
LESSON 17.

1. The tangent space and the notion of smoothness.

We will always assume K algebraically closed. In this Lesson we follow the approach of

Šafarevič. We define the tangent space TX,P at a point P of an affine variety X ⊂ An as

the union of the lines passing through P and “ touching” X at P . It results to be an affine

subspace of An. Then we will find a “local” characterization of TX,P , this time interpreted

as a vector space, the direction of TX,P , only depending on the local ring OX,P : this will

allow to define the tangent space at a point of any quasi–projective variety.

Assume first that X ⊂ An is closed and P = O = (0, . . . , 0). Let L be a line through P : if

A(a1, . . . , an) is another point of L, then a general point of L has coordinates (ta1, . . . , tan),

t ∈ K. If I(X) = (F1, . . . , Fm), then the intersection X ∩ L is determined by the following

system of equations in the indeterminate t:

F1(ta1, . . . , tan) = · · · = Fm(ta1, . . . , tan) = 0.

The solutions of this system of equations are the roots of the greatest common divisor G(t) of

the polynomials F1(ta1, . . . , tan), . . . , Fm(ta1, . . . , tan) in K[t], i.e. the generator of the ideal

they generate. We may factorize G(t) as G(t) = cte(t − α1)
e1 . . . (t − αs)

es , where c ∈ K,

α1, . . . , αs 6= 0, e, e1, . . . , es are non-negative, and e > 0 if and only if P ∈ X ∩ L. The

number e is by definition the intersection multiplicity at P of X and L. If G(t) is

identically zero, then L ⊂ X and the intersection multiplicity is, by definition, +∞.

Note that the polynomial G(t) doesn’t depend on the choice of the generators F1, . . . , Fm

of I(X), but only on the ideal I(X) and on L.

Definition 1.1. The line L is tangent to the variety X at P if the intersection multiplicity

of L and X at P is at least 2 (in particular, if L ⊂ X). The tangent space to X at P is

the union of the lines that are tangent to X at P ; it is denoted TP,X .

We will see now that TP,X is an affine subspace of An. Assume that P ∈ X: then the

polynomials Fi may be written in the form Fi = Li +Gi, where Li is a homogeneous linear

polynomial (possibly zero) and Gi contains only terms of degree ≥ 2. Then

Fi(ta1, . . . , tan) = tLi(a1, . . . , an) +Gi(ta1, . . . , tan),

where the last term is divisible by t2. Let L be the line OA, with A = (a1, . . . , an). We note

that the intersection multiplicity of X and L at P is the maximal power of t dividing the
1
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greatest common divisor, so L is tangent to X at P if and only if Li(a1, . . . , an) = 0 for all

i = 1, . . . ,m.

Therefore the point A belongs to TP,X if and only if

L1(a1, . . . , an) = · · · = Lm(a1, . . . , an) = 0.

This shows that TP,X is a linear subspace of An, whose equations are the linear components

of the equations defining X.

Example 1.2. (i) TO,An = An, because I(An) = (0).

(ii) If X is a hypersurface, with I(X) = (F ), we write as above F = L+G; then TO,X =

V (L): so TO,X is either a hyperplane if L 6= 0, or the whole space An if L = 0. For instance,

if X is the affine plane cuspidal cubic V (x3 − y2) ⊂ A2, TO,X = A2.

Assume now that P ∈ X has coordinates (y1, . . . , yn). With a linear transformation

we may translate P to the origin (0, . . . , 0), taking as new coordinates functions on An

x1 − y1, . . . , xn − yn. This corresponds to considering the K-isomorphism K[x1, . . . , xn] −→
K[x1 − y1, . . . , xn − yn], which takes a polynomial F (x1, . . . , xn) to its Taylor expansion

G(x1 − y1, . . . , xn − yn) = F (y1, . . . , yn) + dPF + d
(2)
P F + . . . ,

where d
(i)
P F denotes the ith differential of F at P : it is a homogeneous polynomial of degree

i in the variables x1 − y1, . . . , xn − yn. In particular the linear term is

dPF =
∂F

∂x1
(P )(x1 − y1) + · · ·+ ∂F

∂xn
(P )(xn − yn).

