Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste Il Semestre 2019

Lecture 5: Stochastic (Hybrid) Systems

Probabilistic Models

- Models for components that we studied so far were either deterministic or nondeterministic.
- The goal of such models is to represent computation or time-evolution of a physical phenomenon.
- These models *do not* do a great job of capturing uncertainty.
- We can usually model uncertainty using probabilities, so probabilistic models allow us to account for likelihood of environment behaviors
- Machine learning/AI algorithms also require probabilistic modelling!

Stochastic Difference Equation Models

We assume that the plant (whose state we are trying to estimate) is a stochastic discrete dynamical process with the following dynamics:

 $\mathbf{x}_k = A\mathbf{x}_{k-1} + B\mathbf{u}_k + \mathbf{w}_k \text{ (Process Model)}$

 $\mathbf{y}_k = H\mathbf{x}_k + \mathbf{v}_k$ (Measurement Model)

$\mathbf{x}_k, \mathbf{x}_{k-1}$	State at time $k, k - 1$	n	Number of states
\mathbf{u}_k	Input at time <i>k</i>	m	Number of inputs
\mathbf{w}_k	Random vector representing noise in the plant, $\mathbf{w} \sim N(0, Q_k)$	p	Number of outputs
v _k	Random vector representing sensor noise, $\mathbf{v} \sim N(0, R_k)$	A	n imes n matrix
	Output at time k	В	n imes m matrix
\boldsymbol{y}_k		Н	p imes n matrix

Example

The Family of Markov Models

Markov Mod	els	Do we have control over the state transitions?		
		No	Yes	
Are the states completely	Yes	MC Markov Chain	MDP Markov Decision Process	
observable?	No	HMM Hidden Markov Model	POMDP Partially Observable Markov Decision Process	

The Memoryless Property

$$p(s_{t+1}|s_{1:t}) = p(s_{t+1}|s_t).$$

The knowledge of the state s_t captures the complete information capturing all the relevant information about the present and the past of the system necessary for predicting its future evolution

Hidden Markov Model

 $p(s_{t+1}|z_t)$.

The knowledge of the state s_t captures the complete information capturing all the relevant information about the present and the past of the system necessary for predicting its future evolution

Example

