homework 2 solutions

Exercise 1

$$
C=\{S, I\}
$$

the variable corona (C) can take the value healthy (S) or sick (I)

$$
T=\{P, N\}
$$

the variable tampone (T) can take the value positive (P) or negative (N).
we know that

$$
P(C=S)=1-P(C=I)=0.995
$$

hence
$P(T=P)=P(C=I) * P(T=P \mid C=I)+P(C=S) * P(T=P \mid C=S)=0.005 * 0.97+0.995 * 0.03=0.0347$
with the bayes' theorem we have

$$
P(C=I \mid T=P)=\frac{P(T=P \mid C=I) P(C=I)}{P(T=P)}=\frac{0.98 * 0.005}{0.0347}=0.1412
$$

Exercise 2

First solution

```
def cdf(dist,x):
    sample=np.array([pyro.sample("n",dist) for i in range(200)]) #I obtain a sample
    of 200 elements from distribution dist
    sample_ord=np.sort(sample) #I sort the sample
    f=np.array([((i+1)/200) for i in range(200)]) #value of the empirical cumulative
function for each sorted element
    plt.plot(sample_ord,f)
    plt.title("Empirical cumulative distribution function")
    plt.xlabel("x")
    plt.ylabel("F(x)")
    plt.rcParams["figure.figsize"]=(15,5)
    a=sample_ord[sample_ord<=x]
    fdx=(len(a)/200) #value of cdf in x
    print("The value of cdf in " + str(x)+" is: F("+str(x)+") ="+str(fdx))
    return fdx
cdf(pyro.distributions.Normal(0.,1.),2)
```

The value of cdf in 2 is: $F(2)=0.965$

Second solution

```
# Cumulative distribution function
def cdf(dist, val, iter):
    samples = [pyro.sample("n", dist) for i in range(iter)]
    u = np.sort(samples)
    t = list(filter(lambda i: i < val, u))
    n = len(u)
    v = np.arange(1, n + 1) / n
    z = []
    for i in range(len(t)):
            z.append(v[i])
    return t, z
# mean and std deviation
mu, sigma = 0, 1
# generate random data from a Normal distribution
rand_normal = dists.Normal(mu, sigma)
# max value for the cumulative distributive function
xMax = 1
# number of samples
samps = 500
# apply cdf
x, y = cdf(rand_normal, xMax, samps)
```

\# plot
fig = plt.figure(figsize=(7,4))
_ = plt.plot(x, y, '.')
_ = plt.title("CDF(x)")
_ = plt.xlabel("x")
plt.show()

Exercise 3

3.1

If σ^{2} has approximately 95% probability to be in the range [22,41] and it is distributed as an inverse-gamma
$I G(\alpha=38, \beta=1110)$ we can write:
$P\left(\sigma^{2} \in[22,41]\right)=0.95=\int_{22}^{41} f_{I G}\left(\sigma^{2} ; 38,110\right) d \sigma^{2}=F_{I G}\left(\sigma^{2}=41 ; 38,110\right)-F_{I G}\left(\sigma^{2}=22 ; 38,110\right)$
So we can use the function ecdf implemented in the previous exercise and compute the difference of the cumulative functions:

```
pyro.set_rng_seed(1)
dist2 = pyro.distributions.InverseGamma(38,1110)
a = 22
b = 41
print("Prior probability of sigma^2 in [22,41] is", ecdf(dist2,b)-ecdf(dist2,a))
```

Prior probability of sigma^2 in $[22,41]$ is 0.954

3.2

The density function of an inverse gamma distribution is:
$f\left(\sigma^{2} ; \alpha, \beta\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}\left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} \mathrm{e}^{-\frac{\beta}{\sigma^{2}}}$.
The likelihood of the normal distibution with unknown variance is:

$$
L\left(x ; \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}}=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \mathrm{e}^{-\frac{1}{2 \sigma^{2}} \sum_{1=1}^{n}\left(x_{i}-\mu\right)^{2}}
$$

And the posterior distribution is given by:
$p(\theta \mid x) \propto p(x \mid \theta) p(\theta) \propto\left(\sigma^{2}\right)^{-\frac{n}{2}} \mathrm{e}^{-\frac{1}{2 \sigma^{2}} \sum_{1=1}^{n}\left(x_{i}-\mu\right)^{2}} *\left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} \mathrm{e}^{-\frac{\beta}{\sigma^{2}}}=\left(\sigma^{2}\right)^{-\left(\frac{n}{2}+\alpha+1\right)} \mathrm{e}^{-\frac{1}{\sigma^{2}}\left(\frac{\sum_{1=1}^{n}\left(x_{i}-\mu\right)^{2}}{2}+\beta\right)}$
which looks like an

$$
I G\left(\alpha+\frac{n}{2}, \beta+\frac{1}{2} \sum_{i=1}^{N}(x-\mu)^{2}\right)
$$

```
n=16
newalpha=38+n/2
data=[183, 173, 181, 170, 176, 180, 187, 176, 171, 190, 184, 173, 176, 179, 181, 186]
new=[ ]
for i in range(len(data)):
    new.append(pow(data[i]-180,2))
newbeta=1110+sum(new)*0.5
vardist=distr.InverseGamma( }38,1110
newvardist=distr.InverseGamma(newalpha,newbeta)
vardist_samples = [pyro.sample("prior",vardist) for i in range(200)]
newvardist_samples = [pyro.sample("post",newvardist) for i in range(200)]
sns.distplot(vardist_samples,kde_kws={"label": "InverseGamma(38,1110)"})
sns.distplot(newvardíst_samples,\overline{k}de_kws={"label": "InverseGamma(46,1380)"})
```

