)
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Another quantity of interest is the mean magnetization ⟨M⟩ (see (16.7)) and the corresponding
thermodynamic derivative χ:

χ = lim
H→0

∂⟨M⟩
∂H

, (17.13)

where H is proportional to the external magnetic field. In the following, we will refer to H as the
magnetic field. The zero field magnetic susceptibility χ is an example of a linear response function,
because it measures the ability of a spin to “respond” due to a change in the external magnetic
field. In analogy to the heat capacity, χ is related to the fluctuations of the magnetization (see
Appendix 17.31):

χ =
1

kT

(
⟨M2⟩ − ⟨M⟩2

)
, (17.14)

where ⟨M⟩ and ⟨M2⟩ are evaluated in zero magnetic fields. Relations (17.12) and (17.14) are
examples of the general relation between linear response functions and equilibrium fluctuations.

Now that we have specified several equilibrium quantities of interest, we implement the
Metropolis algorithm for the Ising model. The possible trial change is the flip of a spin, si → −si.
The Metropolis algorithm was stated in Section 17.2 as a method for generating states with the
desired Boltzmann probability, but the flipping of single spins also can be interpreted as a reason-
able approximation to the real dynamics of an anisotropic magnet whose spins are coupled to the
vibrations of the lattice. The coupling leads to random spin flips, and we expect that one Monte
Carlo step per spin is proportional to the average time between single spin flips observed in the
laboratory. We can regard single spin flip dynamics as a time dependent process and observe the
relaxation to equilibrium after a sufficiently long time. In the following, we will frequently refer to
the application of the Metropolis algorithm to the Ising model as “single spin flip dynamics.”

In Problem 17.4 we use the Metropolis algorithm to simulate the one-dimensional Ising model.
Note that the parameters J and kT do not appear separately, but appear together in the dimen-
sionless ratio J/kT . Unless otherwise stated, we measure temperature in units of J/k, and set
H = 0.
Problem 17.4. One-dimensional Ising model

a. Write a Monte Carlo program to simulate the one-dimensional Ising model in equilibrium with
a heat bath. (Modify SUB changes in Program demon (see Chapter 16) or see Program ising,
listed in the following, for an example of the implementation of the Metropolis algorithm to the
two-dimensional Ising model.) Use periodic boundary conditions. As a test of your program,
compute the mean energy and magnetization of the lattice for N = 20 and T = 1. Draw the
microscopic state (configuration) of the system after each Monte Carlo step per spin.

b. Choose N = 20, T = 1, mcs = 100, and all spins up, that is, si = +1 initially. What is the
initial “temperature” of the system? Visually inspect the configuration of the system after each
Monte Carlo step and estimate the time it takes for the system to reach equilibrium. Then
change the initial condition so that the orientation of the spins is chosen at random. What is
the initial “temperature” of the system in this case? Estimate the time it takes for the system
to reach equilibrium in the same way as before.
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where ⟨M⟩ and ⟨M2⟩ are evaluated in zero magnetic fields. Relations (17.12) and (17.14) are
examples of the general relation between linear response functions and equilibrium fluctuations.

Now that we have specified several equilibrium quantities of interest, we implement the
Metropolis algorithm for the Ising model. The possible trial change is the flip of a spin, si → −si.
The Metropolis algorithm was stated in Section 17.2 as a method for generating states with the
desired Boltzmann probability, but the flipping of single spins also can be interpreted as a reason-
able approximation to the real dynamics of an anisotropic magnet whose spins are coupled to the
vibrations of the lattice. The coupling leads to random spin flips, and we expect that one Monte
Carlo step per spin is proportional to the average time between single spin flips observed in the
laboratory. We can regard single spin flip dynamics as a time dependent process and observe the
relaxation to equilibrium after a sufficiently long time. In the following, we will frequently refer to
the application of the Metropolis algorithm to the Ising model as “single spin flip dynamics.”

In Problem 17.4 we use the Metropolis algorithm to simulate the one-dimensional Ising model.
Note that the parameters J and kT do not appear separately, but appear together in the dimen-
sionless ratio J/kT . Unless otherwise stated, we measure temperature in units of J/k, and set
H = 0.
Problem 17.4. One-dimensional Ising model

a. Write a Monte Carlo program to simulate the one-dimensional Ising model in equilibrium with
a heat bath. (Modify SUB changes in Program demon (see Chapter 16) or see Program ising,
listed in the following, for an example of the implementation of the Metropolis algorithm to the
two-dimensional Ising model.) Use periodic boundary conditions. As a test of your program,
compute the mean energy and magnetization of the lattice for N = 20 and T = 1. Draw the
microscopic state (configuration) of the system after each Monte Carlo step per spin.

b. Choose N = 20, T = 1, mcs = 100, and all spins up, that is, si = +1 initially. What is the
initial “temperature” of the system? Visually inspect the configuration of the system after each
Monte Carlo step and estimate the time it takes for the system to reach equilibrium. Then
change the initial condition so that the orientation of the spins is chosen at random. What is
the initial “temperature” of the system in this case? Estimate the time it takes for the system
to reach equilibrium in the same way as before.
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Another quantity of interest is the mean magnetization ⟨M⟩ (see (16.7)) and the corresponding
thermodynamic derivative χ:

χ = lim
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where H is proportional to the external magnetic field. In the following, we will refer to H as the
magnetic field. The zero field magnetic susceptibility χ is an example of a linear response function,
because it measures the ability of a spin to “respond” due to a change in the external magnetic
field. In analogy to the heat capacity, χ is related to the fluctuations of the magnetization (see
Appendix 17.31):

χ =
1

kT
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⟨M2⟩ − ⟨M⟩2
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, (17.14)

where ⟨M⟩ and ⟨M2⟩ are evaluated in zero magnetic fields. Relations (17.12) and (17.14) are
examples of the general relation between linear response functions and equilibrium fluctuations.

Now that we have specified several equilibrium quantities of interest, we implement the
Metropolis algorithm for the Ising model. The possible trial change is the flip of a spin, si → −si.
The Metropolis algorithm was stated in Section 17.2 as a method for generating states with the
desired Boltzmann probability, but the flipping of single spins also can be interpreted as a reason-
able approximation to the real dynamics of an anisotropic magnet whose spins are coupled to the
vibrations of the lattice. The coupling leads to random spin flips, and we expect that one Monte
Carlo step per spin is proportional to the average time between single spin flips observed in the
laboratory. We can regard single spin flip dynamics as a time dependent process and observe the
relaxation to equilibrium after a sufficiently long time. In the following, we will frequently refer to
the application of the Metropolis algorithm to the Ising model as “single spin flip dynamics.”

In Problem 17.4 we use the Metropolis algorithm to simulate the one-dimensional Ising model.
Note that the parameters J and kT do not appear separately, but appear together in the dimen-
sionless ratio J/kT . Unless otherwise stated, we measure temperature in units of J/k, and set
H = 0.
Problem 17.4. One-dimensional Ising model

a. Write a Monte Carlo program to simulate the one-dimensional Ising model in equilibrium with
a heat bath. (Modify SUB changes in Program demon (see Chapter 16) or see Program ising,
listed in the following, for an example of the implementation of the Metropolis algorithm to the
two-dimensional Ising model.) Use periodic boundary conditions. As a test of your program,
compute the mean energy and magnetization of the lattice for N = 20 and T = 1. Draw the
microscopic state (configuration) of the system after each Monte Carlo step per spin.

b. Choose N = 20, T = 1, mcs = 100, and all spins up, that is, si = +1 initially. What is the
initial “temperature” of the system? Visually inspect the configuration of the system after each
Monte Carlo step and estimate the time it takes for the system to reach equilibrium. Then
change the initial condition so that the orientation of the spins is chosen at random. What is
the initial “temperature” of the system in this case? Estimate the time it takes for the system
to reach equilibrium in the same way as before.

C =

∂⟨E⟩

∂T
(already proved):

but also:

Fluctuations are intrinsic to the system evolution 
and are important!

Linear response functions are related to 
equilibrium fluctuations:

,

,
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Phase transitions in magnetics

Phase transitions are observed in surprisingly simple 
systems, e.g. on a lattice of interacting spins si (magnet

vectors). Interaction energy of nearest neighbours pair is 
    Eij = -J (si sj ) . 

Total energy E and magnetization M for a spins 
configuration {s1, s2, ... sn} is obtained by summation

throughout the lattice. In the Heisenberg model every spin
can take arbitrary direction. In the XY model spins rotate in a
plane.

In the Ising model spins have only two possible states +-1 (up or down). As since every spin takes

two values, therefore there are 2n different configurations for n spins. You see below 24 = 16 spin 
configurations for 2x2 lattice.

 E = -4J            E = 4J

+ +   - -          + -   - +

+ +   - -          - +   + -

 E = 0

- +   + -   + +   + +    + -   - +   - -   - -    - -   + -   + +   - +

+ +   + +   + -   - +    - -   - -   - +   + -    + +   + -   - -   - +

For J > 0 the state of lowest energy is when all spins are aligned. The state has macroscopic
magnetizaion, i.e. it is ferromagnetic. The system is degenerate as since several configurations have
the same energy. Entropy S(E) is minimal when spins are aligned and it grows with increasing of E
(and hence degeneracy).

It is supposed that spins interact too with thermostat at 
temperature T. In thermal equilibrium any system
minimizes the F = E - T S value. Therefore at low
temperature Ising spins minimize energy. Interaction aligns
all spin vectors in the same direction, giving huge total 
magnetic fields. At high temperature the system maximizes
entropy (and disorder). Thermal fluctuations break this
order. The randomness of the spin configuration tends to
wash out the large scale magnetism. 
In the 2D Ising model there is a phase transition at Tc =

2.269 from disordered (non-magnetic) to ordered magnetic 
state (see Fig.1).

2D Ising model

20x20 Ising lattice is shown below. Up and down spins are white and black squares. You see
magnetization M (the red curve) and energy E (the blue one) in the right part of the applet and in the
Status bar. You can watch thermal fluctuations, phase transition and clusters formation (or melting)
by changing temperature (choose 200x200 lattice for a 1GHz PC) 

C =

∂⟨E⟩

∂T
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Another quantity of interest is the mean magnetization ⟨M⟩ (see (16.7)) and the corresponding
thermodynamic derivative χ:

χ = lim
H→0

∂⟨M⟩
∂H

, (17.13)

where H is proportional to the external magnetic field. In the following, we will refer to H as the
magnetic field. The zero field magnetic susceptibility χ is an example of a linear response function,
because it measures the ability of a spin to “respond” due to a change in the external magnetic
field. In analogy to the heat capacity, χ is related to the fluctuations of the magnetization (see
Appendix 17.31):

χ =
1

kT

(
⟨M2⟩ − ⟨M⟩2

)
, (17.14)

where ⟨M⟩ and ⟨M2⟩ are evaluated in zero magnetic fields. Relations (17.12) and (17.14) are
examples of the general relation between linear response functions and equilibrium fluctuations.

