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Linear Control



Reference Tracking
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Given a reference trajectory r(t), design u(t) such that x(t) closely follows r(t)

Control objectives:
• Reject disturbances (if there is some perturbation in state, making it get back to initial state)
• Follow reference trajectories (if we want the system to have a certain 𝒙𝒓𝒆𝒇 )
• Make system follow some other “desired behavior”



Open-loop or feed-forward control

u Control action does not depend on plant output

u Cheaper, no sensors required. 
u Quality of control generally poor without human 

intervention

Open-loop vs. Closed-loop control
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Plant Controller
𝐢(𝑡) 𝐮(𝑡) 𝐲(𝑡)

Plant Controller
𝐢(𝑡) 𝐮(𝑡) 𝐲(𝑡)

∑
Feed-back control

u Controller adjusts controllable inputs in 
response to observed outputs

u Can respond better to variations in disturbances

u Performance depends on how well outputs can 
be sensed, and how quickly controller can track 
changes in output



Proportional Controller 
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𝐱(𝑡)
�̇� = 𝐴𝐱 + 𝐵𝐮𝐮 = 𝐾$(𝐫 − 𝐱)

𝐫(𝑡) 𝐮(𝑡)
∑

+
−

Controller Plant

u Common objective: make plant state track the reference signal 𝐫(𝑡)
u 𝑒 = 𝑟 − 𝑥 is the error signal

u Closed-loop dynamics: �̇� = 𝐴𝐱 + 𝐵𝐾! 𝐫 − 𝐱 = 𝐴 − 𝐵𝐾! 𝐱 + 𝐵𝐾!𝐫
u pick 𝐾! s.t. the composite system is asymptotically stable, i.e. pick 𝐾! such that eigenvalues of 𝐴 − 𝐵𝐾

have negative real-parts

reference signal
gain



Proportional Controller 
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𝐱(𝑡)
�̇� = 4 6

1 3 𝐱 + 2
1 𝐮𝐮 = 𝐾$(𝐫 − 𝐱)

𝐫(𝑡) 𝐮(𝑡)
∑

+
−

Controller Plant

u Note eigs 𝐴 = 6, 1 ⇒ unstable plant!

u Let 𝐾 = 𝑘" 𝑘# . Then, 𝐴 − 𝐵𝐾 = 4 − 2𝑘" 6 − 2𝑘#
1 − 𝑘" 3 − 𝑘#

u Solve the equation: det 𝐴 − 𝐵𝐾 − 𝜆𝑰 =0, i.e. 𝜆# + 2𝑘" + 𝑘# − 7 𝜆 + 6 − 2𝑘# = 0
u 2 distinct solution if polynomial of the form (𝜆 − 𝜆")(𝜆 − 𝜆#)= 𝜆# + −𝜆" − 𝜆# 𝜆 + 𝜆" 𝜆#
u That means: 2𝑘" + 𝑘# − 7 = −𝜆" − 𝜆# and  6 − 2𝑘# = 𝜆"𝜆#
u 𝜆" = −1, 𝜆# = −2 gives 𝑘" = 4, 𝑘#= 2

reference signal
gain



Controllability Matrix
Can we always choose eigenvalues to find a stabilizing controller? 

How do we determine for a given 𝐴, 𝐵 whether there is a controller?

Controllabitlity Matrix: 𝐶(𝐴, 𝐵) = 𝐵 𝐴𝐵 𝐴%𝐵 … 𝐴&'(𝐵 , where 𝑛 is the state-dim

The pair (𝐴, 𝐵) is controllable if the rank of 𝐶(𝐴, 𝐵) is full (i.e. rows are linearly independent)



Optimality

• Optimality: chose best controller, i.e. driving faster to the equilibrium. E.g. using a Linear 
Quadratic Regulator (LQR) controller, optimizing the cost function: 

𝐽)*+ = <
,

-
𝐱(𝑡)𝑻𝑄𝐱(𝑡) + 𝐮(𝑡)𝑻𝑅𝐮(𝑡) 𝑑𝑡

• 𝐱(𝑡)𝑻𝑄𝐱(𝑡) is called state cost, 𝐮(𝑡)𝑻𝑅𝐮(𝑡) is called control cost
• Given a feedback law: 𝐮 𝑡 = −𝐾/01𝐱(𝑡), 𝐾/01 can be found precisely
• In Matlab, there is a simple one-line function lqr(A,B,Q,R) to do this!



