
Optimization: definitions

The optimization problems we study take the form

maxx f (x) subject to x ∈ S

where:

- f the objective function,

- x the choice variable, and

- S the constraint set or opportunity set.
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Definition

The value x* of the variable x solves the problem 

maxx f (x) subject to x ∈ S

if f (x) ≤ f (x*) for all x ∈ S.

In this case we say that:

- x* is a maximizer of the function f subject to the constraint x ∈ S

- f(x*) is the maximum (or maximum value) of the function f

subject to the constraint x ∈ S.

A minimizer is defined analogously
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x* and x** are maximizers of f subject to the constraint x ∈ S

x'' is a minimizer

What is x’ ?

It is not a maximizer, because f (x*) > f (x'),

It is not a minimizer, because f (x’’)< f (x')

But it is a maximum among the points close to it. We call such a

point a local maximizer



Necessary conditions

Consider the following problem where 𝑓 𝑥 is a differentiable 

function defined on ℝ

maxx f (x) subject to 𝑥 ∈ ℝ

(Remember: ℝ is the set of real numbers, then x is a single variable)

A point 𝑥 such that 𝑓’(𝑥) = 0 is called stationary point

UNCONSTRAINED OPTIMIZATION WITH ONE VARIABLE
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The stationary point is unique

and it is maximum

The stationary point is unique

and it is minimum

There are three stationary

points. No unique solution to

the first order conditions

Stationary point is unique and is

not a maximum, is not a

minimum



From the previous figures we see that:

a stationary point is not necessarily a global or local maximizer, or 

a global or local minimizer)

a global or local maximizer and a global or local minimizer  is 

necessarily a stationary point 

Proposition:

Let f be a differentiable function of a single variable defined on

the set of real numbers.

If a point x is a local or global maximizer or minimizer of f then

𝑓′(𝑥) = 0.
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It is a necessary condition for x to be a maximizer (or a

minimizer) of f :

if x is a maximizer (or a minimizer) then x is stationary point of f

.

It is not sufficient for a point to be a maximizer—the condition is

satisfied also, for example, at points that are minimizers.

We refer to this condition as a first-order condition
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Disgression: interior optimum

if we consider the problem: maxx f (x) subject to 𝑥 ∈ 𝐼 where

𝐼 is an interval of real numbers, i.e. 𝐼 = 𝑎, 𝑏

In this case a maximum is not necessarily a stationary point

In this case 𝑓 ′(𝑥) = 0 is a necessary condition for maximizers

and minimizers that are in the interior of I (it means that they are

not on the boundaries of I)

If 𝐼 = ℝ we are in the previous case, all points are interiors

because there is not boundaries.
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Example: Consider the problem 

maxx x2 subject to x ∈ [−1, 2].

This problem satisfies the conditions of the extreme value theorem, 

and hence has a solution. 

Let f (x) = x2. We have f '(x) = 2x, so the function has a single 

stationary point, x = 0, which is in the constraint set. 

The value of the function at this point is f (0) = 0. 

The values of f at the endpoints of the interval on which it is defined 

are f (−1) = 1 and f (2) = 4. 

Thus the global maximizer of the function on [−1, 2] is x = 2 and the 

global minimizer is x = 0. 

Now we need to study the conditions that allow us to say if a 

stationary point is an optimizer or not.
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Let f be a differentiable function defined on the interval I, and let x be in the

interior of I. Then

• if f is concave then x is a global maximizer of f in I if and only if x is a

stationary point of f

• if f is convex then x is a global minimizer of f in I if and only if x is a

stationary point of f .

Note: a twice-differentiable function is

• concave if and only if its second derivative is non-positive

• convex if and only if its second derivative is non-negatve

Second derivative: it is the derivative of the first derivative

Example: 𝑓 𝑥 = 𝑥3 the first derivative is 𝑓′ 𝑥 = 3𝑥2 and the second

derivatives is 𝑓" 𝑥 = 6𝑥

We can denote first and second order derivatives as, respectively, 𝑓𝑥 and 𝑓𝑥𝑥

Conditions under which a stationary point is a global optimum



Note: a twice-differentiable function is concave if and only if its second 

derivative is nonpositive (and similarly for a convex function), 

Then if f is a twice-differentiable function defined on the interval I and 

𝑥∗ is in the interior of I then: 

• 𝑓"(𝑥) ≤ 0 for all 𝑥 ∈ 𝐼 ⇒ [x is a global maximizer of f in I if and 

only if 𝑓′(𝑥∗) = 0] 

• 𝑓"(x) ≥ 0 for all 𝑥 ∈ 𝐼 ⇒ [x is a global minimizer of f in I if and 

only if 𝑓′(𝑥∗) = 0]. 
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Example 1:  What output maximizes a monopolist’s profit? 

What quantity maximises consumer utility? 

Suppose f(x) = – x2 + x – 10 

Three steps:

1.First order condition

2.Solve equation

3.Check that it is a maximum (second order condition < 0)

1. 𝑓𝑥 = – 2𝑥 + 1 = 0

2. Solving: 1 = 2𝑥 so 𝑥 = 0.5

3. 𝑓𝑥𝑥 = −2 < 0 so 𝑥 = 0.5 gives a maximum
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Consider the problem:

𝑚𝑎𝑥𝑥 𝑓(𝑥) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆

where x is a vector

Proposition (First Order Conditions, FOC)

Let f be a differentiable function of n variables defined on the set 

S. If the point x in the interior of S is a local or global maximizer

or minimizer of f then 

𝑓𝑖
′(𝑥) = 0 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛.