Now that we have specified several equilibrium quantities of interest, we implement the
Metropolis algorithm for the Ising model. The possible trial change is the flip of a spin, si → −si.
The Metropolis algorithm was stated in Section 17.2 as a method for generating states with the
desired Boltzmann probability, but the flipping of single spins also can be interpreted as a reason-
able approximation to the real dynamics of an anisotropic magnet whose spins are coupled to the
vibrations of the lattice. The coupling leads to random spin flips, and we expect that one Monte
Carlo step per spin is proportional to the average time between single spin flips observed in the
laboratory. We can regard single spin flip dynamics as a time dependent process and observe the
relaxation to equilibrium after a sufficiently long time. In the following, we will frequently refer to
the application of the Metropolis algorithm to the Ising model as “single spin flip dynamics.”

In Problem 17.4 we use the Metropolis algorithm to simulate the one-dimensional Ising model.
Note that the parameters J and kT do not appear separately, but appear together in the dimen-
sionless ratio J/kT . Unless otherwise stated, we measure temperature in units of J/k, and set
H = 0.
Problem 17.4. One-dimensional Ising model

a. Write a Monte Carlo program to simulate the one-dimensional Ising model in equilibrium with
a heat bath. (Modify SUB changes in Program demon (see Chapter 16) or see Program ising,
listed in the following, for an example of the implementation of the Metropolis algorithm to the
two-dimensional Ising model.) Use periodic boundary conditions. As a test of your program,
compute the mean energy and magnetization of the lattice for N = 20 and T = 1. Draw the
microscopic state (configuration) of the system after each Monte Carlo step per spin.

b. Choose N = 20, T = 1, mcs = 100, and all spins up, that is, si = +1 initially. What is the
initial “temperature” of the system? Visually inspect the configuration of the system after each
Monte Carlo step and estimate the time it takes for the system to reach equilibrium. Then
change the initial condition so that the orientation of the spins is chosen at random. What is
the initial “temperature” of the system in this case? Estimate the time it takes for the system
to reach equilibrium in the same way as before.

Rapid change in <E> and <M> => singularities in    andC χ

magnetic susceptibility:

specific heat:

(Large fluctuations near 
the phase transition:

Second Order phase transition)
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Exercises Lecture IX
Ising Model

1. Ising Model on a square lattice
Write a code for a 2D Ising model on a square lattice in equilibrium with a thermal bath,
without external magnetic field, using the spin flip dynamics (considered as an actual
temporal evolution process), and periodic boundary conditions (PBC). See for instance the
code ising.f90.
A useful reference paper is D.P. Landau, Phys. Rev. B 13, 2997 (1976).
Input parameters are:

• L (linear lattice dimension, which gives the number of spins: N=L*L),
• nmcs (number of total MC steps per spin)
• nequil (number of equilibration MC steps per spin)
• T (temperature of the thermal bath).

Quantities of interest are: the magnetization:

M =
NX

i=1

si;

the energy, with < i, j > all over the nearest neighbor pairs:

E = �J
X

<i,j>

sisj ;

and quantities related to them, such as the heat capacity per spin:

C = (< E2 > � < E >2)/kBT 2N,

and the magnetic susceptibility per spin, in absence of an external magentic field:

� = (< M2 > � < M >2)/kBTN.

Consider units such that kB=1, J=1.

(a) Choose L=30, T=2, and initially spin=±1 randomly. How much time (i.e. how many
nequil MC steps) is it necessary to equilibrate the system? Does the system appear
ordered or disordered? Calculate < E >/N, < M >/N, C and �.

(b) For fixed T=2 change the initial condition of magnetization (choose for instance some
typical ordered configurations -all spins up, all spins down, alternatively up or down as
on a chessboard, all left hand side spins up and all right hand side down, . . . ). Does
the equilibration time change?

(c) Change the temperature T by varying it from 1 to 4 with 0.5 steps. Calculate < E >/N,
< M >/N, C and � as functions of T . Do plots. Calculate C and � both in terms of
energy and magnetization fluctuations respectively and doing the numerical derivatives
with respect to the temperature. Can you estimate the critical temperature (whose value
Tc = 2.269 J/kB for 2D is known in case L!1)?

1

Implementing the Ising model
on a 2D square lattice in the canonical ensemble

H
spin

= −J

N∑

i,j=1

sisj si = ±1

zero-field, nearest neighbor interactions only

 36



Implementing the Ising model

print *, "mean magnetization per spin =", mave
print *, "mean squared magnetization per spin =", m2ave
print *, "mean |magnetization| per spin =", abs_mave

end subroutine output

end module common

program ising
! metropolis algorithm for the ising model on a square lattice
use common
integer :: imcs,ispin,jspin
real (kind = double), dimension(5) :: cum
call initial(nequil,cum)
! equilibrate system
do imcs = 1,nequil

call metropolis()
end do
! accumulate data while updating spins
do imcs = 1,nmcs

call metropolis()
call data(cum)

end do
call output(cum)

open(unit=8,file=’ising.dat’,status=’replace’)
do jspin = 1,L

do ispin = 1,L
if(spin(ispin,jspin)==1)write(8,*)ispin,jspin

end do
end do
close(8)

end program ising

6

print *, "mean magnetization per spin =", mave
print *, "mean squared magnetization per spin =", m2ave
print *, "mean |magnetization| per spin =", abs_mave

end subroutine output

end module common

program ising
! metropolis algorithm for the ising model on a square lattice
use common
integer :: imcs,ispin,jspin
real (kind = double), dimension(5) :: cum
call initial(nequil,cum)
! equilibrate system
do imcs = 1,nequil

call metropolis()
end do
! accumulate data while updating spins
do imcs = 1,nmcs

call metropolis()
call data(cum)

end do
call output(cum)

open(unit=8,file=’ising.dat’,status=’replace’)
do jspin = 1,L

do ispin = 1,L
if(spin(ispin,jspin)==1)write(8,*)ispin,jspin

end do
end do
close(8)

end program ising

6

..........
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(f) In ising.f90 the numerical estimate of E and M is implemented by updating E at each
MC step over all the lattice, i.e. after one (on average) trial move for all the spins,
chosen randomly one at a time. Choose for instance L=30 and a certain value of T.
Can you see any di�erence if you choose the spins to flip in an ordered sequence?

(g) Instead of updating E after each MC step, do it for each configuration, i.e. after each
single MC step per spin. Compare some results obtained with the two methods, and
discuss whether the two methods are equivalent or not.

!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
!c ising.f90
!c
!c Metropolis algorithm to calculate <E>, <M>, in the canonical ensemble
!c (fix T,N,V) with a 2D Ising model
!c
!c Here: K_B = 1
!c J = 1
!c
!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
module common

implicit none
public :: initial,metropolis,DeltaE
public :: data,output
integer, public, parameter :: double = selected_real_kind(13)
real (kind = double), public :: T,E,M
integer, public, dimension(:,:), allocatable :: spin
real (kind = double), public, dimension(-8:8) :: w
integer, public, dimension(2) :: seed
integer, public :: N,L,nmcs,nequil
integer, public :: accept

contains

subroutine initial(nequil,cum)
integer, intent (out) :: nequil
real (kind = double), dimension(:), intent (out) :: cum
integer :: x,y,up,right,sums,i,dE
real :: rnd
print *, "linear dimension of lattice L ="
read *, L
allocate(spin(L,L))
print *, "reduced temperature T ="
read *, T
N = L*L
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(g) Instead of updating E after each MC step, do it for each configuration, i.e. after each
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real (kind = double), public, dimension(-8:8) :: w
integer, public, dimension(2) :: seed
integer, public :: N,L,nmcs,nequil
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contains

subroutine initial(nequil,cum)
integer, intent (out) :: nequil
real (kind = double), dimension(:), intent (out) :: cum
integer :: x,y,up,right,sums,i,dE
real :: rnd
print *, "linear dimension of lattice L ="
read *, L
allocate(spin(L,L))
print *, "reduced temperature T ="
read *, T
N = L*L

2

.....
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real (kind = double), dimension(:), intent (out) :: cum
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allocate(spin(L,L))
print *, "reduced temperature T ="
read *, T
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(f) In ising.f90 the numerical estimate of E and M is implemented by updating E at each
MC step over all the lattice, i.e. after one (on average) trial move for all the spins,
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implicit none
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public :: data,output
integer, public, parameter :: double = selected_real_kind(13)
real (kind = double), public :: T,E,M
integer, public, dimension(:,:), allocatable :: spin
real (kind = double), public, dimension(-8:8) :: w
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integer, public :: accept

contains

subroutine initial(nequil,cum)
integer, intent (out) :: nequil
real (kind = double), dimension(:), intent (out) :: cum
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real :: rnd
print *, "linear dimension of lattice L ="
read *, L
allocate(spin(L,L))
print *, "reduced temperature T ="
read *, T
N = L*L

2

.....

print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (2) ="
read *, seed

! call random_seed(put=seed)
M = 0.0_double
! random initial configuration
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calcola l’energia iniziale sommando su tutte le coppie di NN
! (dato uno spin, solo con il NN sopra e il NN destra,
! e non sotto e a sin., cosi’ contiamo le interazioni una volta sola)

E = E - spin(x,y)*sums
end do

end do
!
! calcola le probabilita’ di transizione secondo la distrib. di Boltzmann
! (exp(-deltaE/KT)
! Avendo posto la forza delle interazioni (il param. J)=1,

3

.....

.....
si = ±1

Ising model on a lattice
L : linear lattice dimension
N = LxL : number of spins
a configuration (a microstate) is the whole 
sequence of spins, i.e. the LxL array spin(x,y)
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Ising model: magnetization

CHAPTER 16. THE MICROCANONICAL ENSEMBLE 566

For the familiar case of classical particles with continuously varying position and velocity
coordinates, the dynamics is given by Newton’s laws. For the Ising model the dependence (16.6) of
the energy on the spin configuration is not sufficient to determine the time-dependent properties
of the system. That is, the relation (16.6) does not tell us how the system changes from one spin
configuration to another and we have to introduce the dynamics separately.

In Problem ?? we simulated the Ising model using a cellular automata approach. The major
limitation of this approach is that it is difficult for the system to sample a representative set of
configurations. In addition, there is no simple measure of the temperature. The demon algorithm
is much more effective at exploring the set of possible configurations, because the energy of the
lattice can fluctuate slightly allowing the lattice to sample any configuration with nearly the same
energy. We implement the demon algorithm by choosing a spin at random. The trial change
corresponds to a flip of the spin from ↑ to ↓ or ↓ to ↑.

Because we are interested in the properties of an infinite system, we have to choose appropriate
boundary conditions. The simplest boundary condition in one dimension is to choose a “free
surface” so that the spins at sites 1 and N each have one nearest neighbor interaction only. In
general, a better choice is periodic boundary conditions. For this choice the lattice becomes a ring
and the spins at sites 1 and N interact with one another and hence have the same number of
interactions as do the other spins.