We get that, if I(X) = (F1, . . . , Fm), then TP,X is the affine subspace of An defined by the

equations

dPF1 = · · · = dPFm = 0.

The affine space An, which may identified with Kn, can be given a natural structure of

K-vector space with origin P , so in a natural way TP,X is a vector subspace (with origin P ).

The functions x1−y1, . . . , xn−yn form a basis of the dual space (Kn)∗ and their restrictions

generate T ∗P,X . Note moreover that dimT ∗P,X = k if and only if n− k is the maximal number

of polynomials linearly independent among dPF1, . . . , dPFm. If dPF1, . . . , dPFn−k are these

polynomials, then they form a base of the orthogonal T⊥P,X of the vector space TP,X in (Kn)∗,

because they vanish on TP,X .

Let us define now the differential of a regular function. Let f ∈ O(X) be a regular function

on X. We want to define the differential of f at P . Since X is closed in An, f is induced

by a polynomial F ∈ K[x1, . . . , xn] as well as by all polynomials of the form F + G with

G ∈ I(X). Fix P ∈ X: then dP (F +G) = dPF +dPG so the differentials of two polynomials
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inducing the same function f on X differ by the term dPG with G ∈ I(X). By definition,

dPG is zero along TP,X , so we may define dpf as a regular function on TP,X , the differential

of f at P : it is the function on TP,X induced by dPF . Since dPF is a linear combination of

x1 − y1, . . . , xn − yn, dpf can also be seen as an element of T ∗P,X .

There is a natural map dp : O(X)→ T ∗P,X , which sends f to dpf . Because of the rules of

derivation, it is clear that dP (f + g) = dPf + dPg and dP (fg) = f(P )dPg + g(P )dPf . In

particular, if c ∈ K, dp(cf) = cdPf . So dp is a linear map of K-vector spaces. We denote

again by dP the restriction of dP to IX(P ), the maximal ideal of the regular functions on X

which are zero at P . Since clearly f = f(P ) + (f − f(P )) then dPf = dP (f − f(P )), so this

restriction doesn’t modify the image of the map.

Proposition 1.3. The map dP : IX(P ) → T ∗P,X is surjective and its kernel is IX(P )2.

Therefore T ∗P,X ' IX(P )/IX(P )2 as K-vector spaces.

Proof. Let ϕ ∈ T ∗P,X be a linear form on TP,X . ϕ is the restriction of a linear form on Kn:

λ1(x1 − y1) + . . . + λn(xn − yn), with λ1, . . . , λn ∈ K. Let G be the polynomial of degree 1

λ1(x1− y1) + . . .+λn(xn− yn): the function g induced by G on X is zero at P and coincides

with its own differential, so dp is surjective.

Let now g ∈ IX(P ) such that dpg = 0, g induced by a polynomial G. Note that dPG may

be interpreted as a linear form on Kn which vanishes on TP,X , hence as an element of T⊥P,X .

So dPG = c1dpF1 + . . . + cmdpFm (c1, . . . , cm suitable elements of K). Let us consider the

polynomial G−c1F1− . . .−cmFm: since its differential at P is zero, it doesn’t have any term

of degree 0 or 1 in x1 − y1, . . . , xn − yn, so it belongs to I(P )2. Since G− c1F1 − . . .− cmFm

defines the function g on X, we conclude that g ∈ IX(P )2. �

Corollary 1.4. The tangent space TP,X is isomorphic to (IX(P )/IX(P )2)∗ as an abstract

K-vector space.

Corollary 1.5. Let ϕ : X → Y be an isomorphism of affine varieties and P ∈ X, Q = ϕ(P ).

Then the tangent spaces TP,X and TQ,Y are isomorphic.

