1. Complete varieties.

We work over an algebraically closed field K.

In this lesson, we will prove that the algebra of regular functions $\mathcal{O}(X)$ of an irreducible projective variety X is the base field K, i.e. that the only regular functions on X are the constants. We will obtain this theorem as a consequence of the theorem of completeness of projective varieties. The property of a variety to be complete can be seen as an analogue of compactness in the context of algebraic geometry.

Definition 1.1. Let X be a quasi-projective variety. X is *complete* if, for any quasi-projective variety Y, the natural projection on the second factor $p_2: X \times Y \to Y$ is a closed map.

Note that both projections p_1, p_2 are morphisms: see Exercise 3, Lesson 14.

We recall that a topological space X is compact if and only if the above projection map is closed with respect to the product topology. Here the product variety $X \times Y$ does not carry the product topology but the Zariski topology, that is in general strictly finer (Proposition 1.2, lesson 3).

Example 1.2. The affine line \mathbb{A}^1 is not complete: let $X = Y = \mathbb{A}^1$, $p_2 : \mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^2 \to \mathbb{A}^1$ is the map such that $(x_1, x_2) \to x_2$. Then $Z := V(x_1x_2 - 1)$ is closed in \mathbb{A}^2 but $p_2(Z) = \mathbb{A}^1 \setminus \{O\}$ is not closed.

Proposition 1.3. (i) If $f : X \to Y$ is a regular map and X is complete, then f(X) is a closed complete subvariety of Y.

(ii) If X is complete, then all closed subvarieties of X are complete.

Proof. (i) Let $\Gamma_f \subset X \times Y$ be the graph of $f: \Gamma_f = \{(x, f(x)) \mid x \in X\}$. It is clear that $f(X) = p_2(\Gamma_f)$, so to prove that f(X) is closed it is enough to check that Γ_f is closed in $X \times Y$. Let us consider the diagonal of $Y: \Delta_Y = \{(y, y) \mid y \in Y\} \subset Y \times Y$. If $Y \subset \mathbb{P}^n$, then $\Delta_Y = \Delta_{\mathbb{P}^n} \cap (Y \times Y)$, so it is closed in $Y \times Y$, because $\Delta_{\mathbb{P}^n}$ is the closed subset defined in $\Sigma_{n,n}$ by the equations $w_{ij} - w_{ji} = 0, i, j = 0, \ldots, n$. There is a natural map $f \times 1_Y : X \times Y \to Y \times Y$, $(x, y) \to (f(x), y)$, such that $(f \times 1_Y)^{-1}(\Delta_Y) = \Gamma_f$. It is easy to see that $f \times 1_Y$ is regular, so Γ_f is closed, so also f(X) is closed.

Let now Z be any variety and consider $p_2 : f(X) \times Z \to Z$ and the regular map $f \times 1_Z : X \times Z \to f(X) \times Z$. There is a commutative diagram:

$$\begin{array}{cccc} X \times Z & \xrightarrow{p_2'} & Z \\ \downarrow_{f \times 1_Z} & \nearrow & {}_{p_2} \\ f(X) \times Z & \end{array}$$

If $T \subset f(X) \times Z$, then $(f \times 1_Z)^{-1}(T)$ is closed and $p_2(T) = p'_2((f \times 1_Z)^{-1}(T))$ is closed because X is complete. We conclude that f(X) is complete.

(ii) Let $T \subset X$ be a closed subvariety and Y be any variety. We have to prove that $p_2: T \times Y \to Y$ is closed. If $Z \subset T \times Y$ is closed, then Z is closed also in $X \times Y$, hence $p_2(Z)$ is closed because X is complete.

Corollary 1.4. 1. If X is a complete variety, then $\mathcal{O}(X) \simeq K$.

2. If X is an affine complete irreducible variety, then X is a point.

Proof. 1. If $f \in \mathcal{O}(X)$, f can be interpreted as a regular map $f : X \to \mathbb{A}^1$. By Proposition 1.3, (i), f(X) is a closed complete subvariety of \mathbb{A}^1 , which is not complete. Hence f(X) has dimension < 1 and is irreducible, hence it is a point, so $f \in K$.

2. By part 1., $\mathcal{O}(X) \simeq K$. But $\mathcal{O}(X) \simeq K[x_1, \ldots, x_n]/I(X)$, hence I(X) is maximal. By the Nullstellensatz, X is a point.

Before stating the Theorem 1.6 of completeness of projective varieties, we give a characterization of the closed subsets of a biprojective space $\mathbb{P}^n \times \mathbb{P}^m$, that will be needed in its proof. It is expressed in terms of equations in two series of variables, corresponding to the homogeneous coordinates $[x_0, \ldots, x_n]$ on \mathbb{P}^n and $[y_0, \ldots, y_m]$ on \mathbb{P}^m .