What are some of the physical quantities whose averages we wish to compute? An obvious
physical quantity is the magnetization M given by

M =
N∑

i=1

si, (16.7)

and the magnetization per spin m = M/N . Usually we are interested in the average values ⟨M⟩
and the fluctuations ⟨M2⟩−⟨M⟩2. We can determine the temperature T as a function of the energy
of the system in two ways. One way is to measure the probability that the demon has energy Ed.
Because we know that this probability is proportional to exp(−Ed/kT ), we can determine T from
a plot of the logarithm of the probability as a function of Ed. An easier way to determine T is to
measure the mean demon energy. However, because the values of Ed are not continuous for the
Ising model, T is not proportional to ⟨Ed⟩ as it is for the ideal gas. We show in Appendix 16.8
that for H = 0 and the limit of an infinite system, the temperature is related to ⟨Ed⟩ by

kT/J =
4

ln
(
1 + 4 J/⟨Ed⟩

) . (16.8)

The result (16.8) comes from replacing the integrals in (16.5) by sums over the possible demon
energies. Note that in the limit |J/Ed| ≪ 1, (16.8) reduces to kT = Ed as expected.

Program demon implements the microcanonical simulation of the Ising model in one dimension
using spin flip dynamics and periodic boundary conditions. Once the initial configuration is chosen,
the demon algorithm is similar to that described in Section 16.3 . However, in contrast to the ideal
gas, the spins in the one-dimensional Ising model must be chosen randomly.

PROGRAM demon
! demon algorithm for the d = 1 Ising model in zero magnetic field

Total magnetization, or define an average 
magnetization per spin:

m =
M

N
=

1

N

N∑

i=1

si

print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (2) ="
read *, seed

! call random_seed(put=seed)
M = 0.0_double
! random initial configuration
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs
! (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums
end do

end do
!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).
! Choosing the interaction parameter J=1,

3

print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (2) ="
read *, seed

! call random_seed(put=seed)
M = 0.0_double
! random initial configuration
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs
! (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums
end do

end do
!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).
! Choosing the interaction parameter J=1,

3

..........

print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (2) ="
read *, seed

! call random_seed(put=seed)
M = 0.0_double
! random initial configuration
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs
! (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums
end do

end do
!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).
! Choosing the interaction parameter J=1,

3

print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (2) ="
read *, seed

! call random_seed(put=seed)
M = 0.0_double
! random initial configuration
! compute initial magnetization
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs
! (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums
end do

end do
!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).

3

(Instead of the loop over x,y,   write:  M=sum(spin))

−1 ≤ m ≤ +1
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Ising model: energy

print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (2) ="
read *, seed

! call random_seed(put=seed)
M = 0.0_double
! random initial configuration
! compute initial magnetization
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs
! (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums
end do

end do
!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).

3

print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (2) ="
read *, seed

! call random_seed(put=seed)
M = 0.0_double
! random initial configuration
! compute initial magnetization
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs
! (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums
end do

end do
!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).

3

.....
.....

print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (2) ="
read *, seed

! call random_seed(put=seed)
M = 0.0_double
! random initial configuration
! compute initial magnetization
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs
! (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums
end do

end do
!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).

3
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Figure 16.2: One of the 2N possible configurations of a system of N = 16 Ising spins on a square
lattice. Also shown are the spins in the four nearest periodic images of the central cell that are
used to calculate the energy. An up spin is denoted by ↑ and a down spin is denoted by ↓. Note
that the number of nearest neighbors on a square lattice is four. The energy of this configuration
is E = − 8 J + 4 H with periodic boundary conditions.

16.7 ∗Heat Flow

In our applications of the demon algorithm one demon shared its energy equally with all the spins.
As a result the spins all attained the same mean energy of interaction. Many interesting questions
arise when the system is not spatially uniform and is in a nonequilibrium but time-independent
(steady) state.

Let us consider heat flow in a one-dimensional Ising model. Suppose that instead of all the
sites sharing energy with one demon, each site has its own demon. We can study the flow of heat
by requiring the demons at the boundary spins to satisfy different conditions than the demons at
the other spins. The demon at spin 1 adds energy to the system by flipping this spin so that it
is in its highest energy state, that is, in the opposite direction of spin 2. The demon at spin N
removes energy from the system by flipping spin N so that it is in its lowest energy state, that is,
in the same direction as spin N − 1. As a result, energy flows from site 1 to site N via the demons
associated with the intermediate sites. In order that energy not build up at the “hot”end of the
Ising chain, we require that spin 1 can only add energy to the system if spin N simultaneously
removes energy from the system. Because the demons at the two ends of the lattice satisfy different
conditions than the other demons, we do not use periodic boundary conditions.

The temperature is determined by the generalization of the relation (16.8 ), that is, the tem-
perature at site i is related to the mean energy of the demon at site i. To control the temperature
gradient, we can update the end spins at a rate different than the other spins. The maximum
temperature gradient occurs if we update the end spins after every update of an internal spin. A
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E = -J E = +J

Figure 16.1: The interaction energy between nearest neighbor spins in the absence of an external
magnetic field.

16.6 The Ising Model

A popular model of a system of interacting variables in statistical physics is the Ising model. The
model was proposed by Lenz and investigated by his graduate student, Ising, to study the phase
transition from a paramagnet to a ferromagnet (cf. Brush). Ising computed the thermodynamic
properties of the model in one dimension and found that the model does not have a phase transition.
However, for two and three dimensions the Ising model does exhibit a transition. The nature of the
phase transition in two dimensions and the diverse applications of the Ising model are discussed
in Chapter 17 .

To introduce the Ising model, consider a lattice containing N sites and assume that each
lattice site i has associated with it a number si, where si = +1 for an “up” (↑) spin and si = −1
for a “down” (↓) spin. A particular configuration or microstate of the lattice is specified by the
set of variables {s1 , s2 , . . . sN} for all lattice sites.

The macroscopic properties of a system are determined by the nature of the accessible mi-
crostates. Hence, it is necessary to know the dependence of the energy on the configuration of
spins. The total energy E of the Ising model is given by

E = −J
N∑

i,j=nn(i)

sisj − H
N∑

i=1

si, (16.6)

where H is proportional to a uniform external magnetic field. The first sum in (16.6) is over all
nearest neighbor pairs. The exchange constant J is a measure of the strength of the interaction
between nearest neighbor spins (see Fig. 16.1). The second sum in (16.6) represents the energy of
interaction of the magnetic moments associated with the spins with an external magnetic field.

If J > 0, then the states ↑↑ and ↓↓ are energetically favored in comparison to the states ↑↓
and ↓↑. Hence for J > 0, we expect that the state of lowest total energy is ferromagnetic, that
is, the spins all point in the same direction. If J < 0, the states ↑↓ and ↓↑ are favored and the
state of lowest energy is expected to be antiferromagnetic, that is, alternate spins are aligned. If
we subject the spins to an external magnetic field directed upward, the spins ↑ and ↓ possess an
additional internal energy given by −H and +H respectively.

An important virtue of the Ising model is its simplicity. Some of its simplifying features are
that the kinetic energy of the atoms associated with the lattice sites has been neglected, only
nearest neighbor contributions to the interaction energy have been included, and the spins are
allowed to have only two discrete values. In spite of the simplicity of the model, we will find that
it exhibits very interesting behavior.

print *, "reduced temperature T ="
read *, T
N = L*L
print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (1:4) ="
read *, seed
call random_seed(put=seed)
M = 0.0_double
! random initial configuration
! compute initial magnetization
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs
! (for a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums
end do

end do

3

up

right
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Ising model: energy with PBC

print *, "# MC steps per spin for equilibrium ="
read *, nequil
print *, "# MC steps per spin for averages ="
read *, nmcs
print *, "seed (2) ="
read *, seed

! call random_seed(put=seed)
M = 0.0_double
! random initial configuration
do y = 1,L

do x = 1,L
call random_number(rnd)
if (rnd < 0.5) then

spin(x,y) = 1
else

spin(x,y) = -1
end if
M = M + spin(x,y)

end do
end do
! compute initial energy
E = 0.0_double
do y = 1,L

! periodic boundary conditions
if (y == L) then

up = 1
else

up = y + 1
end if
do x = 1,L

if (x == L) then
right = 1

else
right = x + 1

end if
sums = spin(x,up) + spin(right,y)

! calculate the initial energy summing all over pairs
! (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once

E = E - spin(x,y)*sums
end do

end do
!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).
! Choosing the interaction parameter J=1,

3
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Figure 16.2: One of the 2N possible configurations of a system of N = 16 Ising spins on a square
lattice. Also shown are the spins in the four nearest periodic images of the central cell that are
used to calculate the energy. An up spin is denoted by ↑ and a down spin is denoted by ↓. Note
that the number of nearest neighbors on a square lattice is four. The energy of this configuration
is E = − 8 J + 4 H with periodic boundary conditions.

16.7 ∗Heat Flow

In our applications of the demon algorithm one demon shared its energy equally with all the spins.
As a result the spins all attained the same mean energy of interaction. Many interesting questions
arise when the system is not spatially uniform and is in a nonequilibrium but time-independent
(steady) state.

Let us consider heat flow in a one-dimensional Ising model. Suppose that instead of all the
sites sharing energy with one demon, each site has its own demon. We can study the flow of heat
by requiring the demons at the boundary spins to satisfy different conditions than the demons at
the other spins. The demon at spin 1 adds energy to the system by flipping this spin so that it
is in its highest energy state, that is, in the opposite direction of spin 2. The demon at spin N
removes energy from the system by flipping spin N so that it is in its lowest energy state, that is,
in the same direction as spin N − 1. As a result, energy flows from site 1 to site N via the demons
associated with the intermediate sites. In order that energy not build up at the “hot”end of the
Ising chain, we require that spin 1 can only add energy to the system if spin N simultaneously
removes energy from the system. Because the demons at the two ends of the lattice satisfy different
conditions than the other demons, we do not use periodic boundary conditions.

The temperature is determined by the generalization of the relation (16.8 ), that is, the tem-
perature at site i is related to the mean energy of the demon at site i. To control the temperature
gradient, we can update the end spins at a rate different than the other spins. The maximum
temperature gradient occurs if we update the end spins after every update of an internal spin. A
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Ising model: 
spin flip dynamics

! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

4

Choose a random spin and flip it: 
it’s a new configuration (a microstate)

! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

4

.....