Proof. ϕ induces the comorphism ϕ∗ : O(Y ) → O(X), which results to be an isomorphism

such that ϕ∗IY (Q) = IX(P ) and ϕ∗IY (Q)2 = IX(P )2. So there is an induced homomorphism

IY (Q)/IY (Q)2 → IX(P )/IX(P )2.

which is an isomorphism of K-vector spaces. By dualizing we get the claim. �

The above map from TP,X to TQ,Y is called the differential of ϕ at P and is denoted by

dPϕ.
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Now we would like to find a “more local” characterization of TP,X . To this end we consider

the local ring of P in X: OP,X . We recall the natural map O(X)→ OP,X = O(X)IX(P ), the

last one being the localization. It is natural to extend the map dP : O(X) → T ∗P,X to OP,X

setting

dP

(f
g

)
=
g(P )dPf − f(P )dPg

g(P )2
.

As in the proof of Proposition 1.3 one proves that the map dP : OP,X → T ∗P,X induces

an isomorphism MP,X/M2
P,X → T ∗P,X , where MP,X is the maximal ideal of OP,X . So by

duality we have: TP,X ' (MP,X/M2
P,X)∗. This proves that the tangent space TP,X is a local

invariant of P in X.

Definition 1.6. Let X be any quasi-projective variety, P ∈ X. The Zariski tangent space

of X at P is the vector space (MP,X/M2
P,X)∗.

It is an abstract vector space, but if X ⊂ An is closed, taking the dual of the comorphism

associated to the inclusion morphism X ↪→ An, we have an embedding of TP,X into TP,An =

An. If X ⊂ Pn and P ∈ Ui = An, then TP,X ⊂ Ui: its projective closure TP,X is called the

embedded tangent space to X at P .

As we have seen the tangent space TP,X is invariant by isomorphism. In particular its

dimension is invariant. If X ⊂ An is closed, I(X) = (F1, . . . , Fm), then dimTP,X = n − r,
where r is the dimension of the K-vector space generated by {dPF1, . . . , dpFm}.

Since dPFi = ∂Fi

∂x1
(P )(x1− y1) + . . .+ ∂Fi

∂xn
(P )(xn− yn), r is the rank of the following m×n

matrix, the Jacobian matrix of X at P :

J(P ) =


∂F1

∂x1
(P ) . . . ∂F1

∂xn
(P )

. . . . . . . . .
∂Fm

∂x1
(P ) . . . ∂Fm

∂xn
(P )

 .

The generic Jacobian matrix of X is instead the following matrix with entries in O(X):

J =


∂F1

∂x1
. . . ∂F1

∂xn

. . . . . . . . .
∂Fm

∂x1
. . . ∂Fm

∂xn

 .

The rank of J is ρ when all minors of order ρ + 1 are functions identically zero on X,

while at least one minor of order ρ is different from zero at some point. Hence, for all P ∈ X
rk J(P ) ≤ ρ, and rk J(P ) < ρ if and only if all minors of order ρ of J vanish at P . It

is then clear that there is a non-empty open subset of X where dimTP,X is minimal, equal
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to n − ρ, and a proper (possibly empty) closed subset formed by the points P such that

dimTP,X > n− ρ.

Definition 1.7. The points of an irreducible variety X for which dimTP,X = n − ρ (the

minimal) are called smooth or non-singular (or simple) points of X. The remaining points

are called singular (or multiple). X is a smooth variety if all its points are smooth.

If X is quasi-projective, the same argument may be repeated for any affine open subset.

Example 1.8. Let X ⊂ An be the irreducible hypersurface V (F ). Then J = ( ∂F
∂x1

. . . ∂F
∂xn

)

is a row matrix. So rk J = 0 or 1. If rk J = 0, then ∂F
∂xi

= 0 in O(X) for all i. So
∂F
∂xi
∈ I(Y ) = (F ). Since the degree of ∂F

∂xi
is ≤ degF − 1, it follows that ∂F

∂xi
= 0 in

the polynomial ring. If the characteristic of K is zero this means that F is constant: a

contradiction. If char K = p, then F ∈ K[xp1, . . . , x
p
n]; since K is algebraically closed, then

all coefficients of F are p-th powers, so F = Gp for a suitable polynomial G; but again this

is impossible because F is irreducible. So always rk J = 1 = ρ. Hence for P general in X,

i.e. for P varying in a suitable non-empty open subset of X, dimTP,X = n − 1. For some

particular points, the singular points of X, we can have dimTP,X = n, i.e. TP,X = An.

