homework 4 solutions

Exercise 1 first solution

Ex 1 point a

Let $y(x)=\frac{\theta_{1} x}{\theta_{2}+x}$ and $\sigma=1$, then:

$$
y \mid \theta_{1}, \theta_{2}, x \sim \mathcal{N}(y(x), 1)
$$

So, the prior distribution $\pi\left(\theta_{1}, \theta_{2} \mid x\right)$ that, given the observation x, the random variables θ_{1} and θ_{2} are indipendent is:

$$
\pi\left(\theta_{1}, \theta_{2} \mid x\right)=\pi\left(\theta_{1} \mid x\right) \pi\left(\theta_{2} \mid x\right)
$$

From the Bayes Theorem we obtain:

$$
p\left(\theta_{1}, \theta_{2} \mid y, x\right)=\frac{p\left(y \mid \theta_{1}, \theta_{2}\right) \pi\left(\theta_{1} \mid x\right) \pi\left(\theta_{2} \mid x\right)}{p(y, x)}
$$

We will see three different distributions for the priors of θ_{1} and θ_{2}.

```
def model(x1, distr : pyro.distributions):
    theta 1 = pyro.sample('theta 1', distr)
    theta_2 = pyro.sample('theta_2', distr)
    y1 = x1*theta_1/(theta_2+x1)
    y = pyro.sampl\overline{e}( 'y', d\overline{ist.Normal( yl, 1 ) )}
    return y
y = torch.tensor([0.053, 0.060, 0.112, 0.105, 0.099, 0.122])
x = torch.tensor([28, 55, 110, 138, 225, 375])
conditioned_model = pyro.condition(model, data={'y': y})
```

```
# useful functions
def customed_mcmc(hmc_kernel, samples, steps, chains, data, dist : torch.distributions.Dist
ribution):
    mcmc = MCMC(hmc_kernel, num_samples = samples, warmup_steps = steps, num_chains = chain
s)
    mcmc.run(x1 = data, distr = dist)
    return mcmc
def chains(mcmc):
    mcmc_samples = mcmc.get_samples(group_by_chain = True)
    n_chains = mcmc.num_chains
    n_samples = mcmc.num samples
    print("chains = ",n_chains, "samples = ", n_samples)
    fig, ax = plt.subplots(len(mcmc_samples), n_chains, figsize = (12,5))
    for i, key in enumerate(mcmc_samples.keys()):
        for j, chain in enumerate(mcmc_samples[key]):
                sns.lineplot(x = range(n_samples), y = chain, ax = ax[i][j])
                ax[i][j].set title(key + " chain " + str(j + 1))
def posterior(mcmc):
    mcmc_samples = mcmc.get_samples(group_by_chain = True)
    for key in mcmc_samples.keys():
        print("expected", key, "=", mcmc_samples[key].mean().item())
    fig, ax = plt.subplots(1, 2, figsize = (12,5))
    for i, key in enumerate(mcmc samples.keys()):
        sns.distplot(mcmc_samples[key], ax = ax[i])
        ax[i].set_title("\overline{P}(" + key + " | y=obs)")
        ax[i].set_xlabel(xlabel = key)
```


Ex 1 points $\mathbf{b + c}$

Exponential

First of all, we compute an Exponential distributions with parameter $\lambda=0.5$.

	mean	std	median	5.0%	95.0%	n_eff	$r_{\text {r hat }}$
theta_1	0.36	0.26	0.31	0.00	0.71	380.38	$\overline{1} .00$
theta_2	1.89	2.01	1.27	0.00	4.46	495.40	1.00

Number of divergences: 0


```
expected theta 1 = 0.35643160343170166
```

expected theta_2 $=1.8913582563400269$

Normal

Then we have studied a Normal distribution, with $\mu=0$ and $\sigma^{2}=1$.

	mean	std	median	5.0%	95.0%	n_eff	$r_{\text {hat }}$
theta_1	0.08	0.40	0.09	-0.57	0.72	24.69	1.24
theta_2	0.07	0.85	0.05	-1.19	1.58	95.04	1.03

