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Lattice gas models

idea: recover the treatment of RWs
but the walkers now move together and interact

other topics:
- Macroscopic systems towards equilibrium
- Stochastic fluctuations
- Simulated annealing
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Random Walks

Dependence of (R*(t)) on t :

normal behavior: (RA(t)) ~ t
for the brownian motion

superdiffusive behavior: (R*(t)) ~ t*’with v > 1/2
in models where self-intersections are unfavored

subdiffusive behavior  (R*(t)) ~ t*’with v < 1/2
in models where self-intersections are favored

t (time) <> N (number of steps); t = N At

<> = avg. over walkers



RVV and diffusion

® consider the normal behaviour:  (R*(t)) ~ t
The quantity: 1
D(t) = 5 (AR(1))

(where d is the dimensionality of the system)
should go asymptotically to a constant value for large #,
the autodiffusion coefficient: D = lim D(?)

[— 00
For d=1: (AR{) = N£?
N¢? 2

D = li : (AR*(1)) =
= 111m — - — = —
— 00 2d 2t 2At

<> = avg. over walkers



RWV and diffusion in ID

The probability that a RW of N steps (N large) ends at position x is given by:

2 2

£2
Considering that ¢t = NAt, defining D = ——, and measuring z in units of ¢, we get:

2At

[ 1 72
P(ﬂ?,t) = —7'('D‘[; exp (_E)

which is the fundamental solution of the diffusion equation, a part from a factor of 2 in the
normalization due to the spatial discretization. The continuum solution is:

1 22
P@,t) =1\ 15 P\ ~1p;

i.e., a Gaussian distribution with ¢? = 2Dt which describes a pulse gradually decreasing in
height and broadening in width in such a manner that its area is conserved.




RVV and diffusion on a 3D lattice

Discretized model:
if 1 step = move by 1 bond lenght,
we expect:

RMS = +/(R2%) = VN dyn

fcc : dNN = aog = 0.71&0

bcc : dNN = CLO@ = 0.87610
SC: dNN = Qo

fcc bcc e

RMS displacement (Angstrom)
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lattice parameter = 1A
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(number of steps)

(=> D depends on the structure of the lattice)
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Example of diffusion in solids

INTERSTITIAL SUBSTITUTIONAL
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Direct exchange:

Q900 ® -0 =h0 0-¢
ng 00 00
000

Vacancy assisted diffusion:

0 00 0000
L oo L 4 JON N
000 000 0

000
000
' 000




Vacancies diffusion in solids
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vacancies themselves can diffuse!



... but typically:
more than one single interstitial,
more than one single impurity,
or more than one single vacancy....

A SIMPLE RW MODEL
IS NOT ENOUGH:!



Lattice Gas model

interaction !

Consider a finite lattice with some density p of N, particles. The particlesytan move on the lattice
by jumps to the nearest sites, but two particles can not occupy the same site. This is a simple
example of a restricted random walk (see above). The physical interpretation is e.g. vacancies
moving in a lattice.

To simulate this kind of system, we need a bit more of an advanced approach than before. First of

all, we need to simulate the motion of all the particles at the same time, not taking the average

over many independent single-particle motions as was done before.



2D Lattice Gas model

1° Choose number of particles N, number of steps Ngieps, Side length L. Set At and

lattice size a. (our old /)
2° Set all positions in the L X L grid to be empty

3 a° Generate N, particle coordinates randomly on the grid, checking that no two particles
end up on the same points.
3 b° Mark the points with the particles in the L X L grid as filled.

4° Loop over MC steps of time At

4 A5o Loop from 1 to N,
6° Pick one particle ¢ at random
7° Find which positions it can jump to. If none, return to step 6° (*)
8° Let the particle jump to one of the allowed directions j by a displacement
x; = x; + 0x;,Yy; = Yi + 0y;, enforce periodic boundaries on x and y
9° Set dx; = dx; + dx, dy;, = dy; + dx (where periodic boundaries do not play
v a rolel)
10° End loop from 1 to N,
11° Update time t = t + At
v12O End loop over MC steps |
13° Output (AR®) = (dx: + dy.) and calculate diffusion coefficient.D(t) = 2—dt<AR(t)2>

average over the particles "




