L'effetto serra e il riscaldamento globale

Sources: Okanagan university college in Canada, Department of geography, University of Oxford, school of geography; United States Environmental Protection Agency (EPA), Washington; Climate change 1995, The science of climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge university press, 1996.

Structure of the Atmosphere

Atmospheric Pressure Decreases With Height

Most of the energy is captured close to the surface

That energy drives climate and weather

50 percent of mass of the atmosphere is within 6 km of the surface

The "Greenhouse Effect"

- The Earth's surface thus receives energy from two sources: the sun & the atmosphere
 - As a result the Earth's surface is ~33°C warmer than it would be without an atmosphere
 - Greenhouse gases are transparent to shortwave but absorb longwave radiation
 - Thus the atmosphere stores energy

The Earth's Temperature - A Balancing Act

Shorter, high
Energy wavelengths
Hit the earths
Surface

2. Incoming energy Is converted to heat

CG Figure-19

The Earth's Temperature - A Balancing Act

3. Longer, infraredWavelengths hitGreenhouse gasMolecules in theatmosphere

4. Greenhouse gasMolecules in theAtmosphere emitInfrared radiationBack towards earth

CG Figure-19

78% nitrogen

20.6% oxygen

< 1% argon

0.4% <u>water</u> vapor

0.036% <u>carbon</u> <u>dioxide</u>

traces gases: Ne, He, Kr, H, O₃ <u>Methane, Nitrous</u> <u>Oxide</u> Composition of the Earth's Atmosphere (Gases - Percent by Volume)

Other - 1.4% — Argon (0.934%)

Oxygen - 20.6%

Nitrogen - 78%

Water Vapor (0.4%) * Carbon Dioxide (0.035%)

- Neon (0.00182%) Hellum (0.000524%)
- * Methane (0.00015%) Krypton (0.000114%) Hydrogen (0.00005%)
- * N20 (0.00003%)
- * Ozone (0.000005%)
- * CFCs (0.000001%)
- * Known Greenhouse Gas

Absorption Spectra of Atmospheric Gases

Anthes, p. 55

Carbon Dioxide at Mauna Loa, Hawaii

Selected Greenhouse Gases

• Carbon Dioxide (CO₂)

- Source: Fossil fuel burning, deforestation
- Anthropogenic increase: 30%
- Average atmospheric residence time: 500 years

Methane (CH₄)

- Source: Rice cultivation, cattle & sheep ranching, decay from landfills, mining
- Anthropogenic increase: 145%
- Average atmospheric residence time: 7-10 years

Nitrous oxide (N₂O)

- Source: Industry and agriculture (fertilizers)
- Anthropogenic increase: 15%
- Average atmospheric residence time: 140-190 years

Greenhouse Effect & Global Warming

- The "greenhouse effect" & global warming are <u>not</u> the same thing.
 - Global warming refers to a rise in the temperature of the surface of the earth
- ✵
- An increase in the concentration of greenhouse gases leads to an increase in the the magnitude of the greenhouse effect. (Called enhanced greenhouse effect)
 - This results in global warming

Climate Change vs. Variability

Global land–ocean temperature index

Climate Change vs. Variability

Climate variability is natural.

Even in a stable climate regime, there will always be some variation (wet/dry years, warm/cold years) A year with completely "average" or "normal" climate conditions is rare

The challenge for scientists is to determine whether any increase/decrease in precipitation, temperature, frequency of storms, sea level, etc. is due to climate variability or climate change.

MULTI-MODEL AVERAGES AND ASSESSED RANGES FOR SURFACE WARMING

Sea level rise due to global warming

Sea level rise scenarios for 2100

GRAPHIC DESIGN : PHILIPPE REKACEWICZ

Sea level rise over the last century

Centimeters Centimeters 120 8 Solid lines represent various scenarios Annual sea level change including changes in aerosols beyond 1990. Dashed lines show the sce-5-year running mean IS92e 100 narios with constant 1990 aerosol. 4 80 0 60 IS92a -4 40 -8 20 IS92c - 12 0 1900 1960 1880 1920 1940 1980 2000 2020 2040 2060 2080 2100 (7) GRID UNEP

Source: Climate change 1995, The science of climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge university press, 1995; Sea level rise over the last century, adapted from Gormitz and Lebedeff, 1967.

Andamento della temperatura in Groenlandia