1 ≤ x ≤ L

1 ≤ y ≤ L

Flip is:

but do it later, only if you decide to accept the flip (according to Metropolis)
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Ising model: 
energy variations per spin flip

Evolution is driven by the energy change between 
the old and the new configuration (Metropolis MC)

! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

4

..........

else
left = spin(x-1,y)
right = spin(x+1,y)

end if
if (y == 1) then

up = spin(x,2)
down = spin(x,L)

else if (y == L) then
up = spin(x,1)
down = spin(x,L-1)

else
up = spin(x,y+1)
down = spin(x,y-1)

end if
DeltaE_result = 2*spin(x,y)*(left + right + up + down)

! also here the factor 2 is to account for the variation
end function DeltaE

subroutine data(cum)
! accumulate data after every Monte Carlo step per spin
real (kind = double), dimension(:), intent (inout) :: cum
cum(1) = cum(1) + E
cum(2) = cum(2) + E*E
cum(3) = cum(3) + M
cum(4) = cum(4) + M*M
cum(5) = cum(5) + abs(M)

end subroutine data

subroutine output(cum)
real (kind = double), dimension(:), intent (inout) :: cum
real (kind = double) :: eave,e2ave,mave,m2ave,abs_mave
real :: acceptance_prob
integer, dimension(1) :: seed_old
acceptance_prob = real(accept)/real(N*(nmcs+nequil))
eave = cum(1)/real(N*nmcs)
e2ave = cum(2)/real(N*N*nmcs)
mave = cum(3)/real(N*nmcs)
m2ave = cum(4)/real(N*N*nmcs)
abs_mave = cum(5)/real(N*nmcs)
print *, "temperature =", T
print *, "acceptance probability =", acceptance_prob
print *, "mean energy per spin =", eave
print *, "mean squared energy per spin =", e2ave
print *, "mean magnetization per spin =", mave
print *, "mean squared magnetization per spin =", m2ave
print *, "mean |magnetization| per spin =", abs_mave

5

! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

4

.....

.....

energy variation for spin(x,y) flip

w(dE) is e
−∆E/kBT
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! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

4

! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

4

else
left = spin(x-1,y)
right = spin(x+1,y)

end if
if (y == 1) then

up = spin(x,2)
down = spin(x,L)

else if (y == L) then
up = spin(x,1)
down = spin(x,L-1)

else
up = spin(x,y+1)
down = spin(x,y-1)

end if
DeltaE_result = 2*spin(x,y)*(left + right + up + down)

! also here the factor 2 is to account for the variation
end function DeltaE

subroutine data(cum)
! accumulate data after every Monte Carlo step per spin
real (kind = double), dimension(:), intent (inout) :: cum
cum(1) = cum(1) + E
cum(2) = cum(2) + E*E
cum(3) = cum(3) + M
cum(4) = cum(4) + M*M
cum(5) = cum(5) + abs(M)

end subroutine data

subroutine output(cum)
real (kind = double), dimension(:), intent (inout) :: cum
real (kind = double) :: eave,e2ave,mave,m2ave,abs_mave
real :: acceptance_prob
integer, dimension(1) :: seed_old
acceptance_prob = real(accept)/real(N*(nmcs+nequil))
eave = cum(1)/real(N*nmcs)
e2ave = cum(2)/real(N*N*nmcs)
mave = cum(3)/real(N*nmcs)
m2ave = cum(4)/real(N*N*nmcs)
abs_mave = cum(5)/real(N*nmcs)
print *, "temperature =", T
print *, "acceptance probability =", acceptance_prob
print *, "mean energy per spin =", eave
print *, "mean squared energy per spin =", e2ave
print *, "mean magnetization per spin =", mave
print *, "mean squared magnetization per spin =", m2ave
print *, "mean |magnetization| per spin =", abs_mave

5

.....

.....

Energy variations per spin flip with PBC
CHAPTER 16. THE MICROCANONICAL ENSEMBLE 571

Figure 16.2: One of the 2N possible configurations of a system of N = 16 Ising spins on a square
lattice. Also shown are the spins in the four nearest periodic images of the central cell that are
used to calculate the energy. An up spin is denoted by ↑ and a down spin is denoted by ↓. Note
that the number of nearest neighbors on a square lattice is four. The energy of this configuration
is E = − 8 J + 4 H with periodic boundary conditions.

16.7 ∗Heat Flow

In our applications of the demon algorithm one demon shared its energy equally with all the spins.
As a result the spins all attained the same mean energy of interaction. Many interesting questions
arise when the system is not spatially uniform and is in a nonequilibrium but time-independent
(steady) state.

Let us consider heat flow in a one-dimensional Ising model. Suppose that instead of all the
sites sharing energy with one demon, each site has its own demon. We can study the flow of heat
by requiring the demons at the boundary spins to satisfy different conditions than the demons at
the other spins. The demon at spin 1 adds energy to the system by flipping this spin so that it
is in its highest energy state, that is, in the opposite direction of spin 2. The demon at spin N
removes energy from the system by flipping spin N so that it is in its lowest energy state, that is,
in the same direction as spin N − 1. As a result, energy flows from site 1 to site N via the demons
associated with the intermediate sites. In order that energy not build up at the “hot”end of the
Ising chain, we require that spin 1 can only add energy to the system if spin N simultaneously
removes energy from the system. Because the demons at the two ends of the lattice satisfy different
conditions than the other demons, we do not use periodic boundary conditions.

The temperature is determined by the generalization of the relation (16.8 ), that is, the tem-
perature at site i is related to the mean energy of the demon at site i. To control the temperature
gradient, we can update the end spins at a rate different than the other spins. The maximum
temperature gradient occurs if we update the end spins after every update of an internal spin. A

x = 1 x = L

y = L

y = 1
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Ising model: 
storage of Boltzmann’s coeff.CHAPTER 16. THE MICROCANONICAL ENSEMBLE 577

!E = -8J

!E = -4J

!E = 0

!E = 4J

!E = 8J

Figure 16.3: The five possible transitions of the Ising model on the square lattice with spin flip
dynamics.

! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

4

Convenient to store the 
Boltzmann’s coefficient for 

these discrete values of
energy variations
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Ising model: 
updating energy and magnetization

!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).
! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

4

!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).
! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

4

!
! calculate the transition probability according
! to the Boltzmann distribution (exp(-deltaE/KT).
! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

4

∆E is already a variation

..........

..... DO NOT CALCULATE 
EVERYTHING FROM THE 

SCRATCH!!
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Spin flip dynamics: how 
to choose spin to flip?

! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

4

! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4
w(dE) = exp(-dE/T)

end do
accept = 0
do i = 1,5

cum(i) = 0.0_double
end do

end subroutine initial

subroutine metropolis()
! one Monte Carlo step per spin
integer :: ispin,x,y,dE
real :: rnd
do ispin = 1,N

! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
dE = DeltaE(x,y)
call random_number(rnd)
if (rnd <= w(dE)) then

spin(x,y) = -spin(x,y)
accept = accept + 1
M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))

end if
end do

end subroutine metropolis

function DeltaE(x,y) result (DeltaE_result)
! periodic boundary conditions
integer, intent (in) :: x,y
integer :: DeltaE_result
integer :: left
integer :: right
integer :: up
integer :: down
if (x == 1) then

left = spin(L,y)
right = spin(2,y)

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

4

.....

1 ≤ x ≤ L

1 ≤ y ≤ L

do x = 1,L

do y = 1,L

...

Random ...

or ordered (sequential) ...
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Spin flip dynamics: how 
to choose spin to flip?

• ORDERED: in some cases, it could go more 
slowly towards equilibrium (see later: 
correlation time), but it depends...

• NO appreciable differences in the statistics 
at equilibrium
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Measuring physical quantities: 
how to accumulate data?

After one MC step per spin for all spins:

print *, "mean magnetization per spin =", mave
print *, "mean squared magnetization per spin =", m2ave
print *, "mean |magnetization| per spin =", abs_mave

end subroutine output

end module common

program ising
! metropolis algorithm for the ising model on a square lattice
use common
integer :: imcs,ispin,jspin
real (kind = double), dimension(5) :: cum
call initial(nequil,cum)
! equilibrate system
do imcs = 1,nequil

call metropolis()
end do
! accumulate data while updating spins
do imcs = 1,nmcs

call metropolis()
call data(cum)

end do
call output(cum)

open(unit=8,file=’ising.dat’,status=’replace’)
do jspin = 1,L

do ispin = 1,L
if(spin(ispin,jspin)==1)write(8,*)ispin,jspin

end do
end do
close(8)

end program ising

6

contains the loop over all the spins

Alternatively, do it after each MC step per individual spin...

else if (x == L) then
left = spin(L-1,y)
right = spin(1,y)

else
left = spin(x-1,y)
right = spin(x+1,y)

end if
if (y == 1) then

up = spin(x,2)
down = spin(x,L)

else if (y == L) then
up = spin(x,1)
down = spin(x,L-1)

else
up = spin(x,y+1)
down = spin(x,y-1)

end if
DeltaE_result = 2*spin(x,y)*(left + right + up + down)

! also here the factor 2 is to account for the variation
end function DeltaE

subroutine data(cum)
! accumulate data after every Monte Carlo step per spin
real (kind = double), dimension(5), intent (inout) :: cum
cum(1) = cum(1) + E
cum(2) = cum(2) + E*E
cum(3) = cum(3) + M
cum(4) = cum(4) + M*M
cum(5) = cum(5) + abs(M)

end subroutine data

subroutine output(cum)
real (kind = double), dimension(5), intent (inout) :: cum
real (kind = double) :: eave,e2ave,mave,m2ave,abs_mave
real :: acceptance_prob
integer, dimension(1) :: seed_old
acceptance_prob = real(accept)/real(N)/real(nmcs+nequil)
eave = cum(1)/real(N)/real(nmcs)
e2ave = cum(2)/real(N*N)/real(nmcs)
mave = cum(3)/real(N)/real(nmcs)
m2ave = cum(4)/real(N*N)/real(nmcs)
abs_mave = cum(5)/real(N)/real(nmcs)
print *, "temperature =", T
print *, "acceptance probability =", acceptance_prob
print *, "mean energy per spin =", eave
print *, "mean squared energy per spin =", e2ave

5
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Measuring physical quantities: how to 
accumulate data?
Further remarks...

• Use statistically INDEPENDENT configurations

• Calculate therefore the CORRELATION TIME 
by considering the autocorrelation functions:

CM (t) =< M(t)M(0) > − < M >2, CE(t) =< E(t)E(0) > − < E >2

CM (t) → 0 and CE(t) → 0 exponentially for t → ∞

with a certain decay time τ : consider intervals longer than τ

for statistical averages

(CM (0) ∝ χ, CE(0) ∝ CV )
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(NOTE: ”critical slowling down” for T → TC)

Autocorrelation functions

Figura 5: Funzioni di autocorrelazione di E per L = 8 e T = 5, 4, 3

·E ·M

T = 5 40 132

T = 4 59 223

T = 3 167 776

Tabella 4: Tempi di correlazione per L = 8 e T = 5, 4, 3

3.3 Tempi di correlazione
Attraverso il codice corr.f90 sono state ottenute le funzioni di autocorrelazione dell’energia e della magnetizzazione

del sistema, CE(t) e CM(t), fissando la dimensione del sistema a L = 8 e facendo variare T tra i valori 5, 4, 3 e i

risultati sono mostrati nelle figure 5 e 6.