Lattice Gas model

(*) Different dynamics can be implemented, for instance:

® find which nearest neighbor sites are free
and jump in one of them randomly chosen
(if any) (this is actually mentioned in the
previous slide and implemented in the code
we are going to discuss) OR

® choose randomly one nearest neighbor site
and jump only if it is free

Different dynamics => different behavior with concentration
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Lattice Gas model

The crucial difference here to the previous random walk algorithms is that the outer loop goes
over MC steps, the inner one over particles. When the walkers are independent of each other

(“non-interacting” ) we can deal with one walker at a time, saving memory since storage of all
particles is not needed.

But here the walkers (the particles) are “interacting”




Programs:

on

$/home/peressi/comp-phys/IX-latticegas-fractals/
[do: $cp /home/peressil.../IX-latticegas-fractals/* .]
or on moodle2

latticegas.f90
entropy.f90
box.f90

simulated_annealing.f90



Implementation of the model on 2D SQ lattice
(latticegas.f90)

logical,allocatable::lattice(:,:) ! (occ./non occ.=.true./.false.)
integer,allocatable::x(:),y(:) ! instantaneous positions of Np labelled particles
double precision, allocatable :: dx(:),dy(:) ! displ. from the starting point
integer :: free(4),nfree ! occupation of nearest neighbors

integer :: dxtrial(4),dytrial(4) ! trial move (instantaneous displacements)
integer :: xnew(4),ynew(4) ! 4 new possible positions

allocate(lattice(0:L-1,0:L-1))
allocate(x(Np),y(Np))
allocate(dx(Np),dy(Np))

lattice = .false. ! Mark all positions as empty

! Enumerate directions: l=right; 2=left; 3=up; 4=down
dxtrial(l)=+1; dytrial(1l)= 0;
dxtrial(2)=-1; dytrial(2)= 0;
dxtrial(3)= 0; dytrial(3)=+1;
dxtrial(4)= 0; dytrial(4)=-1;



! INIZIALIZE THE LATTICE : Generate Np particles on LxL lattice
do i=1,Np

do ! Loop until empty position found, UNBOUNDED LOOP!
call random number(rnd) !which has dimension(2)
X(1)=int(rnd(1l)*L)
y(1i)=int(rnd(2)*L)

if (lattice(x(i),y(1i))) then
! Position already filled, loop to find new trial
cycle !REMEMBER: JUMP AT THE END OF THIS LOOP (NOT EXIT)
else
lattice(x(1),y(1))=.true.
! Successful, place next particle
exit
endif
enddo

dx(i)=0.0d0; dy(i)=0.0d0;

enddo



! MONTE CARLO LOOP

Ado istep=0,Nsteps-1 ! Loop over MC steps

Ado isubstep=1,Np ! Move each particle once every MC step (on av.)
! Pick one particle at random

call random number (rndl)

i=int(rndl*Np)+1 ! 1 =< i =< Np;
! Find possible directions (j=1,...,4) for moving, store them
in free() ... (NOTE: different possible recipes !!!)

! If no free positions, get a new particle ; otherwise choose
! one possible direction (j) and update (x,y) with (xnew,ynew):

!Empty the old position and £fill the new one:
lattice(x(1),y(1))=.false.
lattice(xnew(]j),ynew(j))=.true.

venddo
t=t+deltat




Another fundamental part:

calculation of distance from initial pos. for each particle
(do not use PBC for that!),
accumulation of data...

! Get total displacement using dx,dy

! dx,dy are individual displacements from the

! starting point => these d*sum are summed

! over time and particles

dxsum=0.0d0; dysum=0.0dO0;

dxsgsum=0.0d0; dysgsum=0.0d0;

do i=1,Np

dxsum=dxsum+dx(1); dysum=dysum+dy(1i);

dxsgsum=dxsgsum+dx (1) *dx(1);

dysgsum=dysgsum+dy (1) *dy(1);

enddo

print *,’dxsum’,dxsum,’ dysum’,dysum

print *,’dxsgsum’,dxsgsum,’ dysgsum’,dysgsum
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Concentration dependent diffusion coefficient

And here is a series of results:

concentration

Np L Np/L~2 D (cm~2/s)

10 100 0.001 9.76 E-008

10 100 0.001 1.12 E-007

100 100 _ 0.01 1.02 E-007 Here: 2d example
100 100 0.01 9.46 E-008

10000 1000 0.01 9.89 E-008

1000 100 0.1 9.11 E-008 1 MC Step — 1 ns
1000 100 0.1 9.42 E-008

100000 1000 0.1 9.40 E-008 .

