

The Standard Model

Some of the problems with the Standard Model (SM)

- Gravity is not included
- Large number of free parameters (particle masses and interaction strengths)
- $(g-2)_{\mu}$ deviates from the SM prediction
- "Fine-tuning"
 - "θ parameter" or CP conservation in strong interactions

• ...

•

Cosmology: hints and puzzles

- Matter-antimatter asimmetry
- Composition of the Universe

• ...

Energy makeup of the Universe

Before Planck

After Planck

Latest measurements from the Planck satellite

Power Spectrum of the CMB fluctuations

"Frontiers" in physics

Energy Frontier

 use high-energy colliders to search for new particles and forces that provide information on the makeup of matter and space

Intensity Frontier

generate a huge number of events to study rare processes
 it requires highly precise experiments

Cosmic Frontier

 scan the heavens with telescopes and highly sensitive detectors to learn more about cosmic rays, dark matter, and dark energy

Precision Physics

- "Precision Physics" plays a key role in the Intensity and Cosmic Frontiers
- Examples of precision physics techniques
 - interferometry
 - optomechanical sensors
 - polarimetry
 - RF & microwave measurements
 - single photon detectors (example: TES sensors)
 - cryogenics
 - ...
- "Small scale" laboratories and "table top" set-ups are the ideal places to develop and test Precision Physics techniques (and also to do experiments!)

Intensity frontier: the $(g-2)\mu$ anomaly

 a_{μ} measurement method

$$a_{\mu} = \frac{g_{\mu} - 2}{2}, \quad \vec{\mu}_{\mu} = g_{\mu} \frac{q_{\mu}}{2m_{\mu}} \vec{S}_{\mu}$$

Muon g-2 at Fermilab - E989

- 2001 BNL experiment measures a deviation of $(g-2)_{\mu}$ from the SM prediction at the level of ~3 σ
 - possible signature of new non-SM particles hiding in the vacuum and invisible at colliders because of their mass
- Goal of E989 at Fermilab: confirm (or refute...) the deviation at the level of $7\sigma \Rightarrow$ it would be a major discovery!
 - increase 20-fold the statistics with respect to BNL (Intensity Frontier)
 - 4-times better precision than BNL (Precision Physics)

INFN contribution to g-2

- The INFN group within "g-2" is responsible for the laser calibration system of the electron calorimeters
- It is a critical element towards the goal of reducing the overall uncertainty
- Precision physics at work!

Table 2. Contribution of various processes to magnetic moment anomaly.

Brookhaven	Fermilab	Goal
(nph)		(ppb)
120	Better laser calibration, low energy threshold	20
	Low chargy camples recorded, carorimeter	40
	segmentation	
90	Better collimation in ring	20
50	Higher n value (frequency), Better match of	<30
	beamline to ring	
50	Improved tracker, Precise storage ring simula-	30
	tions	
180	Quadrature sum	70
	(nph) 120 30 90 50	120 Better laser calibration, low energy threshold 30 Large samples recorded, caronineter segmentation 90 Better collimation in ring 50 Higher n value (frequency), Better match of beamline to ring 50 Improved tracker, Precise storage ring simulations

laser calibration system monitors calorimeter gain to 10^{-4}

MUonE at CERN - INFN project

- MUonE project: precision measurement of the muon-electron scattering angle to extract directly the hadronic contribution to g-2
- Beamline at CERN: muon beam on an electron target, elastic scattering measured with a series of detector stations equipped with tracking planes
- Challenge (on of many…)
 - monitor the relative alignment of the tracking planes at the level of 10 μm

- Solution:
 - real time holographic interferometry
- Objective: be ready for a test beam at CERN in 2021

Holographic Alignment Monitor for MUonE

The CAST helioscope

The Kinetic WISP detection principle

Curious? See January-February 2016 CERN Courier http://cerncourier.com/cws/article/cern/63705

KWISP 3.5 – Triest lab tests

KWISP 3.5 – Triest lab tests

Detector assembly and tests:

Prepared the detector for vacuum tests