So in the case of a hypersurface dimTP,X ≥ dimX for every point P in X, and equality

holds in the points of the smooth locus of X. The general case can be reduced to the case

of hypersurfaces in view of the following theorem.

Theorem 1.9. Every quasi-projective irreducible variety X is birational to a hypersurface

in some affine space.

Proof. We observe that we can reduce the proof to the case in which X is affine, closed in An.

Let m = dimX. We have to prove that the field of rational functions K(X) is isomorphic

to a field of the form K(t1, . . . , tm+1), where t1, . . . , tm+1 satisfy only one non-trivial relation

F (t1, . . . , tm+1) = 0, where F is an irreducible polynomial with coefficients in K. This will

follow from the “Abel’s primitive element Theorem” concerning extensions of fields. To state

it, we need some preliminaries.

Let K ⊂ L be an extension of fields. Let a ∈ L be algebraic over K, and let fa ∈ K[x] be

its minimal polynomial: it is irreducible and monic. Let E be the splitting field of fa.

Definition 1.10. An element a, algebraic over K, is separable if fa does not have any

multiple root in E, i.e. if fa and its derivative f ′a don’t have any common factor of positive

degree. Otherwise a is inseparable. If K ⊂ L is an algebraic extension of fields, it is called

separable if any element of L is separable.

In view of the fact that fa is irreducible, and that the GCD of two polynomials is in-

dependent of the field where one considers the coefficients, if a is inseparable, then f ′a is
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the zero polynomial. If char K = 0, this implies that fa is constant, which is a contradic-

tion. So in characteristic 0, any algebraic extension is separable. If char K = p > 0, then

fa ∈ K[xp], and fa is called an inseparable polynomial. In particular algebraic inseparable

elements can exist only in positive characteristic. On the other hand, if the characteris-

tic of K is p > 0 and K is algebraically closed, if fa = a0 + a1x
p + a2x

2p + · · · + akx
kp,

then all coefficients are p-th powers in K, i.e. ai = bpi for suitable elements bi; therefore

fa = bp0 + bp1x
p + bp2x

2p + · · · + bpkx
kp = (b0 + b1x + b2x

2 + · · · + bkx
k)p, and this contradicts

the irreducibility of fa. We conclude that, if K is algebraically closed, then any algebraic

extension is separable.

Theorem 1.11. [Abel’s primitive element Theorem.]

Let K ⊆ L = K(y1, . . . , ym) be an algebraic finite extension. If L is a separable extension,

then there exists α ∈ L, called a primitive element of L, such that L = K(α) is a simple

extension.

For a proof, see for instance [Lang, Algebra], or any book of Galois theory.

We can now prove Theorem 1.9. The field of rational functions of X is of the form

K(X) = Q(K[X]) = K(t1, . . . , tn), where t1, . . . , tn are the coordinate functions on X and

tr.d.K(X)/K = m. Possibly after renumbering them, we can assume that the first m coor-

dinate functions t1, . . . , tm are algebraically independent over K, and K(X) is an algebraic

extension of L := K(t1, . . . , tm). So in our situation we can apply Theorem 1.11: there

exists a primitive element α such that K(X) = L(α) = K(t1 . . . , tm, α). So there exists

an irreducible polynomial f ∈ L[x] such that K(X) = L[x]/(f). Multiplying f by a suit-

able element of K[t1, . . . , tm], invertible in L, we can eliminate the denominator of f and

replace f by a polynomial g ∈ K[t1, . . . , tm, x] ⊂ L[x]. Now K[t1, . . . , tm, x]/(g) is contained

in L[x](g) = K(X), and its quotient field is again K(X). But K[t1, . . . , tm, x]/(g) is the

coordinate ring of the hypersurface Y ⊂ Am+1 of equation g = 0. It is clear that X and

Y are birationally equivalent, because they have the same fiekd of rational functions. This

concludes the proof.

One can show that the coordinate functions on Y , t1, . . . , tm+1, can be chosen to be linear

combinations of the original coordinate functions on X: this means that Y is obtained as a

suitable birational projection of X.