A partire da queste funzioni sono stati ottenuti per mezzo di un fit con un esponenziale negativo i valori di ·E

e ·M , che sono riportati nella tabella 4.

Quello che si osserva è che con l’aumentare della temperatura i tempi di correlazione di riducono. Questo trend

è in accordo con il fatto che, sempre all’aumentare T, le probabilità di transizione del MC aumentano, per cui il

sistema evolve più velocemente e, quindi, una configurazione influenza quelle successive per meno tempo.

Sono state e�ettuate anche delle simulazioni del sistema per T = 2.3, 2.2, 2.1, 2. Niente di particolare nell’andamento

funzionale delle funzioni di autocorrelazione, che quindi non vengono riportate, tuttavia analizzando i tempi di

correlazione mostrati in tabella 5 si osserva un’inversione del trend mostrato in precedenza dai · .

Osservando la figura 7 ci si può rendere conto di come il sistema passi da una configurazione all’equilibrio in cui sono

presenti dei domini a una in cui tutti gli spin sono paralleli. Questo vuol dire che tra T = 2.3 e T = 2 deve trovarsi la

temperatura critica del sistema TC, per cui in questo range di temperature si ha una transizione di fase. Nella fase

in cui è favorita una configurazione con spin tutti paralleli fra loro, all’equilibrio l’energia e la magnetizzazione del

sistema non oscillano più simmetricamente attorno a un valor medio, ma si assestano in prossimità dei loro valori

minimi o massimi possibili per gran parte del tempo (figura 8). Così facendo prendendo a caso due istanti di tempo

è molto probabile che i valori di E ed M siano simili a <E(t)> e <M(t)> e questo si traduce in un numeratore delle

funzioni di autocorrelazione sempre circa uguale a 0 e in · sempre più piccoli.

9

Figura 6: Funzioni di autocorrelazione di M per L = 8 e T = 5, 4, 3

·E ·M

T = 2.3 365 5619

T = 2.2 328 3180

T = 2.1 266 1028

T = 2 205 468

Tabella 5: Tempi di correlazione per L = 8 e T = 2.3, 2.2, 2.1, 2

10

=> configurations change very slowly, and it is difficult to sample enough configurations 



• see also CORRELATION LENGTH between 
magnetic domains, 

• close to Tc, also the correlation length increases 
(spin alignments are more correlated), up to 
divergence

ζ(T )

Measuring physical quantities: how to 
accumulate data?
Further remarks...
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Measuring physical quantities: 
which errors?

• necessary to give the ERROR ESTIMATE 
corresponding to the measured physical 
quantity  !!! 

• (see Tab. 1 of D.P. Landau, PRB 13, 2997 (1976), 
“Finite size behavior of the Ising square lattice”)

• do also BLOCKING (called “coarse grained 
technique” in that paper)
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How to do efficiently 
simulations as 

a function of  T?

• Sometimes EQUILIBRATION time is long...

• IDEA: for T’ close to T, choose as starting 
point the equilibrated output of  T

 54

(see previous example, reported also on next slide)
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How to do efficiently 
simulations as 

a function of  T?



Ising model: size problems
CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 600
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Figure 17.2: The temperature dependence of the specific heat C (per spin) of the Ising model on
a L = 8and L = 16 square lattice with periodic boundary conditions. One thousand Monte Carlo
steps per spin were used for each value of the temperature. The continuous line represents the
temperature dependence of C in the limit of an infinite lattice. (Note that C is infinite at T = Tc

for an infinite lattice.)

Problem 17.10. Finite size scaling and the critical properties of the two-dimensional Ising model

a. Use the relation (17.27) together with the exact result ν = 1 to estimate the value of Tc on
an infinite square lattice. Because it is difficult to obtain a precise value for Tc with small
lattices, we will use the exact result kTc/J = 2/ ln(1 +

√
2) ≈ 2.269 for the infinite lattice in the

remaining parts of this problem.

b. Determine the specific heat C, |m|, and the susceptibility χ at T = Tc for L = 2, 4, 8, and 16.
Use as many Monte Carlo steps per spin as possible. Plot the logarithm of |m| and χ versus
L and use the scaling relations (17.29)–(17.31) to determine the critical exponents β and γ.
Assume the exact result ν = 1. Do your log-log plots of |m| and χ yield reasonably straight
lines? Compare your estimates for β and γ with the exact values given in Table 13.1.

c. Make a log-log plot of C versus L. If your data for C is sufficiently accurate, you will find
that the log-log plot of C versus L is not a straight line but shows curvature. The reason for
this curvature is that α in (17.24) equals zero for the two-dimensional Ising model, and hence
(17.30) needs to be interpreted as

C ∼ C0 lnL. (17.32)

Is your data for C consistent with (17.32)? The constant C0 in (17.32) is approximately 0.4995.
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Figure 17.2: The temperature dependence of the specific heat C (per spin) of the Ising model on
a L = 8and L = 16 square lattice with periodic boundary conditions. One thousand Monte Carlo
steps per spin were used for each value of the temperature. The continuous line represents the
temperature dependence of C in the limit of an infinite lattice. (Note that C is infinite at T = Tc

for an infinite lattice.)

Problem 17.10. Finite size scaling and the critical properties of the two-dimensional Ising model

a. Use the relation (17.27) together with the exact result ν = 1 to estimate the value of Tc on
an infinite square lattice. Because it is difficult to obtain a precise value for Tc with small
lattices, we will use the exact result kTc/J = 2/ ln(1 +

√
2) ≈ 2.269 for the infinite lattice in the

remaining parts of this problem.

b. Determine the specific heat C, |m|, and the susceptibility χ at T = Tc for L = 2, 4, 8, and 16.
Use as many Monte Carlo steps per spin as possible. Plot the logarithm of |m| and χ versus
L and use the scaling relations (17.29)–(17.31) to determine the critical exponents β and γ.
Assume the exact result ν = 1. Do your log-log plots of |m| and χ yield reasonably straight
lines? Compare your estimates for β and γ with the exact values given in Table 13.1.

c. Make a log-log plot of C versus L. If your data for C is sufficiently accurate, you will find
that the log-log plot of C versus L is not a straight line but shows curvature. The reason for
this curvature is that α in (17.24) equals zero for the two-dimensional Ising model, and hence
(17.30) needs to be interpreted as

C ∼ C0 lnL. (17.32)

Is your data for C consistent with (17.32)? The constant C0 in (17.32) is approximately 0.4995.

We cannot simulate an INFINITE system!
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Ising model: size problems
INTERFACE EFFECTS:
example of energy for HALF UP/HALF DOWN 
configurations:

L=2       E= 0 
L=4       E=-1
L=8       E=-1.5
L=16     E=-1.75
L=20     E=-1.8
L=32     E=-1.875
.... for an infinite system: E=-2

We have a (“interface”) term proportional to 1/L

“interface”
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Ising model: alternative dynamics

• in the SPIN FLIP dynamics the order parameter 
is not conserved (M changes during evolution)

• alternative: NN spin exchange (Kawasaki dyn.)              
(exchange two NN spins picked at random;    
M is conserved;   this is equivalent to LATTICE 
GAS MODELS with fixed number of particles) 
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Ising model: Kawasaki dynamics
0.0 1.0 2.0 3.0

T

-1.0

-0.5

0.0

0.5

1.0

m

2D Ising model
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T=10, starting from random configuration
By HeMath - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37327967
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Ising model: 
other generalizations

• SPINS:  XY,  Heisenberg,  Potts...

• LATTICES: Square,  Triangle,  Cubic,  
Honeycomb,  Kagome....

• INTERACTIONS:  Magn. Field,  Antiferrom., 
Next Nearest Neighbor (NNN)....
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Figura 8: Frustrazione per reticoli triangolari

Nel caso ferromagnetico questo non avviene perchè è possibile minimizzare l’e-
nergia per tutti gli spin (vedi figura 8). Prendendo il caso antiferromagnetico
della stessa figura, l’energia minima trovata può essere spiegata se la configura-
zione preferita dal sistema sia quella in cui due delle tre posizioni con direzione
di spin indeterminato siano opposte a quella dello spin centrale.

Figura 9: Reticolo esagonale (equivalente a triangolare) nel caso ferromagnetico
e antiferromagnetico

Sempre per quanto riguarda l’energia, si vede che non è presente una regione in
cui l’energia media tende a rimanere costante (a bassa T), questo perchè, visto

16

Different behaviour according to the geometry and the kind of interactions. 
Example: frustration in the triangular antiferromagnetic Ising model:
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13

FIG. 15. (Color online) Behavior of the two dimensional Ising model (top) and XY model (bottom) at T < Tc, T = Tc and
T > Tc. For the Ising model, an " spin (si = 1) is represented by red and a # spin (si = �1) is represented by blue. For the
XY model, because every spin is determined by ✓, so si = (cos ✓, sin ✓), an angle of 2⇡ is represented by red and an angle of
0 by blue. In the low-temperature phase, the Ising model exhibits spontaneous magnetization while in the XY model, vortex
buddies appear (characterized by points where a continuum from blue to red, or viceversa, circle the point. It is worth to notice
that these points are present by pairs with opposite circulation).

B. Higher-order spin Ising models

The Ising model is not restricted to square lattices and
spin-1/2 systems, but it has been extended to other ge-
ometries like triangular lattices38,39. Physicists have not
only played with the geometry, but with the nature of
the interactions and the spin angular momentum as well.

The Blume-Emery-Grittiths (BEG) model is a spin-1
Ising model with a Hamiltonian given by40,

H = �J

X

hiji

si · sj �K

X

hiji

s
2
i
s
2
j
��

X

i

s
2
i
, (42)

that presents a rich variety of critical and multicrit-
ical phenomena41 and has been extended to spin-3/2
systems42–45. The BEG model was introduced to simu-
late He3-He4 mixtures40, but it has been used to describe
critical phenomena magnetic systems and multi compo-
nent fluids46,47.

We suggest the reader to implement the Metropolis-

Hastings algorithm for the Heisenberg Hamiltonian
eq. (1) for a spin-1 or spin-3/2 system and calculate E,
M , CH , �M and the correlation function, then compare
the results with the spin-1/2 system. Later, implement
the BEG model and observe what does the “multicritical
phenomena” means and how do thermodynamic proper-
ties behave in this model.
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on 
$/home/peressi/comp-phys/VIII-ising/  
[do: $cp /home/peressi/…/VIII-ising/* .]

ising.f90

Program: 
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Exercise

(a)  Choose L=30, T=2, and initially spin=±1 randomly. Calculating and plotting 
the instantaneous values of the energy E/N and the magnetization M/N 
per spin (averaged over the lattice) as a function of Metropolis-MC steps, how 
much time (i.e. how many nequil MC steps) is it necessary to equilibrate the 
system? 