Then the condition that all partial derivatives are equal to zero is

a necessary condition for an interior optimum (and therefore

for an optimum in an unconstrained optimization where each

element of x could be any of the real numbers.
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Suppose that the function f has continuous partial derivatives

in a convex set S and x* is a stationary point of f in the interior

of S (so that f i'(x*) = 0 for all i).

1. if f is concave then x* is a global maximizer of f in S if and

only if it is a stationary point of f

2. if f is convex then x* is a global minimizer of f in S if and

only if it is a stationary point of f .

Note to check concavity/convexity we need to compute the

second derivatives

Conditions under which a stationary point is a 

global optimum
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Note on derivatives.

Function of two variable 𝑓 𝑥, 𝑦

There are two first order derivatives:

𝑓𝑥 𝑥, 𝑦 =
𝑑𝑓(𝑥,𝑦)

𝑑𝑥
and 𝑓𝑦 𝑥, 𝑦 =

𝑑𝑓(𝑥,𝑦)

𝑑𝑦

There are three second derivatives (derivative of a derivative):

𝑓𝑥𝑥 = 𝑓𝑥𝑥 𝑥, 𝑦 =
𝑑𝑓𝑥 𝑥,𝑦

𝑑𝑥
,

𝑓𝑦𝑦 = 𝑓𝑦𝑦 𝑥, 𝑦 =
𝑑𝑓𝑦 𝑥,𝑦

𝑑𝑦

𝑓𝑥𝑦 = 𝑓𝑦𝑥 = 𝑓𝑥𝑦 𝑥, 𝑦 = 𝑓𝑦𝑥 𝑥, 𝑦 =
𝑑𝑓𝑥 𝑥,𝑦

𝑑𝑦
=

𝑑𝑓𝑦 𝑥,𝑦

𝑑𝑥



Unconstrained Maximization with two variables

For example Utility = U(x, y) or Output = F(K, L)

Now try to find the values of x and y which maximize a

function 𝑓(𝑥, 𝑦)

Three steps:

1. Set both 1st order conditions equal to zero fx = 0 and fy = 0

(the slope of the function with respect to both variables must

be simultaneously zero)

2. Solve the equations simultaneously for x and y

However this is a necessary but not sufficient condition

(saddle points, minimum points,….)

3. Check second order conditions
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Second order conditions

Second order conditions (for maximization)

𝑓𝑥𝑥 < 0,  𝑓𝑦𝑦 < 0 and 𝑓𝑥𝑥𝑓𝑦𝑦 – 𝑓2𝑥𝑦 > 0

If this set of condition is satisfied we can say that function 𝑓 is 

concave

Note: Second order conditions (for minimization)  are

𝑓𝑥𝑥 > 0,  𝑓𝑦𝑦 > 0 and 𝑓𝑥𝑥𝑓𝑦𝑦 – 𝑓2𝑥𝑦 > 0

(Function f is convex)
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f(x,y) = 4x – 2x2 + 2xy – y2

1. (i). fx = 4 – 4x + 2y = 0

(ii). fy = 2x – 2y = 0

2. Solve: from (ii) we have x = y

insert into (i) to get 4 – 4x + 2x = 0 or 

4 = 2x or x = 2

so y = x = 2

3. 𝑓𝑥𝑥 = −4 < 0, 𝑓𝑦𝑦 = −2 < 0

𝑓𝑥𝑦 = 𝑓𝑦𝑥 = 2

fxxfyy– f2xy = (-4)(-2) – (2)2 = 4>0

Then f is (strictly) concave, so we have a maximum point where

x = 2 and y = 2



Example 

Total revenue R = 12q1 + 18q2

Total Cost = 2q1
2 + q1q2 +2q2

2

Find the values of q1 and q2 that maximise profit

Profit = revenue – cost = 12q1 + 18q2 - (2q1
2 + q1q2 +2q2

2 )

𝜋(𝑞1, 𝑞2) = 12𝑞1 + 18𝑞2 − 2𝑞1
2 + 𝑞1𝑞2 + 2𝑞2

2

The first order conditions are:

𝑑𝜋

𝑑𝑞1
= 12 − 4𝑞1 − 𝑞2 = 0

𝑑𝜋

𝑑𝑞2
= 18 − 𝑞1 − 4𝑞2 = 0

Solving for q1 and q2 gives q1 = 2 and q2 =4

Is this a maximum? –it will be if function is concave 19



The second derivatives are:

𝜋𝑞1𝑞1 = −4 < 0, 𝜋𝑞1𝑞2 = −4 < 0,

𝜋𝑞1𝑞2 = 𝜋𝑞2𝑞1 = −1

and

𝜋𝑞1𝑞1 ∙ 𝜋𝑞2𝑞2 − 𝜋𝑞1𝑞2
2
= 15 > 0

then f is concave and the values for q1 and q2 maximise

profits
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