
LESSON 16.

1. Complete varieties.

We work over an algebraically closed field K.

In this lesson, we will prove that the algebra of regular functions O(X) of an irreducible

projective variety X is the base field K, i.e. that the only regular functions on X are the

constants. We will obtain this theorem as a consequence of the theorem of completeness of

projective varieties. The property of a variety to be complete can be seen as an analogue of

compactness in the context of algebraic geometry.

Definition 1.1. Let X be a quasi–projective variety. X is complete if, for any quasi–

projective variety Y , the natural projection on the second factor p2 : X ×Y → Y is a closed

map.

Note that both projections p1, p2 are morphisms: see Exercise 3, Lesson 14.

We recall that a topological space X is compact if and only if the above projection map is

closed with respect to the product topology. Here the product variety X ×Y does not carry

the product topology but the Zariski topology, that is in general strictly finer (Proposition

1.2, lesson 3).

Example 1.2. The affine line A1 is not complete: let X = Y = A1, p2 : A1×A1 = A2 → A1

is the map such that (x1, x2) → x2. Then Z := V (x1x2 − 1) is closed in A2 but p2(Z) =

A1 \ {O} is not closed.

Proposition 1.3. (i) If f : X → Y is a regular map and X is complete, then f(X) is a

closed complete subvariety of Y .

(ii) If X is complete, then all closed subvarieties of X are complete.

Proof. (i) Let Γf ⊂ X × Y be the graph of f : Γf = {(x, f(x)) | x ∈ X}. It is clear that

f(X) = p2(Γf ), so to prove that f(X) is closed it is enough to check that Γf is closed in

X × Y . Let us consider the diagonal of Y : ∆Y = {(y, y) | y ∈ Y } ⊂ Y × Y . If Y ⊂ Pn,

then ∆Y = ∆Pn ∩ (Y × Y ), so it is closed in Y × Y , because ∆Pn is the closed subset

defined in Σn,n by the equations wij − wji = 0, i, j = 0, . . . , n. There is a natural map

f × 1Y : X × Y → Y × Y , (x, y)→ (f(x), y), such that (f × 1Y )−1(∆Y ) = Γf . It is easy to

see that f × 1Y is regular, so Γf is closed, so also f(X) is closed.
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Let now Z be any variety and consider p2 : f(X)× Z → Z and the regular map f × 1Z :

X × Z → f(X)× Z. There is a commutative diagram:

X × Z
p′2−→ Z

↓ f×1Z ↗ p2

f(X)× Z

If T ⊂ f(X) × Z, then (f × 1Z)−1(T ) is closed and p2(T ) = p′2((f × 1Z)−1(T )) is closed

because X is complete. We conclude that f(X) is complete.

(ii) Let T ⊂ X be a closed subvariety and Y be any variety. We have to prove that

p2 : T × Y → Y is closed. If Z ⊂ T × Y is closed, then Z is closed also in X × Y , hence

p2(Z) is closed because X is complete. �

Corollary 1.4. 1. If X is a complete variety, then O(X) ' K.

2. If X is an affine complete irreducible variety, then X is a point.

Proof. 1. If f ∈ O(X), f can be interpreted as a regular map f : X → A1. By Proposition

1.3, (i), f(X) is a closed complete subvariety of A1, which is not complete. Hence f(X) has

dimension < 1 and is irreducible, hence it is a point, so f ∈ K.

2. By part 1., O(X) ' K. But O(X) ' K[x1, . . . , xn]/I(X), hence I(X) is maximal. By

the Nullstellensatz, X is a point. �

Before stating the Theorem 1.6 of completeness of projective varieties, we give a charac-

terization of the closed subsets of a biprojective space Pn × Pm, that will be needed in its

proof. It is expressed in terms of equations in two series of variables, corresponding to the

homogeneous coordinates [x0, . . . , xn] on Pn and [y0, . . . , ym] on Pm.