Number of divergences: 0

expected theta $1=0.08452938497066498$
expected theta_2 $=0.06543359905481339$

Gamma

At last, we have tried a Gamma distribution with parameters $(\alpha, \beta)=(5,1)$.

	mean	std	median	5.0%	95.0%	n_eff	$r_{\text {hat }}$
theta_1	1.05	0.27	1.04	0.60	1.46	59.80	1.06
theta_2	7.40	2.96	7.12	2.41	11.54	220.52	1.01

Number of divergences: 0


```
expected theta 1 = 1.0495789051055908
```

expected theta_2 = 7.40355920791626

Conclusion

We can observe that for Exponential distribution the $n_{\text {eff }}$ is really higher and \hat{R} is closer to 1 , with respect to other tests. We can conclude that Exponential distribution with parameters $\lambda=0.5$ is more adeguate in order to evaluate the proposal distributions of θ_{1} and θ_{2}, than other distributions.

Exercise 1 with NUTS

```
nuts_exp = customed_mcmc( NUTS(model=conditioned_model), 500, 1000, 3, x, dist.Exponential
(0.5) )
chains(nuts exp)
nuts_exp.summary()
```

	mean	std	median	5.0%	95.0%	n_eff	r_hat
theta_1	0.34	0.26	0.29	0.00	0.71	$72 \overline{6} .61$	$\overline{1} .00$
theta_2	2.12	2.06	1.46	0.00	4.95	504.16	1.01

Number of divergences: 0

expected theta_1 $=0.34177327156066895$
expected theta_2 $=2.1221184730529785$

nuts_norm $=$ customed_mcmc(NUTS(model=conditioned_model), 500, 1000, 3, x, dist.Normal(0,1)
)
chains(nuts_norm)
nuts_norm.summary()
chains $=3$ samples $=500$

	mean	std	median	5.0%	95.0%	n eff	$r_{\text {hat }}$
theta_1	0.09	0.38	0.11	-0.53	0.70	$133 \overline{7} .59$	$\overline{1} .00$
theta_2	0.05	0.98	0.07	-1.48	1.74	1383.78	1.00

Number of divergences: 0

expected theta_1 $=0.09414684027433395$
expected theta_2 $=0.053859956562519073$


```
nuts_gamma = customed_mcmc( NUTS(model=conditioned_model), 500, 1000, 3, x, dist.Gamma(7,1)
)
chains(nuts_gamma)
nuts_gamma.summary()
```

```
chains = 3 samples = 500
```

	mean	std	median	5.0%	95.0%	n_eff	$r_{\text {r hat }}$
theta_1	1.10	0.31	1.08	0.59	1.57	$119 \overline{7} .98$	1.00
theta_2	7.58	2.86	7.32	2.86	11.88	993.77	1.00

Number of divergences: 0


```
expected theta_1 = 1.0975621938705444
```

expected theta_2 $=7.578394412994385$

Conclusion

NUTS provides better results for all three tested distribution (we kept the same parameters): $n_{e f f}$ is significativily higher and \hat{R} is 1 for all the results. Despite to the previous conclusion, we can observe that proposal distributions of θ_{1} and θ_{2} are better estimated by Normal distribution with $\mu=0$ and $\sigma^{2}=1$.

Exercise 1 second solution

Ex 1 point a

In this exercise, starting from the model:

$$
y \sim \mathcal{N}(\hat{y}, 1), \hat{y}=\frac{\theta_{1}}{\theta_{2}+x}
$$

and from the priors on θ_{1} and θ_{2}, the posterior distributions of θ_{1} and θ_{2} can be computed, conditioning on the observations:

