homework 1 solutions

Exercise 1

Y is a random variable taking values in $\{1, \ldots, N\}$ and for each value $P(Y=$ $j)=\frac{1}{N}$.

$$
E[Y]=\sum_{j=1}^{N} j \frac{1}{N}=\frac{1}{N} \sum_{j=1}^{N} j=\frac{1}{N} \frac{N(N+1)}{2}=\frac{N+1}{2}
$$

Exercise 2

From the definition of univariate normal distribution:

$$
p_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},
$$

where $\mu \in \mathbb{R}, \sigma \in \mathbb{R}_{0}$.
From the definition of expectation of continuous random variable:

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{+\infty} \frac{x}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty} x e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
\end{aligned}
$$

Let $t:=\frac{x-\mu}{\sqrt{2 \sigma^{2}}}$, hence $d t=\frac{d x}{\sqrt{2 \sigma^{2}}}$. Then:

$$
\begin{aligned}
E[X] & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty} x e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty}\left(\sqrt{2 \sigma^{2}} t+\mu\right) e^{-t^{2}} \sqrt{2 \sigma^{2}} d t \\
& =\frac{\sqrt{2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}\left[\int_{-\infty}^{+\infty}\left(\sqrt{2 \sigma^{2}} t\right) e^{-t^{2}} d t+\int_{-\infty}^{+\infty} \mu e^{-t^{2}} d t\right] .
\end{aligned}
$$

Applying the Fundamental Theorem of Calculus we can conclude the proof,

$$
\begin{aligned}
E[X] & =\frac{1}{\sqrt{\pi}}\left[\sqrt{2 \sigma^{2}}\left[-\frac{1}{2} e^{-t^{2}}\right]_{-\infty}^{+\infty}+\mu \sqrt{\pi}\right] \\
& =\frac{1}{\sqrt{\pi}}[0+\mu \sqrt{\pi}]=\mu .
\end{aligned}
$$

Exercise 3

X and Y have discrete joint distribution:

$$
p(x, y)=\left\{\begin{array}{ll}
\frac{1}{30}(x+y) & \text { for } x=0,1,2 \text { and } y=0,1,2,3 \\
0 & \text { otherwise }
\end{array} .\right.
$$

calculating X and Y marginal distributions we obtain

$$
\begin{aligned}
& p(x)=\sum_{y=0}^{3} \frac{1}{30}(x+y)=\frac{1}{30}\left[\sum_{y=0}^{3} x+\sum_{y=0}^{3} y\right]=\frac{1}{15}(2 x+3) \\
& p(y)=\sum_{x=0}^{2} \frac{1}{30}(x+y)=\frac{1}{30}\left[\sum_{x=0}^{2} x+\sum_{x=0}^{2} y\right]=\frac{1}{10}(y+1)
\end{aligned}
$$

multiplying them together we have

$$
p(x) p(y)=\frac{1}{150}(2 x+3)(y+1)=\frac{1}{150}(2 x y+2 x+3 y+3)
$$

which is different from $\mathrm{p}(\mathrm{x}, \mathrm{y})$

Exercise 4

From the definition of marginal density for continuous random variables:

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{+\infty} 24 x y d x \\
& =\int_{-\infty}^{0} 24 x y d x+\int_{0}^{1-y} 24 x y d x+\int_{1-y}^{+\infty} 24 x y d x \\
& =0+\int_{0}^{1-y} 24 x y d x+0 \\
& =y \int_{0}^{1-y} 24 x d x .
\end{aligned}
$$

Applying the Fundamental Theorem of Calculus we can conclude that:

$$
f_{Y}(y)= \begin{cases}12 y(1-y)^{2} & \text { for } y \in(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

From the definition of conditional density:

$$
f_{X \left\lvert\, Y=\frac{1}{2}\right.}(x)= \begin{cases}\frac{f_{X Y}\left(x, \frac{1}{2}\right)}{f_{Y}\left(\frac{1}{2}\right)} & \text { for } x \in(0,1), x+\frac{1}{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

From the solution (1) we can conclude that:

$$
f_{X \left\lvert\, Y=\frac{1}{2}\right.}(x)= \begin{cases}8 x & \text { for } x \in\left(0, \frac{1}{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 5

The joint distribution of X and Y is:

$$
f(x, y)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)} x^{\alpha_{1}-1} y^{\alpha_{2}-1}(1-x-y)^{\alpha_{3}-1}
$$

with $0<x<1,0<y<1, x+y<1$.

$$
f(x)=\int_{0}^{1-x} f(x, y) d y
$$

$$
f(x)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)} x^{\alpha_{1}-1} \int_{0}^{1-x} y^{\alpha_{2}-1}(1-x-y)^{\alpha_{3}-1} d y
$$

performing the change of variables $\mathrm{y}=(1-\mathrm{x}) \mathrm{t}$ we obtain:

$$
f(x)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)} x^{\alpha_{1}-1}(1-x)^{\alpha_{2}+\alpha_{3}-1} \int_{0}^{1} t^{\alpha_{2}-1}(1-t)^{\alpha_{3}-1} d t
$$

now since the integral is a Beta function not normalized we have

$$
\int_{0}^{1} t^{\alpha_{2}-1}(1-t)^{\alpha_{3}-1} d t=\frac{\Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)}{\Gamma\left(\alpha_{2}+\alpha_{3}\right)}
$$

therefore we prove

$$
f(x)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}+\alpha_{3}\right)} x^{\alpha_{1}-1}(1-x)^{\alpha_{2}+\alpha_{3}-1}=\operatorname{Beta}\left(\alpha_{1}, \alpha_{2}+\alpha_{3}\right)
$$