3000 100 0.3 8.28 E-008 unit Step length = 2 A
3000 100 0.3 7.91 E-008

6000 100 0.6 5.89 E-008

6000 100 0.6 5.91 E-008

9000 100 0.9 1.77 E-008

9000 100 0.9 1.78 E-008

900000 1000 0.9 1.82 E-008

9900 100 0.99 1.83 E-009

9900 100 0.99 1.86 E-009

What does this mean? At small concentrations, the system behaves essentially as an unconstrained
random walk. For that one, we know that (A R?) should be equal to a® N, where N is the number
of steps, and a is the jump distance, and the result for the diffusion coefficient should be

b (AR?) (2 AN (2 A)? _ 107 cm?
4t _4NAt9_4><1ns s
|




Discussing Ex. |

(1.a) Study D(t) for a fixed value of p, for instance 0.2. Although D is
defined as the limit t = o0, it is instructive to follow D(t) as a function of
time: for this model, it fluctuates after a short equilibration time and no
appreciable improvements in the statistics are achieved by increasing t.

D (u. a.)

0.45

0.4

0.35

0.3

0.25

L
%m“’kﬁw/‘_&w S

I
"ftimedeplO0.dat" u 1:3 ——
media

time average after equilibration
to estimate D

il e .

S i

0

200 400 600 800 1000

tempo (u. a.)

this is D(t) (averaged over particles);

calculate it for t — ¢
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Averages

T
]_ <G>
<G>T:?t_gth A J

Thermally equilibrated averages: <G>

<G>=lmr_ o <G >7

But in practice T is finite, and < G >7 oscillates(varying T):
divide T into intervals A, B,C'... of length L and sum(block averages):

L
_ E: (1)
<G >r T <G>

I=A,B,C,... (05//5) (on/Vn)
1/2
L

=3 (<@ > ~(< 6 >?)

SN 1

A <G >p=

N ————

T — o0 VT

Note: not always A < G >7 is a good indicator of the actual error!
(remind ”ergodicity”)
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conteggi

A usually, we can estimate the statistical error
associated to the estimate of D
(here: histogram done collecting data in the time evolution of D(t))

60

| | | " Jexperiment20.dat” u (bin($3,binwidth)):(1.0) ——

M"./experiment40.dat” u (bin(%$3,binwidth)):(1.0)
" fexperiment60.dat” u (bin($3,binwidth)):(1.0) —

20 —
40 I N
30 —
20 | [ .
10 | [”w O .
0 r—r—n—ﬂ'”rm'”"l-’h-d-’-”m|ll—l—ﬂ‘u'|-ﬂ Il Mﬁmhﬂﬂﬂ ﬂ—rrr—l—v—ﬂ I —
0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

D(t=100) {u.a.)
size effect in the determination of D (concentration p fixed)!

(more later)

22



(I.1) ... Better statistics for D can be obtained by averaging D over as many

particles as possible (i.e., for a given p)... Here p=0.03

Np=200, 80x80

Np=50, 40x40

selfdiffusion coefficient D3 Np=50, L=40x48, i.e., rho=8.83

selfdiffusion coefficient D; Np=200, L=80x80, i.e., rho=0.03
256000 2568000
deltarR™2(t) +
enpected avg behavior
< 9 R 2 >EEGBBB 2608008
158008 1568008

and | o
expected
behavior

106000

56000 56000

deltaR™2(t) -+
enpected avg behavior

8 16000 20000 30060 46000 50080 66008 70800 80000 96008 10008

selfdiffusion coefficient D; Np=208, L=86x80, i.e., rho=8.83

8
8 16000 20000

30000 40000 56000 OGO 70000 80008 90600 10000

selfdiffusion coefficient D; Np=56, L=48x46, i.e., rho=8.83

D)+
D(t) (tine avg) %

D(t)
and
<D(t)>:

