
Constrained optimization: equality constraints 



A firm chooses output 𝑥 to maximize a profit function 

𝑓(𝑥) = −𝑥2 + 10𝑥 − 6

𝑓 𝑥 is the objective function.

Because of a staff shortage, it cannot produce an output higher than 𝑥 = 𝑥0
This gives an inequality constraints 𝑥 ≤ 𝑥0, usually written as 𝑥 − 𝑥0 ≤ 0

The problem is written as:

max
𝑥

−𝑥2 + 10𝑥 − 6 subject to 𝑥 − 𝑥0 ≤ 0

𝑥

𝑓(𝑥)

𝑥0 = 4



Note that without the constraint the optimum is 𝑥 = 5

So the constraint is binding (but a constraint of, say, x ≤ 6 would not be)
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𝑥

𝑓(𝑥)
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Constrained optimization with two variables and one constraint 

The problem is:

max
𝑥,𝑦

𝑓(𝑥, 𝑦)

𝑠. 𝑡 𝑔 𝑥, 𝑦 = 𝑐 𝑥, 𝑦 ∈ 𝑆

To get the solution we have to write the Lagrangean:

𝐿(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆(𝑔(𝑥, 𝑦) − 𝑐)

where 𝜆 is a new variable

The candidates to the solution are the stationary points of the

Lagrangean, i.e. all points that satisfy the following system of equations:

 

𝑓𝑥
′ 𝑥, 𝑦 − 𝜆𝑔𝑥

′ 𝑥, 𝑦 = 0

𝑓𝑦
′ 𝑥, 𝑦 − 𝜆𝑔𝑦

′ 𝑥, 𝑦 = 0

𝑔 𝑥, 𝑦 = 𝑐
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Let 𝑓 and 𝑔 be continuously differentiable functions of two variables defined on

the set S, 𝑐 be a number.

Suppose that:

• (𝑥∗, 𝑦∗) is an interior point of S that solves the problem

max
𝑥,𝑦

𝑓(𝑥, 𝑦) 𝑠. 𝑡 𝑔 𝑥, 𝑦 = 𝑐 𝑥, 𝑦 ∈ 𝑆

• 𝑒𝑖𝑡ℎ𝑒𝑟𝑔1
′ 𝑥∗, 𝑦∗ ≠ 0 𝑜𝑟𝑔2

′ (𝑥∗, 𝑦∗) ≠ 0.

Then there is a unique number 𝜆 such that (𝑥∗, 𝑦∗) is a stationary point of the

Lagrangean

𝐿(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) − 𝜆(𝑔(𝑥, 𝑦) − 𝑐)

That is, (𝑥∗, 𝑦∗) satisfies the first-order conditions. 

𝐿1(𝑥
∗, 𝑦∗) = 𝑓1

′(𝑥∗, 𝑦∗) − 𝜆𝑔1
′ (𝑥∗, 𝑦∗) = 0

𝐿2(𝑥
∗, 𝑦∗) = 𝑓2

′(𝑥∗, 𝑦∗) − 𝜆𝑔2
′ (𝑥∗, 𝑦∗) = 0.

and 𝑔(𝑥∗, 𝑦∗) = 𝑐. 

5

Necessary conditions for an optimum



Interpretation of λ

Suppose we solve the problem

max
𝑥,𝑦

𝑓(𝑥, 𝑦) 𝑠. 𝑡 𝑔 𝑥, 𝑦 = 𝑐

then the solution are function of parameter 𝑐, i.e. 𝜆∗(𝑐) , 𝑥∗(𝑐) , 𝑦∗(𝑐) .

Also suppose that FOCs hold.

The maximum value of the objective function is also a function of 𝑐:
𝑓∗ 𝑐 = 𝑓∗ 𝑥∗(𝑐) , 𝑦∗(𝑐)

Then

𝜕𝑓∗(𝑐)

𝜕𝑐
= 𝜆∗(𝑐)

the value of the Lagrange multiplier at the solution of the problem is equal

to the rate of change in the maximal value of the objective function as the

constraint is relaxed.

It is the shadow price of the constrained resource
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Example 2:

max
𝑥
𝑥2

𝑠. 𝑡. 𝑥 = 𝑐
solution is 𝑥 = 𝑐 so the maximized value of the objective function is 𝑐2.

Its derivative respect to 𝑐 is 2𝑐

Now consider the Lagrangean

𝐿 𝑥 = 𝑥2 − 𝜆(𝑥 − 𝑐)

The FOC is 2𝑥 − 𝜆 = 0.

Then 𝑥 = 𝑐 and 𝜆 = 2𝑐 satisfy FOC and the constraint.

Note that 𝜆 is equal to the derivative of the maximized value of the function

with respect to 𝑐
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From example 1:

The solution is:

𝑥 =
𝑐 𝑎

𝑎+𝑏
𝑦 =

𝑐 𝑏

𝑎+𝑏
𝜆 =

𝑎𝑎𝑏𝑏

𝑎+𝑏 𝑎+𝑏−1 ∙ 𝑐
𝑎+𝑏−1

the maximized value of the objective function is:

𝑥𝑎𝑦𝑏 =
𝑎𝑎𝑏𝑏

𝑎 + 𝑏 𝑎+𝑏 ∙ 𝑐
𝑎+𝑏

its derivative respect to 𝑐 is:

𝑎𝑎𝑏𝑏

𝑎+𝑏 𝑎+𝑏−1 ∙ 𝑐
𝑎+𝑏−1, i.e. 𝜆
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Conditions under which a stationary point is a global optimum

Suppose that f and g are continuously differentiable functions defined on an

open convex subset S of two-dimensional space and

suppose that there exists a number λ* such that (x*, y*) is an interior point

of S that is a stationary point of the Lagrangean

𝐿(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝜆∗(𝑔 𝑥, 𝑦 − 𝑐).