Theorem 1.12. The dimension of the tangent space at a non-singular point of an irreducible

variety X is equal to dimX.

Proof. It is enough to prove the claim under the assumption that X is affine. Let Y be an

affine hypersurface birational to X (which exists by the previous theorem) and ϕ : X 99K Y
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be a birational map. There exist open non-empty subsets U ⊂ X and V ⊂ Y such that

ϕ : U → Y is an isomorphism. The set of smooth points of Y is an open subset W of Y

such that W ∩ V is non-empty and dimTP,Y = dimY = dimX for all P ∈ W ∩ V . But

ϕ−1(W ∩ V ) ⊂ U is open non-empty and dimTQ,X = dimX for all Q ∈ ϕ−1(W ∩ V ). This

proves the theorem. �

We will denote by Xsing the closed set, possibly empty, of singular points of X, and by

Xsm the smooth locus of X, i.e. the open non empty subset of its smooth points.

Corollary 1.13. The singular points of an affine variety X closed in An with dimX = m,

are the points P of X where the Jacobian matrix J(P ) has rank strictly less than n−m.

To find the singular points of a projective variety, it is useful to remember the following

Euler relation for homogeneous polynomials.

Proposition 1.14. [Euler’s formula] Let F (x0, . . . , xn) be a homogeneous polynomial of

degree d. Then dF = x0Fx0 + · · · + xnFxn, where, for every i = 0, . . . , n, Fxi
denotes the

(formal) partial derivative of F with respect to xi.

Proof. Since d = degF , we have F (tx0, . . . , txn) = tdF (x0, . . . , xn). To get the desired

formula it is enough to derive with respect to t and then put t = 1. �

Let now X ⊂ Pn be a hypersurface with Ih(X) = 〈F (x0, . . . , xn)〉. Then we have:

Proposition 1.15. The singular points of X are the common zeroes of the partial derivatives

of F , i.e. Xsing = VP (Fx0 , . . . , Fxn).

Proof. We denote by f(x1, . . . , xn) the dehomogenized aF = F (1, x1, . . . , xn) of F with re-

spect to x0. We observe that, for i = 1, . . . , n, a(Fxi
) = fxi

, and that aFx0 = df − x1fx1 −
· · · − xnfxn , in view of Proposition 1.14. So, if P ∈ U0, f(P ) = fx1(P ) = · · · = fxn(P ) = 0

if and only if Fx0(P ) = · · · = Fxn(P ) = 0. �

Therefore, to look for the singular points of an affine hypersurface X, one has to consider

the system of equations defined by the equation of X and its partial derivatives, whereas

in the projective case it is enough to consider the system of the partial derivatives, be-

cause Euler’s relation garantees that by consequence also the equation of the hypersurface

is satisfied.

For an affine variety X of higher codimension n−m, one has to impose the vanishing of

the equation of X and of the minors of order n−m of the Jacobian matrix. In the projective

case, using again Euler’s relation, one can check that the singular points are those that

annihilate the homogeneous polynomials F1, . . . , Fr generating Ih(X) and also the minors of

order n−m of the homogeneous r × (n+ 1) Jacobian matrix (∂Fi/∂xj)ij.
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Now we would like to study a variety X in a neighbourhood of a smooth point. We have

seen that P is smooth for X if and only if dimTP,X = dimX. Assume X affine: in this case

the local ring of P in X is OP,X ' O(X)IX(P ). But by Theorem 1.8, Lesson 8, we have:

dimOP,X = htMP,X = htIX(P ) = dimO(X) = dimX and dimTP,X = dimKMP,X/M2
P,X .

Therefore P is smooth if and only if

dimKMP,X/M2
P,X = dimOP,X

(the first one is a dimension as K-vector space, the second one is a Krull dimension). By the

Nakayama’s Lemma a basis of MP,X/M2
P,X corresponds bijectively to a minimal system of

generators of the ideal MP,X (observe that the residue field of OP,X is K). Therefore P is

smooth for X if and only if MP,X is minimally generated by r elements, where r = dimX,

in other words if and only if OP,X is a regular local ring.