Let $\sigma : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$ be the Segre map. A closed subvariety X in \mathbb{P}^N is defined by finitely many equations $F_k(w_{00}, \ldots, w_{nm})$, where the F_k are homogeneous polynomials in the w_{ij} . On the subvariety $X \cap \Sigma$, where Σ is the Segre variety, we have $w_{ij} = x_i y_j$, so we can make this substitution in F_k and get equations $G_k(x_0, \ldots, x_n; y_0, \ldots, y_m) = 0$, where $G_k = F_k(x_0 y_0, \ldots, x_n y_m)$: they are equations characterizing the subset $\sigma^{-1}(X)$. Note that each G_k is homogeneos in each set of variables x_i and y_j , and in the same degree in both.

Conversely, it is easy to see that a polynomial with this property of bihomogeneity can always be written as a polynomial in the products $x_i y_j$, and the possible ambiguity depending on the choice disappears in view of the equations of the Segre variety. So it describes a subset of $\mathbb{P}^n \times \mathbb{P}^m$ whose image in σ is closed. However, equations that are bihomogeneous in x_i and y_j always define an algebraic subvariety of $\mathbb{P}^n \times \mathbb{P}^m$ even if the degrees of homogeneity in the two sets of variables are different. Indeed if $G(x_0, \ldots, x_n; y_0, \ldots, y_m)$ has degree r in

 x_i and s in y_j , and for instance r > s, then the equation G = 0 is equivalent to the system of equations $y_i^{r-s}G = 0$, $i = 0, \ldots, m$, and these define an algebraic variety.

We will need the answer to the analogous question for the product $\mathbb{P}^n \times \mathbb{A}^m$. Let us assume that $\mathbb{A}^m = U_0 \subset \mathbb{P}^m$, defined by $y_0 \neq 0$. If we have a closed subset of $\mathbb{P}^n \times \mathbb{P}^m$ defined by equations $G_k(x_0, \ldots, x_n; y_0, \ldots, y_m) = 0$, with G_k homogeneous of degree r_k in y_j , dividing by $y_0^{r_k}$ and setting $v_j = y_j/y_0$, we get equations $g_k(x_0, \ldots, x_n; v_1, \ldots, v_m) = 0$ that are homogeneous in the x_i and in general non-homogeneous in the v_j .

These observations can be collected in the following result.

Theorem 1.5. A subset $X \subset \mathbb{P}^n \times \mathbb{P}^m$ is a closed algebraic subvariety if and only if it is defined by a system of equations $G_k(x_0, \ldots, x_n; y_0, \ldots, y_m) = 0$, homogeneous separately in each set of variables. Every closed algebraic subvariety of $\mathbb{P}^n \times \mathbb{A}^m$ is defined by a system of equations $g_k(x_0, \ldots, x_n; v_1, \ldots, v_m) = 0$ that are homogeneous in x_0, \ldots, x_n .

Theorem 1.6. Let $X \subset \mathbb{P}^n$ be a projective irreducible variety. Then X is complete.

Proof. (see Safarevič, Theorem 3, Ch.1, §5)

1. It is enough to prove that $p_2 : \mathbb{P}^n \times \mathbb{A}^m \to \mathbb{A}^m$ is closed, for any positive n, m. This can be observed by using the local character of closedness and the existence of an affine open covering of any quasi-projective varieties.

Indeed, let us assume first that $p_2 : \mathbb{P}^n \times Y \to Y$ is a closed map for any quasi-projective variety Y. We observe that $X \times Y$ is closed in $\mathbb{P}^n \times Y$, because X is closed in \mathbb{P}^n . So, if $Z \subset X \times Y$ is closed, it is also closed in $\mathbb{P}^n \times Y$, which implies that $p_2(Z)$ is closed in Y. So we can replace X with \mathbb{P}^n .

Secondly, since being closed is a local property, it is enough to cover Y by affine open subsets U_i , and prove the theorem for each of them. Hence we can assume that Y is an affine variety. Finally, if $Y \subset \mathbb{A}^m$ is closed, then $\mathbb{P}^n \times Y$ is closed in $\mathbb{P}^n \times \mathbb{A}^m$, so it is enough to prove theorem in the particular case $X = \mathbb{P}^n$ and $Y = \mathbb{A}^m$.

2. If x_0, \ldots, x_n are homogeneous coordinates on \mathbb{P}^n and y_1, \ldots, y_m are non-homogeneous coordinates on \mathbb{A}^m , then any closed subvariety of $\mathbb{P}^n \times \mathbb{A}^m$ can be characterised as the set of common zeroes of a set of polynomials in the variables $x_0, \ldots, x_n, y_1, \ldots, y_m$, homogeneous in the first group of variables x_0, \ldots, x_n (Theorem 1.5).