Proportional Integral Derivative (PID) controllers

𝐲(𝑡)
�̇� = 𝐴𝐱 + 𝐵𝐮
𝐲 = 𝐶𝐱 + 𝐷𝐮

𝐫(𝑡) 𝐮(t)
∑

+
−

Controller

Plant

𝐾!𝐞(t)

𝐾$B
%

&
𝐞 𝜏 𝑑𝜏

𝐾'
𝑑𝐞(𝑡)
𝑑𝑡

∑
+
+

+𝐞(𝑡)



P-only controller
• Compute error signal 𝐞 = 𝐫 − 𝒚
• Proportional term 𝐾2𝐞: 
• 𝐾2 proportional gain; 
• Feedback correction proportional to error

• Cons:
• If 𝐾2 is small, error can be large! [undercompensation]
• If 𝐾2 is large, 
• system may oscillate (i.e. unstable) [overcompensation]
• may not converge to set-point fast enough

• P-controller always has steady state error or offset error



DC Motor

𝑉3 = 𝑅𝜄 + 𝐿 ̇𝜄 + 𝑘�̇�

𝐼 �̈� + 𝑏�̇� = 𝑘 𝜄



DC Motor

̇𝜄 = 𝑉3 − 𝑅𝜄 − 𝑘𝑣 /𝐿
�̇� = 𝑘 𝜄 − 𝑏𝑣 /𝐼

𝑣𝑉4

𝑟𝑒𝑎𝑙 𝜄 = 0; 𝑣 = 0



Measuring control performance

Overshoot: The difference between the maximum value of the system
output and the desired reference value.

𝐫 = 1 



Measuring control performance

𝐫 = 1 

Rise time: The time difference between the initial time when the reference
signal changes and the time at which the output signal crosses the desired
reference value.



Measuring control performance

𝐫 = 1 

Steady-state error: The difference between the steady-state value of 
the output signal and the value of the reference signal. 



Measuring control performance

𝐫 = 1 

Settling time: The time difference between the initial time when the 
reference signal changes and the time at which the output signal reaches 
its steady-state value.



𝐊𝐏 = 50 𝐊𝐏 = 500 

Measuring control performance



• Compute error signal 𝐞 = 𝐫 − 𝐲
• Integral term: 𝐾! ∫"

# 𝐞 𝜏 𝑑𝜏
• 𝐾! integral gain; 
• Feedback action proportional to 

cumulative error over time
• If a small error persists, it will add up over time 

and push the system towards eliminating this 
error): eliminates offset/steady-state error

• Disadvantages: 
• Integral action by itself can increase instability
• Integrator term can accumulate error and suggest 

corrections that are not feasible for the actuators (integrator windup)
• Real systems “saturate” the integrator beyond a certain value

PI-controller



• Compute error signal 𝐞 = 𝐫 − 𝐲
• Derivative term 𝐾$�̇�: 

• 𝐾" derivative gain; 
• Feedback proportional to how fast 

the error is increasing/decreasing
• Purpose:

• “Predictive” term, can reduce overshoot: 
if error is decreasing slowly, feedback is slower

• Can improve tolerance to disturbances

• Disadvantages:
• Still cannot eliminate steady-state error
• High frequency disturbances can get amplified

PD-controller



PI-controller



• May often use only PI or PD control
• Many heuristics to tune PID controllers, i.e., find values of 𝐾%, 𝐾! , 𝐾&
• Several recipes to tune, usually rely on designer expertise
• E.g. Ziegler-Nichols method: increase 𝐾% till system starts oscillating with 

period 𝑇 (say till 𝐾% = 𝐾∗), then set 𝐾% = 0.6𝐾∗, 𝐾! =
(.*+∗

,
, 𝐾& =

-
."
𝐾∗𝑇

• Matlab/Simulink has PID controller blocks + PID auto-tuning capabilities
• Work well with linear systems or for small perturbations,
• For non-linear systems use “gain-scheduling” 

• (i.e. using different 𝐾$, 𝐾! , 𝐾% gains in different operating regimes)

PID controller in practice



Nonlinear Control



Feedback Linearization

• Main idea: Try to choose control such the nonlinear system 
�̇� = 𝑓 𝐱, 𝐮 becomes linear



• This operation is called input transformation, which leads to exact 
cancellation of a nonlinearity, giving rise to a linear equation
• Also known as exact feedback linearization or dynamic inversion
• Using feedback to linearize the system
• Example:

• ̇𝑥" = 𝑥#
• ̇𝑥# = −𝑥# − cos 𝑥" + 𝑏𝑢

• Let’s define a new control input 𝑣 such that, 𝑢 = (
7 (𝑣 + 𝑥% + cos 𝑥()