Hint: 
- Since initially spin=±1 randomly, E/N and M/N initially will be far from the 
expected equilibrium average value.
First, set nequil=0 and plot instantaneous values of E/N and M/N.  
Estimate nequil from that plot!!!  Visualization is important!!!!

nequil of course depends on T and on the initial situation

Then, set nequil not zero and calculate the time average < E >/N and < M >/N;
increasing the total nmcs, the two quantities should converge...
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M

Magnetization  (System : 10*10)
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Exercise
(a)  Choose L=30, T=2, and initially spin=±1 randomly. ...
Plot a snapshot of the spin pattern: does the system appear ordered or 
disordered? 

it should appear ordered...

p 'ising-up.dat' ps 3 pt 7,'ising-down.dat' ps 3 pt 7
Plotting “ising-up.dat” and “ising-down.dat”  which contain the coordinates of 
spin up and down respectively, one should get something like that:

Calculate also c and χ. 
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Exercise
(a)  Choose L=30, T=2, and initially spin=±1 randomly. ...

Calculate also c and χ. 

(b)  Choose T=1 and repeat (a). ..

Phase transitions in magnetics http://www.ibiblio.org/e-notes/Perc/ising.htm

1 of 3 16-11-2005 1:27

Phase transitions in magnetics

Phase transitions are observed in surprisingly simple 
systems, e.g. on a lattice of interacting spins si (magnet

vectors). Interaction energy of nearest neighbours pair is 
    Eij = -J (si sj ) . 

Total energy E and magnetization M for a spins 
configuration {s1, s2, ... sn} is obtained by summation

throughout the lattice. In the Heisenberg model every spin
can take arbitrary direction. In the XY model spins rotate in a
plane.

In the Ising model spins have only two possible states +-1 (up or down). As since every spin takes

two values, therefore there are 2n different configurations for n spins. You see below 24 = 16 spin 
configurations for 2x2 lattice.

 E = -4J            E = 4J

+ +   - -          + -   - +

+ +   - -          - +   + -

 E = 0

- +   + -   + +   + +    + -   - +   - -   - -    - -   + -   + +   - +

+ +   + +   + -   - +    - -   - -   - +   + -    + +   + -   - -   - +

For J > 0 the state of lowest energy is when all spins are aligned. The state has macroscopic
magnetizaion, i.e. it is ferromagnetic. The system is degenerate as since several configurations have
the same energy. Entropy S(E) is minimal when spins are aligned and it grows with increasing of E
(and hence degeneracy).

It is supposed that spins interact too with thermostat at 
temperature T. In thermal equilibrium any system
minimizes the F = E - T S value. Therefore at low
temperature Ising spins minimize energy. Interaction aligns
all spin vectors in the same direction, giving huge total 
magnetic fields. At high temperature the system maximizes
entropy (and disorder). Thermal fluctuations break this
order. The randomness of the spin configuration tends to
wash out the large scale magnetism. 
In the 2D Ising model there is a phase transition at Tc =

2.269 from disordered (non-magnetic) to ordered magnetic 
state (see Fig.1).

2D Ising model

20x20 Ising lattice is shown below. Up and down spins are white and black squares. You see
magnetization M (the red curve) and energy E (the blue one) in the right part of the applet and in the
Status bar. You can watch thermal fluctuations, phase transition and clusters formation (or melting)
by changing temperature (choose 200x200 lattice for a 1GHz PC) 
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Raw data: traces, covariance and autocorrelation time

Trace: magnetization for T = 2.27J/kB � TC (105 sweeps)

Computer simulations in statistical physics - HW 4 · WS 2006/07 · Nils Blümer (Univ. Mainz) ⇥ ⇥� ⇤ � 17
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Magnetization (105
sweeps)

Computer simulations in statistical physics - HW 4 · WS 2006/07 · Nils Blümer (Univ. Mainz) C  - 4 B 22 68



Energy (105
sweeps)

Computer simulations in statistical physics - HW 4 · WS 2006/07 · Nils Blümer (Univ. Mainz) C  - 4 B 24 69



Magnetic susceptibility (105
sweeps)

Computer simulations in statistical physics - HW 4 · WS 2006/07 · Nils Blümer (Univ. Mainz) C  - 4 B 27 70



Magnetic susceptibility near Tc (106
sweeps)

Computer simulations in statistical physics - HW 4 · WS 2006/07 · Nils Blümer (Univ. Mainz) C  - 4 B 28 71



Specific heat (105
sweeps)

Computer simulations in statistical physics - HW 4 · WS 2006/07 · Nils Blümer (Univ. Mainz) C  - 4 B 29 72



Specific heat near Tc (106
sweeps)

Computer simulations in statistical physics - HW 4 · WS 2006/07 · Nils Blümer (Univ. Mainz) C  - 4 B 30 73



Ising E 1925 Zeitschrift fur Physik 31 253–258

Heisenberg W 1928 Zeitschrift fur Physik 49 205
Bethe H 1931 Zeitschrift fur Physik 71 205
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A few references:
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M

TTc

Figure 17.1: The temperature dependence of m(T ), the mean magnetization per spin, for the
infinite lattice Ising model in two dimensions.

b. Repeat for L = 16. Do you need more Monte Carlo steps than in part (a) to obtain statistically
independent data? If so, why?

c. The exact value of E/N for the two-dimensional Ising model on a square lattice with L = 16
and T = Tc = 2/ ln(1 +

√
2) ≈ 2.269 is given by E/N = −1.45306 (to five decimal places). This

value of Tc is exact for the infinite lattice. The exact result for E/N allows us to determine the
actual error in this case. Compute ⟨E⟩ by averaging E after each Monte Carlo step per spin for
mcs ≥ 106. Compare your actual error to the estimated error given by (17.19) and (17.20) and
discuss their relative values.

17.5 The Ising Phase Transition

Now that we have tested our program for the two-dimensional Ising model, we are ready to explore
its properties. We first summarize some of the qualitative properties of infinite ferromagnetic
systems in zero magnetic field. We know that at T = 0, the spins are perfectly aligned in either
direction, that is, the mean magnetization per spin m(T ) = ⟨M(T )⟩/N is given by m(T = 0) = ±1.
As T is increased, the magnitude of m(T ) decreases continuously until T = Tc at which m(T )
vanishes (see Fig. 17.1). Because m(T ) vanishes continuously rather than abruptly, the transition
is termed continuous rather than discontinuous. (The term first-order describes a discontinuous
transition.)

How can we characterize a continuous magnetic phase transition? Because a nonzero m implies
that a net number of spins are spontaneously aligned, we designate m as the order parameter of
the system. Near Tc, we can characterize the behavior of many physical quantities by power law
behavior just as we characterized the percolation threshold (see Table 13.1). For example, we can
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write m near Tc as

m(T ) ∼ (Tc − T )β , (17.22)

where β is a critical exponent (not to be confused with the inverse temperature). Various thermo-
dynamic derivatives such as the susceptibility and heat capacity diverge at Tc. We write

χ ∼ |T − Tc|−γ (17.23)

and

C ∼ |T − Tc|−α. (17.24)

We have assumed that χ and C are characterized by the same critical exponents above and below
Tc.

Another measure of the magnetic fluctuations is the linear dimension ξ(T ) of a typical magnetic
domain. We expect the correlation length ξ(T ) to be the order of a lattice spacing for T ≫ Tc.
Because the alignment of the spins becomes more correlated as T approaches Tc from above, ξ(T )
increases as T approaches Tc. We can characterize the divergent behavior of ξ(T ) near Tc by the
critical exponent ν:

ξ(T ) ∼ |T − Tc|−ν . (17.25)

The calculation of ξ is considered in Problem 17.9d.
As we found in our discussion of percolation in Chapter 13, a finite system cannot exhibit a

true phase transition. Nevertheless, we expect that if ξ(T ) is less than the linear dimension L of
the system, our simulations will yield results comparable to an infinite system. Of course, if T
is close to Tc, our simulations will be limited by finite size effects. In the following problem, we
obtain preliminary results for the T dependence of m, ⟨E⟩, C, and χ in the neighborhood of Tc.
These results will help us understand the qualitative nature of the ferromagnetic phase transition
in the two-dimensional Ising model.

Because we will consider the Ising model for different values of L, it will be convenient to
compute intensive quantities such as the mean energy per spin, the specific heat (per spin) and the
susceptibility per spin. We will retain the same notation for both the extensive and corresponding
intensive quantities.
Problem 17.9. Qualitative behavior of the two-dimensional Ising model

a. Use Program ising to compute the magnetization per spin m, the mean energy per spin ⟨E⟩,
the specific heat C, and the susceptibility per spin χ. Choose L = 4 and consider T in the
range 1.5 ≤ T ≤ 3.5 in steps of ∆T = 0.2. Choose the initial condition at T = 3.5 so that
the orientation of the spins is chosen at random. Use an equilibrium configuration from a
previous run at temperature T as the initial configuration for a run at temperature T − ∆T .
Because all the spins might overturn and the magnetization change sign during the course of
your observation, estimate the mean value of |m| in addition to that of m. Use at least 1000
Monte Carlo steps per spin and estimate the number of equilibrium configurations needed to
obtain m and ⟨E⟩ to 5% accuracy. Plot ⟨E⟩, m, |m|, C, and χ as a function of T and describe
their qualitative behavior. Do you see any evidence of a phase transition?

From: Gould-Tobochnich

Universality and critical exponents



Universality and critical exponents
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3

where ⇠(T ) is called the correlation length, which as in-
dicated, depends on temperature.

At the transition, the correlation falls o↵ as a power
law given by:

G(r, T ) ⇠ 1

rd�2+⌘
(T = Tc), (5)

where d is the dimension of space and ⌘ is a critical expo-
nent. This power law decrease of the correlation function
at the critical point implies that there is no length scale
in the system, and consequently far regions in the system
are correlated.

Finally, below the critical temperature, the correlation
function reaches a constant value for large r. Such or-
dering is called long-range order and it is a consequence
of cooperative e↵ects that cause regions of space to be
correlated with nearby regions, which in turn causes a
farther region to be correlated. In this case, the devia-
tion from the asymptotic value can be described by:

G(r, T )�G(1, T ) ⇠ exp

✓
� r

⇠(T )

◆
(T < Tc), (6)

The correlation length also follows a power law as the
transition is approached from either T > Tc or T < Tc,
given by:

⇠(T ) ⇠ |1� T/Tc|�⌫
, (7)

being ⌫ another critical exponent.
It is interesting to notice that the critical exponents are

not independent from each other, because of the following
scaling laws15:

� = ⌫(2� ⌘), (8a)

2 = ↵+ 2� + �, (8b)

⌫d = 2� ↵, (8c)

� = �(� � 1), (8d)

so it is only necessary to know two of them to determine
the rest of them.