$$
x=(28,55,110,138,225,375), y=(0.053,0.060,0.112,0.105,0.099,0.122)
$$

This is done through Hamiltonian Monte Carlo, sampling from 3 independent chains and taking num_samples=3000 samples, after warmup_steps=1000 discarded samples.

```
x obs=torch.tensor([28,55,110,138,225,375])
y_obs=torch.tensor([0.053,0.060,0.112,0.105,0.099,0.122])
def conditioned_model(t1,t2,obs,x=x obs):
    thetal=pyro.sample("thetal",t1)
    theta2=pyro.sample("theta2",t2)
    yhat = (theta1*x)/(theta2+x)
    with pyro.plate(len(obs)):
        y = pyro.sample("y", dist.Normal(yhat,1), obs=obs)
    return y
hmc kernel = HMC(model=conditioned model)
def hmc_plot(mcmc):
    mcmc.summary()
    mcmc samples = mcmc.get samples()
    sns.distplot(mcmc_samples['thetal'])
    plt.title("P( thetal | y=y_obs, x=x_obs )")
    plt.xlabel("thetal")
    plt.show()
    sns.distplot(mcmc_samples['theta2'])
    plt.title("P( the\overline{ta2 | y=y_obs, x=x_obs )")}
    plt.xlabel("theta2")
    plt.show()
```


Ex 1 points b+c

The first and most obvious choice that influences the HMC procedure is the one on the prior distributions: for example, choosing for θ_{1} a prior normal distribution with a very low variance and for θ_{2} an uninformative prior distribution (for example a uniform over a very broad interval), a significant modification of θ_{2} can be seen. In fact, its distribution tends to accumulate nearby one border of the considered interval, meaning that the initial choice of the prior did not suit data particularly well.
On the other hand, choosing normal distributions with reasonable means and variances results in posteriors which are more similar to priors, being still normally distributed, but shifted and rescaled in terms of means and variances.
The main algorithmic parameters that influence the estimates obtained with HMC are the number of samples to draw and the number of warmup steps. Both these values should be large enough to ensure good estimates: in particular, a value for warmup_steps lower than 100 leads to a \hat{R} statistic higher than 1.3 , which is symptom of a very bad convergence in the MCMC process (reference), while a low number of samples num_samples may result in very distorted posterior distributions.
The chosen parameters of HMC (num_samples=3000 and warmup_steps=1000) ensure a good convergence as shown by the \hat{R} value which is exactly 1 for both θ_{1} and θ_{2}.

```
def cov(xsamples,ysamples,xmean,ymean):
    cov=0
    for i in range(len(xsamples)):
        cov+=(xsamples[i]-xmean)*(ysamples[i]-ymean)
    return cov/len(xsamples)
print("First run with low-variance normal and uniform priors")
mcmc = MCMC(hmc kernel, num samples=3000, warmup steps=1000, num chains=3)
posterior_uninformativeprior = mcmc.run(t1=dist.Normal(5,0.1),t2=dist.Uniform(-10,10),obs=y
    obs)
hmc_plot(mcmc)
print("Second run with normal priors")
mcmc = MCMC(hmc_kernel, num_samples=3000, warmup_steps=1000, num_chains=3)
posterior_gaussīan = mcmc.rün(t1=dist.Normal(10,\overline{l}),t2=dist.Norma\overline{l}}(4,5),obs=y_obs
hmc_plot(mcmc)
```

First run with low-variance normal and uniform priors

	mean	std	median	5.0%	95.0%	$n=$ eff	r hat
theta1	4.77	0.10	4.77	4.62	4.93	$111 \overline{5} .91$	$\overline{1} .00$
theta2	9.05	0.89	9.31	7.83	10.00	932.10	1.00

Number of divergences: 0

Second run with normal priors

	mean	std	median	5.0%	95.0%	n eff	r hat
theta1	1.72	0.43	1.72	1.02	2.41	$168 \overline{7} .12$	$\overline{1} .00$
theta2	7.88	4.87	7.85	0.01	15.97	1732.40	1.00

Number of divergences: 0

Exercise 2

Ex 2 point a

Using the properties of the multivariate normal distribution

$$
x_{1} \mid x_{2}, x \sim N\left(\rho x_{2}, 1-\rho^{2}\right) \sim \rho x_{2}+\sqrt{1-\rho^{2}} N(0,1)
$$

and

$$
x_{2} \mid x_{1}, x \sim N\left(\rho x_{1}, 1-\rho^{2}\right) \sim \rho x_{1}+\sqrt{1-\rho^{2}} N(0,1)
$$