<matplotlib.axes. subplots.AxesSubplot at 0x7fe8f5b54750>

3.3

First solution

1. The posterior of the variance is:

$$
P\left(\sigma^{2} \mid x\right) \propto e^{-\frac{1}{\sigma^{2}}\left[\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2}+\beta\right]}\left(\frac{1}{\sigma^{2}}\right)^{\alpha+\frac{n}{2}+1}
$$

Let $y=\sigma^{2}$ and $z=g(y)=\sqrt{y}=\sigma$. Thus, $g^{-1}(z)=z^{2}$ and $\frac{d g^{-1}(z)}{d z}=2 z$.
With this transformation the posterior of the variance becomes:

$$
P(y \mid x) \propto e^{-\frac{1}{y}\left[\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2}+\beta\right]}\left(\frac{1}{y}\right)^{\alpha+\frac{n}{2}+1}
$$

and using the change of variable formula, we obtain:

$$
\begin{aligned}
P(z \mid x) & =P\left(\left(g^{-1}(z) \mid x\right)\left|\frac{d g^{-1}(z)}{d z}\right|\right. \\
& \left.\propto|2 z| e^{-\frac{1}{z^{2}}\left[\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2}+\beta\right.}\right]\left(\frac{1}{z^{2}}\right)^{\alpha+\frac{n}{2}+1}
\end{aligned}
$$

Second solution

We know that

$$
\int_{0}^{\infty} p_{X}(x) d x=1
$$

Let's substitute $y=\sqrt{x} \Longrightarrow x=y^{2}$ and so $d x=2 y d y$

$$
\int_{0}^{\infty} p_{X}\left(y^{2}\right) 2 y d y=1
$$

This means that, if we have $X=\sigma^{2}$ and $Y=\sigma$, we have the pdf for σ as:

$$
p_{\sigma}(y)=2 y p_{\sigma^{2}}\left(y^{2}\right)
$$

where the posteriror probability for σ^{2} is an InverseGamma $\left(\sigma^{2} \left\lvert\, \alpha+\frac{n}{2}\right., \beta+\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2}\right)$
Therefore, the posterior probability of σ is:

$$
p_{\sigma}(y)=2 y \frac{\beta^{\alpha+\frac{n}{2}}}{\Gamma\left(\alpha+\frac{n}{2}\right)} \frac{e^{-\frac{2 \beta+\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 y^{2}}}}{y^{2\left(\alpha+\frac{n}{2}+1\right)}}
$$

Exercise 4

First solution

Let (Ω, F, P) a probability space and (\mathbf{X}, A) a measurable space. Let $X, Y:(\Omega, F, P) \rightarrow(\mathbf{X}, A)$ two random variables s.t.

$$
\begin{gathered}
X \sim \operatorname{Exponential}(\lambda) \Rightarrow p\left(x_{i} \mid \lambda\right)=\prod_{i=1}^{n} \lambda e^{-\lambda x_{i}} \\
Y \sim \operatorname{Gamma}(\alpha, \beta) \Rightarrow p(\lambda \mid \alpha, \beta)=\frac{\beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda}}{\Gamma(\alpha)}
\end{gathered}
$$

where x_{i} is a generic component of $x=\left(x_{1}, \ldots, x_{n}\right)$.
From the definition of conjugate distribution, we want to prove that the posterior distribution is a Gamma distribution. For this reason, we can consider only the terms depending from λ :

$$
p(\lambda \mid \alpha, \beta) \propto \lambda^{\alpha-1} e^{-\beta \lambda}
$$

and:

$$
p(\lambda \mid x) \propto p(x \mid \lambda) p(\lambda)
$$

Then:

$$
\begin{aligned}
p(\lambda \mid x) \propto & {\left[\prod_{i=1}^{n} \lambda e^{-\lambda x_{i}}\right]\left[\lambda^{\alpha-1} e^{-\beta \lambda}\right]=} \\
& =\lambda^{n+\alpha-1} e^{-\lambda(\beta+n \bar{x})}
\end{aligned}
$$

where: $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x$.
So $\lambda \sim \operatorname{Gamma}(\alpha+n, \beta+n \bar{x})$, which proves our thesis.

Second solution

Given

$$
\begin{aligned}
X & \sim \operatorname{Exp}(x \mid \lambda)=\lambda e^{-\lambda x} \\
p(\lambda) & =\operatorname{Gamma}(\lambda \mid \alpha, \beta)=\frac{\lambda^{\alpha-1} \beta^{\alpha} e^{-\lambda \beta}}{\Gamma(\alpha)}
\end{aligned}
$$

the posterior probability takes the form

$$
\begin{aligned}
p(\lambda \mid x, \alpha, \beta) & =\frac{\operatorname{Exp}(x \mid \lambda) p(\lambda)}{p(x)} \\
& =\frac{\lambda e^{-\lambda x} \lambda^{\alpha-1} \beta^{\alpha} e^{-\lambda \beta}}{p(x) \Gamma(\alpha)} \\
& =\frac{\lambda^{\alpha} \beta^{\alpha} e^{-\lambda(\beta+x)}}{p(x) \Gamma(\alpha)} \\
& =\frac{\lambda^{(\alpha+1)-1}(\beta+x)^{(\alpha+1)} e^{-\lambda(\beta+x)}}{\Gamma(\alpha+1)} \frac{\beta^{\alpha} \Gamma(\alpha+1)}{(\beta+x)^{(\alpha+1)} \Gamma(\alpha) p(x)} \propto \operatorname{Gamma}(\lambda \mid \alpha+1, \beta+x)
\end{aligned}
$$