• ̇𝑥" = 𝑥#
• ̇𝑥# = 𝑣

Input Transformation



• Consider system:
• ̇𝑥( = 𝑎 sin 𝑥%
• ̇𝑥% = −𝑥(% + 𝑢

• How do we cancel out sin 𝑥J?
• We can first change variables by a nonlinear transformation:
• 𝑧( = 𝑥(, 𝑧% = 𝑎 sin 𝑥%

• Now, ̇𝑧K = 𝑧J, and 
• ̇𝑧% = ̇𝑥% 𝑎 cos 𝑥% = 𝑎 −𝑥(% + 𝑢 cos 𝑥% = 𝑎 −𝑧(% + 𝑢 cos sin'( 8!

9

State Transformation



• Equations rewritten:
• ̇𝑧( = 𝑧%
• ̇𝑧% = 𝑎 −𝑧(% + 𝑢 cos sin'( 8!9

• Now we can pick 𝑢 = 𝑧KJ +
K

L MNO OPQ!"#$%
𝑣

• Rewriting in terms of 𝑥’s:
• 𝑢 = 𝑥(% +

(
9:;< =!

𝑣

• This gives us a linear system ̇𝑧K = 𝑧J; ̇𝑧J = 𝑣, which we can again 
stabilize using linear system methods

State Transformation



• Main idea: Use a dynamical model of the plant (inside the controller) 
to predict the plant’s future evolution, and optimize the control signal 
over possible futures

Model Predictive Control

Plant 
Model-
based 

Optimizer

𝐫(𝑡) 𝐮(𝑡) 𝐲(𝑡)
∑

Sensor readings



Image from: https://tinyurl.com/yaej43x5

Model Predictive Control



Model Predictive Control

• Create difference equation: 𝐱 𝑘 + 1 = 𝑓 𝐱 𝑘 , 𝐮 𝑘 ; 𝐲 𝑘 = 𝑔(𝐱 𝑘 )
• At time t, solve an optimal control problem over next N steps:

𝐮∗ = argmin
𝐮

?
01"

23(

𝐲 𝑡 + 𝑘 − 𝑟 𝑡 * + 𝜌‖𝐮 t + k ‖*

𝑠. 𝑡. 𝐱 𝑡 + 𝑘 + 1 = 𝑓(𝐱 𝑡 + 𝑘 , 𝐮 𝑡 + 𝑘 )
𝐲 𝑡 + 𝑘 = 𝐠 𝐱 𝑡 + 𝑘

𝐮&'( ≤ 𝐮 ≤ 𝐮&)*, 𝐲&'( ≤ 𝐲 ≤ 𝑦&)*
• Only apply optimal control input value 𝐮∗ at time 𝑡
• At time 𝑡 + 1: get new measurements, repeat optimization



Observer design



Observability
When the controller can observe the state of the system only partially via the output vector, 
the controller needs to estimate the state of the system based on the observation of the 
output signal.

Observability Matrix: 𝑊 = 𝐶 𝐶𝐴 𝐶𝐴% … 𝐶𝐴&'( > , where 𝑛 is the state-dim

The pair (𝐴, 𝐵) is observable if the rank of 𝑊(𝐴, 𝐵) is full (i.e. rows are linearly independent)

To reconstruct the internal state:
• For linear systems (with no noise), this is done with the use of state estimators or 

observers
• For linear systems with noisy measurements and possible “process noise” in the system 

itself : we use Kalman filter



• Given a “black box” component, we can try to use a linear or nonlinear 
system to model it (maybe based on physics, or data-driven)
• Model may posit that the plant has 𝑛 internal states, but we typically have 

access only to the outputs of the model (whatever we can measure using a 
sensor)
• May need internal states to implement controller: how do we estimate 

them?
• State estimation: Problem of determining internal states of the plant

What is state estimation and why is it needed?