Then, given ρ we can implement our gibbs function.

```
def gibbs(rho, iters, warmup):
    x1 = torch.zeros(warmup + iters, 1)
    x2 = torch.zeros(warmup + iters, 1)
    x2[0] = pyro.sample('x2', dist.Normal(0,1))
    x1[0] = pyro.sample('x1', dist.Normal(rho*x2[0].item(), np.sqrt(1-rho**2)))
    for i in range(1,warmup+iters-1):
        # draw x2 given x1
        x2[i] = pyro.sample('x2', dist.Normal(rho*x1[i-1].item(), np.sqrt(1-rho**2)))
        # draw x1 given x2
        x1[i] = pyro.sample('x1', dist.Normal(rho*x2[i].item(), np.sqrt(1-rho**2)))
    x1 = x1[warmup:iters]
    x2 = x2[warmup:iters]
    return x1, x2
```

```
# Gibbs sampling with rho = 0.4
```

plt.figure(figsize=(12,5))
$x 1, x 2=$ gibbs (0.4, 1500, 500)
sns.set(style="white")
sns.jointplot(x1, x2, space=0, color="b");
plt.xlabel("x1", fontsize=12)
plt.ylabel("x2", fontsize=12)
plt.show()


```
# Gibbs sampling with rho = 0.96
```

plt.figure(figsize=(12,5))
x1, $x 2$ = gibbs(0.96, 1500, 500)
sns.set(style="white")
sns.jointplot(x1, x2, space=0, color="b");
plt.xlabel("x1", fontsize=12)
plt.ylabel("x2", fontsize=12)
plt.show()

Ex 2 point b

```
def new mu(idx, mu, rho, x other):
    retürn mu[idx] + rho *-}(x_other - mu[(idx + 1) % 2])
def gibbs_sampler(guess: float, iters: int, warmup: int, rho: float, mu = [0,0]):
    x = [0.,guess]
    #p(x1|x2)
    x[0] = pyro.sample('x10',dist.Normal(new_mu(0,mu,rho,x[1]), np.sqrt(1-rho**2)))
    for i in range(warmup):
        x[1] = pyro.sample('x2',dist.Normal(new_mu(1,mu,rho,x[0]), np.sqrt(1-rho**2)))
        x[0] = pyro.sample('x10',dist.Normal(new_mu(0,mu,rho,x[1]), np.sqrt(1-rho**2)))
    x2 list=[]
    x1-list=[]
    for i in range(iters):
        x[1] = pyro.sample('x2',dist.Normal(new mu(1,mu,rho,x[0]), np.sqrt(1-rho**2)))
        x[0] = pyro.sample('x10',dist.Normal(new_mu(0,mu,rho,x[1]), np.sqrt(1-rho**2)))
        x2 list.append(x[1])
        x1-list.append(x[0])
    return (x1_list, x2_list)
```

```
tl_sample = mcmc.get_samples()['thetal']
t2_sample = mcmc.get_samples()['theta2']
mu = [float(t1_sample.mean()), float(t2_sample.mean())]
print("Mean vector: " + str(mu))
t1_sample = np.array(t1_sample)
t2_sample = np.array(t2_sample)
sigma = np.corrcoef(np.array([t1_sample,t2_sample]))
print("Covariance matrix flattenēd:")
print(sigma.flatten())
estimated_rho = sigma[0,1]
```

Mean vector: [0.0651819184422493, 0.49141475558280945]
Covariance matrix flattened:
[1.
0.012234050 .012234051.

```
t1_g, t2_g = gibbs_sampler(0.1, 2000, 1000, estimated_rho, mu)
plt.hist(t1_g)
plt.title("thetas histogram")
plt.hist(t2 g)
plt.show()
heatmap, xedges, yedges = np.histogram2d(t1_g, t2_g, bins=100)
plt.clf()
plt.title('Histogram of t1,t2. rho =' + str(round(estimated_rho,3)))
plt.ylabel('t2')
plt.xlabel('t1')
plt.xticks(())
plt.yticks(())
plt.imshow(heatmap)
plt.show()
```