D)y +
D(t) (tine avg) %

time avertaged:
(D(0)) = | D()dt

] 10600 20800 30000 40600 50600 60008 70000 86008 96008 10008 ]

10800 20800 30000 40600 50600 60008 70000 80008 96008 10008

.e., rho=

selfdiffusion coefficient D3 Np=58, L=40x40,

0 0.6 0.6

’pippo” u 1. + ’pippo” +
‘pippol” u 134 *pippo1” M
’pippo2” u 1. * ’pippo2” *
0.55 *pippo3” u 1 o 0.55 ’pippo3” o
’pippod” u 1. ’pippod”
0.5 0.5
8,45 8,45
8.4 8.4
0.35 0.35
5 r u n S . > /_\
0.2s b =] e M —
| ——
8.2 8.2
8.15 8.15
L} 10000 20000 30000 40000 50000 60000 70000 80000 90000 10000 L} 10000 20000 30000 40000 50000 60000 70000 80000 90000 10000

256000

200000

156000

106000

56000

Np=| 3, 20x20

selfdiffusion coefficient D3 Np=13, L=20x28, i.e., rho=0.83

deltar™2(t) +
enpected avg behavior

16000 20000 30060 46008 50080 66008 70000 8000 96008 10008

selfdiffusion coefficient D3 Np=13, L=20x20, i.e., rho=8.83

D)+
D(t) (tine avg) %

10600 20800 30000 40600 5060P 60008 70000 80008 96008 10008

selfdiffusion coefficient D3 Np=13, L=20x28, i.e., rho=
’pippo” +
’pippol” X
’pippo2” *
’pippo3” o

’pippod”

10600 20000 30000 40060 50800 60060 70060  80GOO 99600 10000

(we expect the limit of the simple 2D RW on a square lattice, with D=0.25)
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Ex. 1 (...) Verify that deviations of <D(t)>t from its mean value are proportional to the
inverse square root of the total number of particles.

log{var) vs log{(Np}); rho=8,8083 with Np=13,50,200
"5 T T T

*varD’ u (log($1)):(log(32)) (@

2.5 3 3.5 4 4.5 5 5.9

O2p proportional to |/Np
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Concentration dependent
diffusion coefficient

- . . Diffusion coefficient _|
1.e-07 " . m - Fraction of failures 30.0
_-I
8.e-08 + .
i 22.5
m“é 6.e-08 - o
o 415.0
4.e-08
475
2.e-08 + .
OQ0m - | = L N O R S | R 0.0
00 01 0.2 03 04 05 06 0.7 0.8 0.9
Concentration

25
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Statistical averages and
stochastic fluctuations
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Macroscopic systems
towards equilibrium

simple example of non-interacting classical particles in a box
(gas diffusion)

A box is divided into two parts communicating through a

small hole. One particle randomly can pass through the hole
per unit time, from the left to the right or viceversa.

N,.s(t): number of particles present at time t in the left side
Given N, (0), what is N (t) ?

27



Macroscopic systems
towards equilibrium

»

Another version: particles blue/red in both sides
(interdiffusion of two gases):

per unit time, one from each side is picked at random and put in the
other side: NieP!ue(t)+Nierced(t)=constant; Nierced(t)=?

Paul Ehrenfest (1880-1933)

28



Stochastic fluctuations

Fluctuations are always present, due to the nature
of the system, also when evolving towards equilibrium.

A simple example: non-interacting classical particles in a box (gas diffusion)

1000

T T
’box.out’ ———

900 —\
800 | \

700 \

600

Nleft(t)

Y
\v\m\ P

b, ﬂm vl

500 |- e " y NMWWW,WMWW»W\/WAVW MW/W W

400 Il Il Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Approach to equilibrium
with fluctuations
29



Stochastic fluctuations

1000
900 4
800 -\

700

Nleft(t)

600

thal N(left)=1000
500 | o W Pt g N W"”’Mw g

400 Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

How to reduce fluctuations?