3. Let $Z \subset \mathbb{P}^n \times \mathbb{A}^m$ be closed. Then Z is the set of solutions of a system of equations

$$\{G_i(x_0,\ldots,x_n;y_1,\ldots,y_m)=0, i=1,\ldots,t,$$

where G_i is homogeneous in the x's. A point $P(\overline{y}_1, \ldots, \overline{y}_m)$ is in $p_2(Z)$ if and only if the system

$$\{G_i(x_0,\ldots,x_n;\overline{y}_0,\ldots,\overline{y}_m)=0, i=1,\ldots,t,$$

has a solution in \mathbb{P}^n , i.e. if the ideal of $K[x_0, \ldots, x_n]$ generated by $G_1(x; \overline{y}), \ldots, G_t(x; \overline{y})$ has at least one zero in \mathbb{P}^n . Hence

$$p_2(Z) = \{ (\overline{y}_1, \dots, \overline{y}_m) | \forall d \ge 1 \langle G_1(x; \overline{y}), \dots, G_t(x; \overline{y}) \rangle \not\supseteq K[x_0, \dots, x_n]_d \}$$

$$(1) = \bigcap_{d \ge 1} \{ (\overline{y}_1, \dots, \overline{y}_m) | \langle G_1(x; \overline{y}), \dots, G_t(x; \overline{y}) \rangle \not\supseteq K[x_0, \dots, x_n]_d \}.$$

Let $\{M_{\alpha}\}_{\alpha=1,\ldots,\binom{n+d}{d}}$ be the set of the monomials of degree d in $K[x_0,\ldots,x_n]$; let $d_i = \deg G_i(x;\overline{y})$; let $\{N_i^{\beta}\}$ be the set of the monomials of degree $d - d_i$; let finally $T_d = \{(\overline{y}_1,\ldots,\overline{y}_m) \mid \langle G_1(x;\overline{y}),\ldots,G_t(x;\overline{y}) \rangle \not\supseteq K[x_0,\ldots,x_n]_d\}$. So equation (1) says that $p_2(Z) = \bigcap_{d\geq 1} T_d$, and to conclude the proof of the theorem it is enough to prove that T_d is closed in \mathbb{P}^m for any $d \geq 1$.

Note that $P(\overline{y}_1, \ldots, \overline{y}_m) \notin T_d$ if and only if $M_\alpha = \sum_i G_i(x; \overline{y}) F_{i,\alpha}(x_0, \ldots, x_n)$, for all α and for suitable polynomials $F_{i,\alpha}$ homogeneous of degree $d - d_i$. So $P \notin T_d$ if and only if, for all index α , M_α is a linear combination of the polynomials $\{G_i(x; \overline{y})N_i^\beta\}$, i.e. the matrix A of the coordinates of the polynomials $G_i(x; \overline{y})N_i^\beta$ with respect to the basis $\{M_\alpha\}$ has maximal rank $\binom{n+d}{d}$. So T_d is the set of zeroes of the minors of a fixed order of the matrix A, hence it is closed.

Corollary 1.7. Let X be a projective variety. Then $\mathcal{O}(X) \simeq K$.

Corollary 1.8. Let X be a projective variety, $\varphi : X \to Y \subset \mathbb{P}^n$ be any regular map. Then $\varphi(X)$ is a projective variety. In particular, if $X \simeq Y$, then Y is projective.

Corollary 1.8 says that the notion of projective variety, differently from that of affine variety, is invariant by isomorphism, i.e. quasi-projective varieties that are isomorphic to projective varieties are already projective.

In algebraic terms, Theorem 1.6 can be seen as a result in Elimination Theory. Indeed it can be reformulated by saying that, given a system of algebraic equations in two sets of variables, x_0, \ldots, x_n and y_1, \ldots, y_m , homogeneous in the first ones, it is possible to find another system of algebraic equations only in y_1, \ldots, y_m , such that $\bar{y}_1, \ldots, \bar{y}_m$ is a solution of the second system if and only if there exist $\bar{x}_0, \ldots, \bar{x}_n$, that, together with $\bar{y}_1, \ldots, \bar{y}_m$, are a solution of the first system. In other words, it is possible to eliminate a set of homogeneous variables from any system of algebraic equations.

Example 1.9. Let $S = K[x_0, ..., x_n]$. Let $d \ge 1$ be an integer number and consider S_d , the vector space of homogeneous polynomials of degree d. As an application of Theorem 1.6, we shall prove that the set of (proportionality classes of) reducible polynomials is a projective algebraic set in $\mathbb{P}(S_d)$.

We denote by $X \subset \mathbb{P}(S_d)$ the set of reducible polynomials. For any integer k, 0 < k < d, let $X_k \subseteq X$ be the set of polynomials of the form F_1F_2 with deg $F_1 = k$, deg $F_2 = d - k$. Then $X = \bigcup_{k=1}^{d-1} X_k$. Let $f_k : \mathbb{P}(S_k) \times \mathbb{P}(S_{d-k}) \to \mathbb{P}(S_d)$ be the multiplication of polynomials, i.e. $f_k([F_1], [F_2]) = [F_1F_2]$. f_k is clearly a regular map, and its image is $X_k = X_{d-k}$. Since the domain is a projective variety, and precisely a Segre variety, it follows from Theorem 1.6 that X_k is also projective.

In the special case d = 2, the quadratic polynomials, the equations of $X = X_1$ are the minors of order 3 of the matrix associated to the quadric.