Suppose further that 𝑔 𝑥∗, 𝑦∗ = 𝑐.

Then if L is concave then (x*, y*) solves the problem

max
𝑥,𝑦

𝑓(𝑥, 𝑦) 𝑠. 𝑡 𝑔 𝑥, 𝑦 = 𝑐

Note:

- L is concave if 𝐿𝑥𝑥
′ < 0, 𝐿𝑦𝑦

′ < 0 𝑎𝑛𝑑 𝐿𝑥𝑥
′ ∙ 𝐿𝑦𝑦

′ − 𝐿𝑥𝑦
′ 2

> 0

- If the constraint is linear you need to check only the concavity of 𝑓
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Example 

Consider example 3

max
𝑥,𝑦

𝑥3𝑦 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 + 𝑦 = 6 𝑥, 𝑦 > 0

We found that the solution of the FOC 𝑥 = 4.5, 𝑦 = 1.5, 𝜆 =
2

3
is a local 

maximizer.    

Is it a global maximizer?

For a global maximizer we need that Lagrangean is concave

𝐿 𝑥, 𝑦 = 3 ln 𝑥 + ln 𝑦 − 𝜆(𝑥 + 𝑦 − 6)

Given that constraint is linear we need to check the objective function

Compute the second order derivative of 𝑓

𝑓𝑥𝑥
′ = −

3

𝑥2
, 𝑓𝑦𝑦

′ = −
1

𝑦2
𝑎𝑛𝑑 𝑓𝑥𝑦

′ = 0

Then conditions for concavity 𝑓𝑥𝑥
′ < 0, 𝑓𝑦𝑦

′ < 0 𝑎𝑛𝑑 𝑓𝑥𝑥
′ ∙ 𝑓𝑦𝑦

′ − 𝑓𝑥𝑦
′ 2

>

0 are satisfied
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Envelope theorem: unconstrained problem

Let 𝑓(𝑥, 𝑟) be a continuously differentiable function where 𝑥

is an n-vector of variables and 𝑟 is a k-vector of

parameters.

The maximal value of the function is given by 𝑓(𝑥∗(𝑟), 𝑟)

where 𝑥∗(𝑟), is the vector of variables 𝑥 that maximize 𝑓 and

that are function of 𝑟.

Note that we can write 𝑓(𝑥∗(𝑟), 𝑟) as 𝑓∗(𝑟)

(because in this function only parameters appear)
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If the solution of the maximization problem is a continuously

differentiable function of r then:

𝑑𝑓∗ 𝑟

𝑑𝑟𝑖
=
𝑑𝑓 𝑥, 𝑟

𝑑𝑟𝑖
evaluated in 𝑥∗(𝑟),

the change in the maximal value of the function as a

parameter changes is the change caused by the direct

impact of the parameter on the function, holding the value

of x fixed at its optimal value;

the indirect effect, resulting from the change in the optimal

value of x caused by a change in the parameter, is zero
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Example 6

max 𝑝 ln 𝑥 − 𝑐𝑥

FOC is 
𝑝

𝑥
− 𝑐 = 0

then 𝑥∗ =
𝑝

𝑐

and 𝑓∗ 𝑝, 𝑐 = 𝑝 ln
𝑝

𝑐
− 𝑝

The effect of a change of parameter c on the maximized 

value is:
𝑑𝑓∗ 𝑝, 𝑐

𝑑𝑐
= −

𝑝

𝑐
Consider the derivative of the objective function evaluated 

at the solution 𝑥∗

𝑑𝑝 ln 𝑥 − 𝑐𝑥

𝑑𝑐
= −𝑥

Evaluating it in 𝑥∗ =
𝑝

𝑐
we get −

𝑝

𝑐 13



Envelope theorem: constrained problems

Let 𝑓(𝑥, 𝑟) be a continuously differentiable function where 𝑥 is

an n-vector of variables and 𝑟 is a k-vector of parameters.

The maximal value of the function is given by 𝑓(𝑥∗(𝑟), 𝑟)

where 𝑥∗(𝑟), is the vector of variables 𝑥 that maximize 𝑓 and

that are function of 𝑟.

Note that we can write 𝑓(𝑥∗(𝑟)), as 𝑓∗(𝑟),

Then

d𝑓∗(r)

d𝑟𝑖
=

dL (x, r)

d𝑟𝑖
evaluated at the solution 𝑥∗(𝑟),

where the function 𝐿 is the Lagrangean of the problem
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Example 7 max
𝑥,𝑦

𝑥𝑦 𝑠. 𝑡 𝑥 + 𝑦 = 𝐵

𝐿 𝑥, 𝑦, 𝜆 = 𝑥𝑦 − 𝜆 𝑥 + 𝑦 − 𝐵

we solve: 𝑦 − 𝜆 = 0

𝑥 − 𝜆 = 0

𝑥 + 𝑦 = 𝐵

then 𝑥∗ = 𝑦∗ = 𝜆∗ =
𝐵

2
and 𝑓∗ 𝐵 =

𝐵2

4

The effect of a change of parameter c on the maximized 

value is:
𝑑𝑓∗ 𝐵

𝑑𝐵
=
𝐵

2
Consider the derivative of the Lagrangean evaluated at the 

solution 𝑥∗

𝑑 𝑥𝑦 − 𝜆 𝑥 + 𝑦 − 𝐵

𝑑𝐵
=
𝐵
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