Let σ : Pn × Pm → PN be the Segre map. A closed subvariety X in PN is defined by

finitely many equations Fk(w00, . . . , wnm), where the Fk are homogeneous polynomials in the

wij. On the subvariety X ∩ Σ, where Σ is the Segre variety, we have wij = xiyj, so we

can make this substitution in Fk and get equations Gk(x0, . . . , xn; y0, . . . , ym) = 0, where

Gk = Fk(x0y0, . . . , xnym): they are equations characterizing the subset σ−1(X). Note that

each Gk is homogeneos in each set of variables xi and yj, and in the same degree in both.

Conversely, it is easy to see that a polynomial with this property of bihomogeneity can

always be written as a polynomial in the products xiyj, and the possible ambiguity depending

on the choice disappears in view of the equations of the Segre variety. So it describes a subset

of Pn × Pm whose image in σ is closed. However, equations that are bihomogeneous in xi
and yj always define an algebraic subvariety of Pn × Pm even if the degrees of homogeneity

in the two sets of variables are different. Indeed if G(x0, . . . , xn; y0, . . . , ym) has degree r in
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xi and s in yj, and for instance r > s, then the equation G = 0 is equivalent to the system

of equations yr−si G = 0, i = 0, . . . ,m, and these define an algebraic variety.

We will need the answer to the analogous question for the product Pn × Am. Let us

assume that Am = U0 ⊂ Pm, defined by y0 6= 0. If we have a closed subset of Pn × Pm

defined by equations Gk(x0, . . . , xn; y0, . . . , ym) = 0, with Gk homogeneous of degree rk in yj,

dividing by yrk0 and setting vj = yj/y0, we get equations gk(x0, . . . , xn; v1, . . . , vm) = 0 that

are homogeneous in the xi and in general non-homogeneous in the vj.

These observations can be collected in the following result.

Theorem 1.5. A subset X ⊂ Pn × Pm is a closed algebraic subvariety if and only if it is

defined by a system of equations Gk(x0, . . . , xn; y0 . . . , ym) = 0, homogeneous separately in

each set of variables. Every closed algebraic subvariety of Pn ×Am is defined by a system of

equations gk(x0, . . . , xn; v1, . . . , vm) = 0 that are homogeneous in x0, . . . , xn.

Theorem 1.6. Let X ⊂ Pn be a projective irreducible variety. Then X is complete.

Proof. (see Šafarevič, Theorem 3, Ch.1, §5)

1. It is enough to prove that p2 : Pn×Am → Am is closed, for any positive n,m. This can

be observed by using the local character of closedness and the existence of an affine open

covering of any quasi–projective varieties.

Indeed, let us assume first that p2 : Pn × Y → Y is a closed map for any quasi-projective

variety Y . We observe that X × Y is closed in Pn × Y , because X is closed in Pn. So, if

Z ⊂ X × Y is closed, it is also closed in Pn× Y , which implies that p2(Z) is closed in Y . So

we can replace X with Pn.

Secondly, since being closed is a local property, it is enough to cover Y by affine open

subsets Ui, and prove the theorem for each of them. Hence we can assume that Y is an affine

variety. Finally, if Y ⊂ Am is closed, then Pn × Y is closed in Pn × Am, so it is enough to

prove theorem in the particular case X = Pn and Y = Am.

2. If x0, . . . , xn are homogeneous coordinates on Pn and y1, . . . , ym are non-homogeneous

coordinates on Am, then any closed subvariety of Pn×Am can be characterised as the set of

common zeroes of a set of polynomials in the variables x0, . . . , xn, y1, . . . , ym, homogeneous

in the first group of variables x0, . . . , xn (Theorem 1.5).