V. THE SCALING HYPOTHESIS

The scaling hypothesis is as its name indicates, a hy-
pothesis. It does not rely on any model but has been
very successful in correlating experimental data. The ba-
sic idea of the scaling hypothesis is that the long-range
correlations around Tc are responsible for all singular
behavior16.

So far, it seems that the important parameter in a
phase transition is the order parameter and for a long
time it was considered that if there was not a spontaneous
symmetry breaking in the order parameter in a system,
then that system does not exhibit a phase transition.
This belief is false and a brief example will be discussed
later (see section X).

In the scaling hypothesis, instead of looking at the
order parameter, we focus our attention in a quantity
we briefly mentioned in the last section: the correlation
length ⇠. It states that the divergence of ⇠ near Tc is
responsible for the singular dependence on 1 � T/Tc of
physical quantities, and, as far as the singular depen-
dence is concerned, ⇠ is the only relevant length in the
system16.

It is not the scope of this paper to derive the scaling
laws, neither to prove them by renormalization theory,
but just to present the importance of the scaling hypothe-
sis. An extensive discussion of the scaling hypothesis and
renormalization theory can be found in references16,17.

VI. MEAN-FIELD AND ONSAGER’S
SOLUTION

In the mean-field solution the Landau free energy18–20

is proposed as,

FL ⇡ Fo +
1

2
a(T )Nm

2 +
1

4
b(T )Nm

4 +O(m6), (9)

where m = |M|/N and N denotes the total number of
lattices sites (spins). Under this proposal, if a(T ) and
b(T ) are both positive, only m = 0 is a minimum. On
the other hand if b(T ) is positive and a(T ) changes sign,
then m = 0 is a local maximum and the minimum of FL

occurs atm 6= 0, that is an indicator of a phase transition.
The transition takes place at the critical temperature Tc,
which is determined when a(T ) changes sign, i.e. a(Tc) =
0. As a result, Tc for the Ising model is20,

kBTc = zJ, (10)

where z is the number of nearest neighbors, so for the two
dimensional case kBTc = 4J . In the mean-field model it
is also found that in absence of an external magnetic field,

M = 0 T � Tc, (11a)

M ⇠ |1� T/Tc|� T < Tc, (11b)

with the critical exponent � = 1/2. On the other hand,
when T = Tc,

H ⇠ M
�
, (12)

with the critical exponent � = 3.
On the other hand, although it is not the scope of

this paper to present the exact solution, some important
results that will be used in section VIII are given. The
magnetization is found to be,

M = 0 T > Tc, (13a)

M = N
⇥
1� sinh�4(2�J)

⇤1/8
T < Tc, (13b)

and the critical temperature is,

kBTc =
2J

ln(1 +
p
2)

⇡ 2.269J. (14)

If we use the

   M 

More precisely, the magnetisation follow a power law close to 
the transition only approaching from smaller T:
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the critical exponents are not independent from each other, because of the 
following scaling laws (●):

so it is only necessary to know two of them to determine the others.

For the 2D Ising model:

3

where ⇠(T ) is called the correlation length, which as in-
dicated, depends on temperature.

At the transition, the correlation falls o↵ as a power
law given by:

G(r, T ) ⇠ 1

rd�2+⌘
(T = Tc), (5)

where d is the dimension of space and ⌘ is a critical expo-
nent. This power law decrease of the correlation function
at the critical point implies that there is no length scale
in the system, and consequently far regions in the system
are correlated.

Finally, below the critical temperature, the correlation
function reaches a constant value for large r. Such or-
dering is called long-range order and it is a consequence
of cooperative e↵ects that cause regions of space to be
correlated with nearby regions, which in turn causes a
farther region to be correlated. In this case, the devia-
tion from the asymptotic value can be described by:

G(r, T )�G(1, T ) ⇠ exp

✓
� r

⇠(T )

◆
(T < Tc), (6)

The correlation length also follows a power law as the
transition is approached from either T > Tc or T < Tc,
given by:

⇠(T ) ⇠ |1� T/Tc|�⌫
, (7)

being ⌫ another critical exponent.
It is interesting to notice that the critical exponents are

not independent from each other, because of the following
scaling laws15:

� = ⌫(2� ⌘), (8a)

2 = ↵+ 2� + �, (8b)

⌫d = 2� ↵, (8c)

� = �(� � 1), (8d)

so it is only necessary to know two of them to determine
the rest of them.

V. THE SCALING HYPOTHESIS

The scaling hypothesis is as its name indicates, a hy-
pothesis. It does not rely on any model but has been
very successful in correlating experimental data. The ba-
sic idea of the scaling hypothesis is that the long-range
correlations around Tc are responsible for all singular
behavior16.

So far, it seems that the important parameter in a
phase transition is the order parameter and for a long
time it was considered that if there was not a spontaneous
symmetry breaking in the order parameter in a system,
then that system does not exhibit a phase transition.
This belief is false and a brief example will be discussed
later (see section X).

In the scaling hypothesis, instead of looking at the
order parameter, we focus our attention in a quantity
we briefly mentioned in the last section: the correlation
length ⇠. It states that the divergence of ⇠ near Tc is
responsible for the singular dependence on 1 � T/Tc of
physical quantities, and, as far as the singular depen-
dence is concerned, ⇠ is the only relevant length in the
system16.

It is not the scope of this paper to derive the scaling
laws, neither to prove them by renormalization theory,
but just to present the importance of the scaling hypothe-
sis. An extensive discussion of the scaling hypothesis and
renormalization theory can be found in references16,17.

VI. MEAN-FIELD AND ONSAGER’S
SOLUTION

In the mean-field solution the Landau free energy18–20

is proposed as,

FL ⇡ Fo +
1

2
a(T )Nm

2 +
1

4
b(T )Nm

4 +O(m6), (9)

where m = |M|/N and N denotes the total number of
lattices sites (spins). Under this proposal, if a(T ) and
b(T ) are both positive, only m = 0 is a minimum. On
the other hand if b(T ) is positive and a(T ) changes sign,
then m = 0 is a local maximum and the minimum of FL

occurs atm 6= 0, that is an indicator of a phase transition.
The transition takes place at the critical temperature Tc,
which is determined when a(T ) changes sign, i.e. a(Tc) =
0. As a result, Tc for the Ising model is20,

kBTc = zJ, (10)

where z is the number of nearest neighbors, so for the two
dimensional case kBTc = 4J . In the mean-field model it
is also found that in absence of an external magnetic field,

M = 0 T � Tc, (11a)

M ⇠ |1� T/Tc|� T < Tc, (11b)

with the critical exponent � = 1/2. On the other hand,
when T = Tc,

H ⇠ M
�
, (12)

with the critical exponent � = 3.
On the other hand, although it is not the scope of

this paper to present the exact solution, some important
results that will be used in section VIII are given. The
magnetization is found to be,

M = 0 T > Tc, (13a)

M = N
⇥
1� sinh�4(2�J)

⇤1/8
T < Tc, (13b)

and the critical temperature is,

kBTc =
2J

ln(1 +
p
2)

⇡ 2.269J. (14)

Universality and critical exponents

10

by fitting the data with the curve,

G(r, Tc) = A
exp (�r/B)

rC
. (41)

These plots were constructed by performing 100 simu-
lations of 15,000 MC steps each, for every temperature
considered and the correlation function was registered for
every repetition and then averaged.

Finally, in TABLE I, the critical exponents for the two
dimensional Ising model are presented as found by On-
sager and the mean-field and numerical solutions.

FIG. 9. (Color online) Inverse of the critical temperature T�1
c

vs inverse of lattice size L�1 for the 2D Ising model. The curve
was fitted with a power law T

�1
c = T

�1
c1 � bL

�1/⌫ , and the
critical exponent ⌫ was determined.

TABLE I. Critical exponents and critical temperature of the
2D Ising model given by Onsager, the mean-field and the
numerical solutions.

Exponent Onsager Mean-Field Numerical

↵ 0 0 0

� 0.125 0.5 0.129 ± 0.007

� 1.750 1 1.779 ± 0.225

⌫ 1 0.5 0.994 ± 0.098

⌘ 0.250 0 0.277 ± 0.002

� 15 3 14.641 ± 0.821

Tc 2.269 4 2.269± 0.002

IX. DISCUSSION

From TABLE I is clear that the mean-field solution is
inconsistent with the Onsager solution. Why does the

FIG. 10. (Color online) Peak height of the magnetic suscep-
tibility �max vs lattice size L for the 2D Ising model. The
curve was fitted with a power law �max = aL

�/⌫ , and the
critical exponent � was determined.

FIG. 11. (Color online) Magnetization per site M vs external
magnetic field H for temperatures T = 1.3 (triangles), 2.269
(circles) and 3.3 (squares) for a lattice size of L = 50.

mean-field solution is not consistent? In its derivation,
fluctuations in the order parameter are neglected. How-
ever, in the scaling region, these fluctuations are of great
relevance to the thermodynamic quantities, so neglect-
ing them will of course generate incorrect results in this
region, such as the critical temperature and the critical
exponents.
The main problem with most of the mean-field solu-

tions is that the Landau free energy coe�cients are ex-
panded in Taylor series around Tc. This expansion pre-
supposes that the coe�cients are analytic around Tc, a
supposition that is not valid. It is also worth to no-
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dell’errore il corrispondente errore: kTc/J = 3.630 ± 0.181. Tale valore risulta

essere compatibile con quello dato dal problema, T th
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Universality and critical exponents

BUT: Because we can simulate only finite lattices, a direct fit 
of the measured quantities does not yield good estimates 
for the corresponding exponents α, ν, β, and γ => we have 
to take into account the finite size of the system

=> finite size scaling 

and similarly for the other quantities.
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so,

↵({m} ! {n})
↵({n} ! {m}) =

P ({n})
P ({m})

g({n} ! {m})
g({m} ! {n}) , (26)

4. In order to fulfill the detailed balance equations,
the acceptance distribution may be expressed as,

↵({m} ! {n}) = min

✓
1,

P ({n})
P ({m})

g({n} ! {m})
g({m} ! {n})

◆
.

(27)

In the Ising model when {n} and {m} only di↵er by one
spin, g({n} ! {m}) = g({m} ! {n}), so the acceptance
distribution is,

↵({m} ! {n}) = min (1, exp [���E({n}, {m})]) . (28)

With those ideas in mind, the Metropolis-Hastings al-
gorithm for the Ising model is the following. First, a
L ⇥ L square lattice is created and in every site of the
lattice a spin is set with equal probability of being ±1.

Each step of the algorithm is:

1. Choosing randomly one site k in the lattice.

2. Calculating the energy di↵erence �Ek between the
actual energy and the energy if the spin is flipped.

3. If �Ek < 0, we accept the new configuration. If
not, we accept it with probability exp (���Ek)
where � = 1/kBT and kB is the Boltzmann con-
stant.