For example, if X is a curve, P is smooth if and only if TP,X has dimension 1, i.e. MP,X

is principal: MP,X = (t). This means that the equation t = 0 only defines the point P , i.e.

P has one local equation in a suitable neighborhood of P .

Let P be a smooth point of X and dimX = n. Functions u1, . . . , un ∈ OP,X are called

local parameters at P if u1, . . . , un ∈ MP,X and their residues ū1, . . . , ūn in MP,X/M2
P,X

(= T ∗P,X) form a basis, or equivalently if u1, . . . , un is a minimal set of generators of MP,X .

Recalling the isomorphism

dP :MP,X/M2
P,X → T ∗P,X

we deduce that u1, . . . , un are local parameters if and only if dP ū1, . . . , dP ūn are linearly

independent forms on TP,X (which is a vector space of dimension n), if and only if the

system of equations on TP,X

dP ū1 = . . . = dP ūn = 0

has only the trivial solution P (which is the origin of the vector space TP,X .

Let u1, . . . , un be local parameters at P . There exists an open affine neighborhood of P

on which u1, . . . , un are all regular. We replace X by this neighborhood, so we assume that

X is affine and that u1, . . . , un are polynomial functions on X. Let Xi be the closed subset

V (ui) of X: it has codimension 1 in X, because ui is not identically zero on X (u1, . . . , un
is a minimal set of generators of MP,X).

Proposition 1.16. In this notation, P is a smooth point of Xi, for all i = 1, . . . , n, and⋂
i TP,Xi

= {P}.
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Proof. Assume that Ui is a polynomial inducing ui, then Xi = V (Ui)∩X = V (I(X) + (Ui)).

So I(Xi) ⊃ I(X) + (Ui). By considering the linear parts of the polynomials of the previous

ideal, we get: TP,Xi
⊂ TP,X ∩ V (dPUi). By the assumption on the ui, it follows that TP,X ∩

V (dPU1)∩ · · · ∩V (dPUn) = {P}. Since dimTP,X = n, we can deduce that TP,X ∩V (dPUi) is

strictly contained in TP,X , and dimTP,X ∩ V (dPUi) = n− 1. So dimTP,Xi
≤ n− 1 = dimXi,

hence P is a smooth point on Xi, equality holds and TP,Xi
= TP,X ∩ V (dPUi). Moreover⋂

TP,Xi
= {P}. �

Note that
⋂

iXi has no positive-dimensional component Y passing through P : otherwise

the tangent space to Y at P would be contained in TP,Xi
for all i, against the fact that⋂

TP,Xi
= {P}.

Definition 1.17. LetX be a smooth variety. Subvarieties Y1, . . . , Yr ofX are called transver-

sal at P , with P ∈
⋂
Yi, if the intersection of the tangent spaces TP,Yi

has dimension as small

as possible, i.e. if codimTP,X
(
⋂
TP,Yi

) =
∑

codimXYi.

Taking TP,X as ambient variety, one gets the relation:

dim
⋂

TP,Yi
≥
∑

dimTP,Yi
− (r − 1) dimTP,X ;

hence

codimTP,X
(
⋂

TP,Yi
) = dimTP,X − dim

⋂
TP,Yi

≤
∑

(dimTP,X − dimTP,Yi
) =

=
∑

codimTP,X
(TP,Yi

) ≤
∑

codimXYi.

If equality holds, P is a smooth point for Yi for all i, moreover we get that P is a smooth

point for the set
⋂
Yi.

For example, if X is a surface and P ∈ X is smooth, there is a neighbourhood U of P such

that P is the transversal intersection of two curves in U , corresponding to local parameters

u1, u2. If P is singular we need three functions u1, u2, u3 to generate the maximal idealMP,X .

Exercises 1.18. 1. Assume char K 6= 2. Find the singular points of the following surfaces

in A3:

(1) xy2 = z3;

(2) x2 + y2 = z2;

(3) xy + x3 + y3 = 0.

2. Suppose that char K 6= 3. Determine the singular locus of the projective variety in P5

given by the equations:
5∑

i=0

xi = 0,
5∑

i=0

x3i = 0.