3. Let Z ⊂ Pn × Am be closed. Then Z is the set of solutions of a system of equations

{Gi(x0, . . . , xn; y1, . . . , ym) = 0, i = 1, . . . , t,

where Gi is homogeneous in the x’s. A point P (y1, . . . , ym) is in p2(Z) if and only if the

system

{Gi(x0, . . . , xn; y0, . . . , ym) = 0, i = 1, . . . , t,
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has a solution in Pn, i.e. if the ideal of K[x0, . . . , xn] generated by G1(x; y),. . . , Gt(x; y) has

at least one zero in Pn. Hence

p2(Z) = {(y1, . . . , ym)| ∀ d ≥ 1 〈G1(x; y), . . . , Gt(x; y)〉 6⊃ K[x0, . . . , xn]d}

=
⋂
d≥1{(y1, . . . , ym)| 〈G1(x; y), . . . , Gt(x; y)〉 6⊃ K[x0, . . . , xn]d}.(1)

Let {Mα}α=1,...,(n+d
d ) be the set of the monomials of degree d in K[x0, . . . , xn]; let di =

deg Gi(x; y); let {Nβ
i } be the set of the monomials of degree d − di; let finally Td =

{(y1, . . . , ym)| 〈G1(x; y), . . . , Gt(x; y)〉 6⊃ K[x0, . . . , xn]d}. So equation (1) says that p2(Z) =

∩d≥1Td, and to conclude the proof of the theorem it is enough to prove that Td is closed in

Pm for any d ≥ 1.

Note that P (y1, . . . , ym) 6∈ Td if and only if Mα =
∑

iGi(x; y)Fi,α(x0, . . . , xn), for all α and

for suitable polynomials Fi,α homogeneous of degree d− di. So P 6∈ Td if and only if, for all

index α, Mα is a linear combination of the polynomials {Gi(x; y)Nβ
i }, i.e. the matrix A of

the coordinates of the polynomials Gi(x; y)Nβ
i with respect to the basis {Mα} has maximal

rank
(
n+d
d

)
. So Td is the set of zeroes of the minors of a fixed order of the matrix A, hence

it is closed. �

Corollary 1.7. Let X be a projective variety. Then O(X) ' K.

Corollary 1.8. Let X be a projective variety, ϕ : X → Y ⊂ Pn be any regular map. Then

ϕ(X) is a projective variety. In particular, if X ' Y , then Y is projective.

Corollary 1.8 says that the notion of projective variety, differently from that of affine

variety, is invariant by isomorphism, i.e. quasi-projective varieties that are isomorphic to

projective varieties are already projective.

In algebraic terms, Theorem 1.6 can be seen as a result in Elimination Theory. Indeed

it can be reformulated by saying that, given a system of algebraic equations in two sets

of variables, x0, . . . , xn and y1, . . . , ym, homogeneous in the first ones, it is possible to find

another system of algebraic equations only in y1, . . . , ym, such that ȳ1, . . . , ȳm is a solution of

the second system if and only if there exist x̄0, . . . , x̄n, that, together with ȳ1, . . . , ȳm, are a

solution of the first system. In other words, it is possible to eliminate a set of homogeneous

variables from any system of algebraic equations.

Example 1.9. Let S = K[x0, . . . , xn]. Let d ≥ 1 be an integer number and consider Sd, the

vector space of homogeneous polynomials of degree d. As an application of Theorem 1.6, we

shall prove that the set of (proportionality classes of) reducible polynomials is a projective

algebraic set in P(Sd).
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We denote by X ⊂ P(Sd) the set of reducible polynomials. For any integer k, 0 < k < d,

let Xk ⊆ X be the set of polynomials of the form F1F2 with degF1 = k, degF2 = d − k.

Then X =
⋃d−1
k=1Xk. Let fk : P(Sk)× P(Sd−k)→ P(Sd) be the multiplication of polynomials,

i.e. fk([F1], [F2]) = [F1F2] . fk is clearly a regular map, and its image is Xk = Xd−k. Since

the domain is a projective variety, and precisely a Segre variety, it follows from Theorem 1.6

that Xk is also projective.

In the special case d = 2, the quadratic polynomials, the equations of X = X1 are the

minors of order 3 of the matrix associated to the quadric.