4. Energy and magnetization of the system are saved.

The Metropolis-Hastings algorithm samples states ac-
cording to the appropriate probability distribution and
then temporal sequences of energies and magnetizations
(generated by the sampling process) are then averaged
and observables calculated. It is important to empha-
size that the algorithm only generates configurations in
agreement with the probability distribution, it does not
compute thermodynamic quantities, but only samples en-
sembles from which thermodynamic quantities must be
determined. In the next sections, techniques for recover-
ing those quantities are discussed.

Before presenting those techniques, it is necessary to
define a Monte Carlo step (MC step) as the product
N = L

2 with the number of steps in the algorithm. For
example, for a system with a lattice size L = 50, a MC
step is 2500 steps of the algorithm. That way a MC step
takes into account the lattice size, while a step of the
algorithm does not. In that sense, performing 1000 MC
steps for di↵erent lattices sizes allows the same sampling
in all the lattices, whereas performing 1000 steps of the
algorithm for di↵erent lattices sizes does not. It is nat-
ural that the following question arises: How many MC
steps produce a good sampling? This question is not so
easy to answer because it depends on the temperature
at which the system is as it will be clear later in section
VIII. Nevertheless, if while computing observables, such
as energy and magnetization, the curves are noisy, then
it is necessary to perform more MC steps.

B. Finite Size Scaling

So far we have presented the mean-field, the Onsager
and the numerical solution. However one problem arises
in the numerical solution: while the mean-field and the
exact solutions are in the thermodynamic limit (N ! 1
and V ! 1, but N/V constant), in the numerical solu-
tion it is impossible to achieve N,V ! 1. Although we
are incapable of achieving the thermodynamic limit a nu-
merical computation, K. Binder developed the finite-size
scaling technique for analyzing finite-size systems such as
the ones considered in computational simulations23–25.

As we have stated before, near the critical tempera-
ture, the correlation length diverges following a power
law (7),

⇠ ⇠ |1� T/Tc|�⌫
. (29)

For a finite system, the thermodynamics quantities are
smooth functions of the system parameters, so the diver-
gences of the critical point phenomena are absent. De-
spite this fact, in the scaling region (⇠ >> L), we can see
traces of these divergences in the occurrence of peaks:
peaks become higher and narrower and its location is
shifted with respect to the location of the critical point
as the system size increases (see FIG. 1). These charac-
teristics of the peak shape as a function of temperature
are described in terms of the so-called finite-size scaling
exponents8:

• The shift in the position of the maximum with re-
spect to the critical temperature is described by,

Tc(L)� Tc(1) / L
�� (30)

• The width of the peak scales as,

�T (L) / L
�⇥ (31)

• The peak height grows with the system size as,

Amax(L) / L
�max . (32)

Defining t = |1� T/Tc|, the finite-size scaling Ansatz
is formulated as follows8:

AL(t)

A1(t)
= f


L

⇠1(t)

�
, (33)

where A is a physical quantity. Assuming that the expo-
nent of the critical divergence of A is �, and using the
fact that ⇠ ⇠ t

�⌫ , the scaling Ansatz is formulated as,

AL(t) = t
��

f
⇥
Lt

�⌫
⇤
, (34)

which can be rewritten as,

AL(t) = L
�/⌫

�

h
L
1/⌫

t

i
, (35)

where the scaling function f is replaced by �, by extract-
ing the factor (Lt⌫)�/⌫ from f and writing the remaining
function in terms of (Lt⌫)1/⌫ . From eq. (35) it is clear
that8:

The shift in the peak position of C and χ with respect to the critical temperature 
corresponding to the thermodynamic limit is described by:

10

by fitting the data with the curve,

G(r, Tc) = A
exp (�r/B)

rC
. (41)

These plots were constructed by performing 100 simu-
lations of 15,000 MC steps each, for every temperature
considered and the correlation function was registered for
every repetition and then averaged.

Finally, in TABLE I, the critical exponents for the two
dimensional Ising model are presented as found by On-
sager and the mean-field and numerical solutions.
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mean-field solution is not consistent? In its derivation,
fluctuations in the order parameter are neglected. How-
ever, in the scaling region, these fluctuations are of great
relevance to the thermodynamic quantities, so neglect-
ing them will of course generate incorrect results in this
region, such as the critical temperature and the critical
exponents.
The main problem with most of the mean-field solu-

tions is that the Landau free energy coe�cients are ex-
panded in Taylor series around Tc. This expansion pre-
supposes that the coe�cients are analytic around Tc, a
supposition that is not valid. It is also worth to no-
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FIG. 1. Typical behaviour of a physical quantity A vs tem-
perature close to the critical point for various system sizes.
Figure taken from Thijssen8.

• The peak height scales as L�/⌫ , hence �max = �/⌫.

• The peak position scales as L�1/⌫ , hence � = 1/⌫.

• The peak width also scales as L
�1/⌫ , hence ⇥ =

1/⌫.

These are the finite-size scaling laws for any thermody-
namic quantity which diverges at the critical point as a
power law. From these laws it is clear that if the peak
height, position and width are calculated as a function
of the system size, the critical exponents ⌫ and � can be
determined.

Nevertheless, the finite-size scaling technique presents
di�culties due a to phenomena named critical slowing-
down3,8–10. Because of the critical slowing-down, config-
urations change very slowly, and it is di�cult to sample
enough configurations. Near the critical point, the fluc-
tuations increase and the time needed to obtain reliable
values for the quantities measured also increases. As the
system size increases, calculations for larger systems re-
quire more time, not only because of the computational
e↵ort needed per MC step for a larger system, but also
because we need to generate more and more configura-
tions in order to obtain reliable results.

C. The correlation function

In systems where a physical magnitude relies on posi-
tion, one generally asks, given a measure at point ri what
is the relation between another measure at a position rj .
This is given by the spatial correlation function and if
the system presents translational and rotational symme-
try (such as the Ising model), the correlation function
does not depend on the absolute positions, but on the

distance between them r = |ri � rj |. The correlation
function we are interested in is the spin-spin correlation
function that is given by,

G(r, T ) = hs(0)s(r)i � hs(0)i2, (36)

where hs(0)i = hs(r)i = M/N is the magnetization per
site. Because of the fact that for a given temperature, M
reaches a constant value, the behavior of the correlation
function is carried by the first term of eq. (36). Thus we
will consider the correlation function only as,

G(r, T ) = hs(0)s(r)i. (37)

We are limited to obtain the correlation function up to
L/2, where L is the lattice size. This came as a price
of the periodic boundary conditions we are using. For
example, if we were to calculate the correlation function
up to the value r = L we would find that the correlation
function would be equal to 1 there, which is wrong be-
cause we would be computing the correlation function at
r = 0.
The process for numerically computing the correlation

function is the following: For each spin in the lattice, we
determine the value of the local correlation function in
r = n taking the average magnetic state of the nearest
neighbors found advancing n steps in one direction (not
mixing êi with êj , i.e. not moving in diagonals). The
global correlation function is taken as the average of all
the local correlation functions. The process is repeated
for multiple simulations of the Ising model.

D. Hints, tips and improvements to the algorithm

As soon as Monte Carlo methods are used, one has
to think on ways of making e�cient calculations, as the
brute force involved in a Monte Carlo simulation often
requires a lot of trials to reduce standard deviation.

• First of all, Monte Carlo methods are always good
candidates for parallelization, which even in a dual-
core cpu will half the calculation time.

• Second, one can remove some “randomness” to the
method to improve e�ciency. In the case of the
Ising model, we know that the system will have pre-
ferred states as a function of the temperature. For
temperatures below the critical temperature, once
the system is near a local energy-minimum, it will
hardly jump to another one (even if the energy gap
is huge). All annealing methods are prone to this
phenomena, and hence, once the standard devia-
tions of the last steps start to decrease, the system
should be randomized entirely to make sure we are
not just sampling a single region of the entire space
of states.

• Third, one can also improve the selection of spins
to flip, and change a completely uniform random
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b. Repeat the calculations of part (a) for L = 8 and L = 16. Plot ⟨E⟩, m, |m|, C, and χ as
a function of T and describe their qualitative behavior. Do you see any evidence of a phase
transition? For comparison, recent published Monte Carlo results for the two-dimensional Ising
model are in the range L = 102 to L = 103 with order 106 Monte Carlo steps per spin.

c. For a given value of L, for example, L = 16, choose a value of T that is well below Tc and choose
the directions of the spins at random. Observe the spins evolve in time. Do you see several
domains with positive and negative spontaneous magnetization? How does the magnetization
evolve with time?

d. The correlation length ξ can be obtained from the r-dependence of the spin correlation function
c(r). The latter is defined as:

c(r) = ⟨sisj⟩ − m2, (17.26)

where r is the distance between sites i and j. We have assumed the system is translationally
invariant so that ⟨si⟩ = ⟨sj⟩ = m. The average is over all sites for a given configuration and
over many configurations. Because the spins are not correlated for large r, we see that c(r) → 0
in this limit. It is reasonable to assume that c(r) ∼ e−r/ξ for r sufficiently large. Use this
behavior to estimate ξ as a function of T . How does your estimate of ξ compare with the size
of the regions of spins with the same orientation?

One of the limitations of a computer simulation study of a phase transition is the relatively
small size of the systems we can study. Nevertheless, we observed in Problem 17.9 that even
systems as small as L = 4 exhibit behavior that is reminiscent of a phase transition. In Fig. 17.2
we show our Monte Carlo data for the T dependence of the specific heat of the two-dimensional
Ising model for L = 8 and L = 16. We see that C exhibits a broad maximum which becomes
sharper for larger L. Does your data for C exhibit similar behavior?

Because we can simulate only finite lattices, it is difficult to obtain estimates for the critical
exponents α, β, and γ by using the definitions (17.22)–(17.24) directly. We learned in Section 13.4,
we can do a finite size scaling analysis to extrapolate finite L results to L → ∞. For example, from
Fig. 17.2 we see that the temperature at which C exhibits a maximum becomes better defined for
larger lattices. This behavior provides a simple definition of the transition temperature Tc(L) for
a finite system. According to finite size scaling theory, Tc(L) scales as

Tc(L) − Tc(L = ∞) ∼ aL−1/ν , (17.27)

where a is a constant and ν is defined in (17.25). The finite size of the lattice is important when
the correlation length

ξ(T ) ∼ L ∼ |T − Tc|−ν . (17.28)

As in Section 13.4, we can set T = Tc and consider the L-dependence of M , C, and χ:

m(T ) ∼ (Tc − T )β → L−β/ν (17.29)
C(T ) ∼ |T − Tc|−α → Lα/ν (17.30)
χ(T ) ∼ |T − Tc|−γ → Lγ/ν . (17.31)

In Problem 17.10 we use the relations (17.29)–(17.31) to estimate the critical exponents β, γ, and
α.
From: Gould-Tobochnich

Universality and critical exponents
(This is referred to percolation)
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