Plant 
𝐮 𝐲



• Typically sensor measurements are noisy (manufacturing 
imperfections, environment uncertainty, errors introduced in signal 
processing, etc.)
• In the absence of noise, the model is deterministic: for the same 

input you always get the same output
• Can use a simpler form of state estimator called an observer (e.g. a 

Luenberger observer)
• In the presence of noise, we use a state estimator, such as a Kalman 

Filter
• Kalman Filter is one of the most fundamental algorithm that you will 

see in autonomous systems, robotics, computer graphics, …

Deterministic vs. Noisy case



Luenberger observer

• RS𝐱
RT
= 𝐴3𝐱 + 𝐵𝐮+ L(y −3𝐲)

• 3𝐲 = 𝐶3𝐱 + 𝐷𝐮

• 𝐮 𝑡 = −𝐾UVW 3𝐱(𝑡),

• The observer error 𝑒 = 𝐱 − 3𝐱 satisfies the equation: �̇� = 𝐴 − 𝐿𝐶 𝑒



u For random variable 𝑤,  𝔼 𝑤 : expected value of 𝑤, also known as mean
u Suppose 𝔼[𝑥] = 𝜇 : then var(w) : variance of 𝑤, is 𝔼 𝑤 − 𝜇 J

u For random variables 𝑥 and 𝑦, cov 𝑥, 𝑦 : covariance of 𝑥 and 𝑦
� cov 𝑥, 𝑦 = 𝔼 (𝑥 − 𝔼(𝑥)(𝑦 − 𝔼 𝑦

u For random vector 𝐱, 𝔼 𝐱 is a vector
u For random vectors, 𝐱 ∈ ℝX and 𝐲 ∈ ℝY , cross-covariance matrix is 𝑚×𝑛

matrix: cov 𝐱, 𝐲 = 𝔼 𝐱 − 𝔼 𝐱 𝐲 − 𝔼 𝐲 Z

u 𝑤 ∼ 𝑁 𝜇, 𝜎J : 𝑤 is a normally distributed variable with mean 𝜇 and 
variance 𝜎

Random variables and statistics refresher

35



u Using radar and a camera to estimate the distance to the lead car:
� Measurement is never free of noise
� Actual distance: 𝑥
� Measurement with radar: 𝑧" = 𝑥 + 𝑣" (𝑣" ∼ 𝑁 𝜇", 𝜎"# is radar noise)
� With camera: 𝑧# = 𝑥 + 𝑣# (𝑣# ∼ 𝑁(𝜇#, 𝜎##) is camera noise)
� How do you combine the two estimates?

u Use a weighted average of the two estimates, prioritize more likely 
measurement

� S𝑥 = ⁄(*! +!") - ⁄(*" +"")
⁄(" +!")- ⁄(" +"")

= 𝑘𝑧" + 1 − 𝑘 𝑧#, where 𝑘 = +""

+!"-+""

� S𝜇 = S𝑥, S𝜎# = +!"+""

+!"-+""

u Observe: uncertainty reduced, and mean is closer to measurement with 
lower uncertainty

Data fusion example
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𝜇" = 2, 𝜎"" = 0.5
𝜇# = 1, 𝜎#" = 1

𝜇# 𝜇"

�̂� = 1.67, 𝜎"" = 0.33

�̂�



u Instead of estimating one quantity, we want to estimate 𝑛 quantities, then:
u Actual value is some vector 𝐱
u Measurement noise for 𝑖`a sensor is 𝑣b ∼ 𝑁 𝛍b , Σb , where 𝛍b is the mean 

vector, and Σb is the covariance matrix 
u Λ = ΣcK is the information matrix
u For the two-sensor case:

� �̀� = Λ( + Λ% '((Λ(𝐳( + Λ%𝐳%), and cΣ = Λ( + Λ% '(

Multi-variate sensor fusion
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u What if we have one sensor and making repeated measurements of a 
moving object?

u Measurement differences are not all because of sensor noise, some of it is 
because of object motion

u Kalman filter is a tool that can include a motion model (or in general a 
dynamical model) to account for changes in internal state of the system

u Combines idea of prediction using the system dynamics with correction
using weighted average (Bayesian inference)

Motion  makes things interesting
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u We assume that the plant (whose state we are trying to estimate) is a 
stochastic discrete dynamical process with the following dynamics:

𝐱d = 𝐴𝐱dcK + 𝐵𝐮d +𝐰d (Process Model)
𝐳d = 𝐻𝐱d + 𝐯d (Measurement Model)

Stochastic Difference Equation Models
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𝐱$, 𝐱$%# State at time 𝑘,𝑘 − 1
𝐮$ Input at time 𝑘
𝐰$ Random vector representing noise in the plant, 𝐰 ∼ 𝑁(𝟎, 𝑄$)
𝐯$ Random vector representing sensor noise, 𝐯 ∼ 𝑁(𝟎, 𝑅$)
𝐳$ Output at time 𝑘

𝑛 Number of states

𝑚 Number of inputs

𝑝 Number of outputs

𝐴 𝑛×𝑛 matrix

𝐵 𝑛×𝑚 matrix

𝐻 𝑝×𝑛 matrix