- more particles
- average over many simulation runs

What can we do with fluctuations?

30



Intrinsic energy fluctuations in
the canonical ensemble - |

1 0
Remind: <E> = z ZEse_ﬁES and £ = Z 6_6E3, therefore: (F/) = —% InZ

Consider the thermal capacity:

o) 1 B
we have c oT - kT aﬂ

%‘?:_%g—gzm P 3T B2 = (B)? — () =4(3E)?)

S

where O0FE =FE — (F)
Result: ((6E)?)

Co = kpT?

The thermal capacity (or specific heat if considered for each
particle) is related to the intrinsic stochastic energy fluctuations

31



Intrinsic energy fluctuations in
the canonical ensemble - ||

((6E)%)

Since: o _
© kpT?

if N 1s the number of particles, we have:

VIOE)??) _ VEsT?C, VN 1

(E) () N T UN

1.e., the relative energy fluctuations reduce when N 1is large

(correct; in the thermodynamic limit: F — const., macro ~ micro)
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Approach to equilibrium

macrostate: specified by the number of particles 71 on the left side;

microstate: specified by the specific list of the 7 particles on the left side
33



Equilibrium and entropy

ber of microstat N N N
number of microstates = — —
nl(N —n)! n N —n

The number of microstates for the “particle in a box” model with N=10.
The macrostate is specified by the number of particles on the left side, n.
The total number of microstates for N=10 is 210=1024

# of microstates | log(# of-micr.)".

n

0 | 0

| 10 2,3

2 45 3,81

3 120 4,79

4 210 5,35

5 252 5,53 ‘« ’
. 1o 35 {- the most “random’’!
7 120 479 Equilibrium =

8 45 3.8l Maximum number of

9 10 2,3 possible microstates =

10 | o Maximum entropy
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(optiona) Entropy: Coincidence method

(S.K.Ma, . Stat. Phys. 26,221 (1981))

Equilibrium = Maximum entropy = Maximum number of possible microstates
Too much effort to enumerate all of them!

Alternative procedure (good for computing):

A system evolving in time will duplicate a microstate, before or later...

The longer it takes for duplication, the fewer are the microstates in the
corresponding macrostate. Hence, the lower is the entropy.

|dea: measure the ratio of the number of pairs of duplicated microstates to
the total number of possible pairs; entropy is the log of the inverse ratio.

E.g.: suppose as in the previous slide N=10, and the macrostate n=1;
consider 20 different microstates labelled with the “name” of the particle:

s@OI0P24021034390@52924

Possible pairs: 20*(20-1)/2=190. Here: 6 pairs for particle “2”; | pair with
particle “10” etc etc... Sum all of them: get |5.
Ratio = 15/190 , Entropy: Se=log(]20/15)~2.5


http://dx.doi.org/10.1007/BF01013169

Remind the definition of entropy:

S = kg Z P.ln P, in the canonical ensemble

S = kplog () in the microcanonical ensemble,
where all the microstates
corresponding to a macrostate have

the same energy
(€2 is the number of microstates)
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Metropolis method in the
canonical ensemble and the

simulated annealing

a general purpose global optimization algorithm
(Kirkpatrick S, Gelatt CD Jr, Vecchi MP
Science 220(4598), 671-80, 1983)

37



Metropolis and
simulated annealing - |

®Stochastic search for global minimum. Monte
Carlo optimization.

® The concept is based on the manner in which
liquids freeze or metals recrystallize. Sufficiently
high starting temperature and slow cooling are
important to avoid freezing out in metastable
states.

38



mimics the physical process of annealing by treating the cost function as an “energy” E and sampling the value of E according to the Boltzmann distribution at
some artificial temperature 7 using the Metropolis algorithm

Convergence to the global minimum has been proved for a schedule in which the temperature at the kth iteration 7 « 1/ In(k) and moves are drawn from a
Gaussian distribution [8, 9], and also for a schedule where T, o« 1/k and moves are drawn from a Cauchy distribution [10].

In practice, a much faster cooling schedule without a convergence proof was used in both the original Kirkpatrick paper, and most applications. In this schedule, 7
o« e-M where A is sometimes adjusted adaptively based on sampling statistics [11] => Ti1 = (1 = A)T.
A is a positive number very close to 0 that controls the cooling speed. The larger A is, the faster the system cools.

Adaptive schedule are often used

We need:

a cooling schedule, a move generation strategy, and a stopping criterion

8. Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions On Pattern Analysis And Machine
Intelligence. 1984;6:721-741. [PubMed] [Google Scholar]

9. Hajek B. Cooling schedules for optimal annealing. Mathematics of Operations Research. 1988;13:311-329. [Google Scholar]
10. Szu H, Hartley R. Fast simulated annealing. Physics Letters A. 1987;122:157-162. [Google Scholar]
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770898/#R8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770898/#R9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770898/#R10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770898/#R11
https://www.ncbi.nlm.nih.gov/pubmed/22499653
https://scholar.google.com/scholar_lookup?journal=IEEE+Transactions+On+Pattern+Analysis+And+Machine+Intelligence&title=Stochastic+relaxation,+gibbs+distributions,+and+the+bayesianrestoration+of+images&author=S+Geman&author=D+Geman&volume=6&publication_year=1984&pages=721-741&pmid=22499653&
https://scholar.google.com/scholar_lookup?journal=Mathematics+of+Operations+Research&title=Cooling+schedules+for+optimal+annealing&author=B+Hajek&volume=13&publication_year=1988&pages=311-329&
https://scholar.google.com/scholar_lookup?journal=Physics+Letters+A&title=Fast+simulated+annealing&author=H+Szu&author=R+Hartley&volume=122&publication_year=1987&pages=157-162&

Metropolis and
simulated annealing - ||

® Thermodynamic system at temperature T, energy E.

® Perturb configuration (generate a new one).

® Compute change in energy dE. If dE is negative the new
configuration is accepted. If dE is positive it is accepted
with a probability given by the Boltzmann factor :
exp(-dE/KT).

® [he process is repeated many times for good sampling
of configuration space.,

®then the temperature is slightly lowered and the entire
procedure repeated, and so on, until a frozen state is
achieved at T = 0.

usual
Metropolis
procedure

in the
canonical
ensemble

40



Example

in simulated annealing.f90:
minimization of

f(x)=(x+0.2)*x+cos(14.5*x-0.3)
considered as an energy function and
using a fictitious temperature

12

T f(X) poa—




Rastrigin function:
® non-convex function used as a performance test problem for optimization algorithm
® typical example of non-linear multimodal function;
® first proposed by Rastrigin as a 2-dimensional function; later generalized by Rudolph.

Global minimem ot [0 0]

rastrigin
40 -
35 -
30
25 -
> 20 1 1

15 - ?
10 -

5 -

0

4 -2 0 2 4 s

f(x) =nA+ Z[xl?' — Acos(2mx;)]
i=1



Function to be minimized: £ (x) ; Starting point: x, fx=f(x)

initial (high) temperature: temp
Annealing schedule: annealing temperature reduction factor: tfactor (<1)
number of steps per block: nsteps
‘ad hoc’ parameter for trial move: scale

DO WHILE (temp > 1lE-5) ! anneal cycle

DO istep = 1, nsteps

CALL RANDOM NUMBER(rand) ! generate 2 random numbers; dimension(2) :: rand
X new = X + scale*SQRT(temp)*(rand(l) - 0.5) ! stochastic move
fx new = func(x _new) ! new object function value
IF (EXP(-(fx new - fx)/temp) > rand(2)) THEN ! success, save
fx = fx new
X = X new
END IF
IF (fx < fx min) THEN
fx min = fx

X min = X
PRINT '(3ES13.5)', temp, x min, fx min
END IF
END DO

temp = temp * tfactor ! decrease temperature
END DO



f(x)

120

100 +

80

60 |-

40 |

20 |

-20

210 5 0 5 10
2
final T: 2.50315E-01
final x: -1.95067E-01

f(x) —
1000 trial steps @ initial T, from x=1 <+
some relative minima during such steps X

final f(x):-1.00088E+00

initial T: 10 (Ks units)
initial x: 1.000000
initial f£(x): 1.137208

relative minima with decreasi

1 05

0.5

of
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