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Second intermediate test
Topic: FRW models. Deadline: May 28, 13:00
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A very useful standard ruler is given by the sound horizon at recombina-
tion. Before recombination, baryons and photons are tightly coupled in a highly
ionised plasma, whose sound speed is cs = c/

√
3; this is easily obtained from

c2s = ∂p/∂ρ when pressure is dominated by photons. Sound waves propagat-
ing in this plasma up to recombination imprint a spatial scale rsh, the sound
horizon, that is visible as a feature both in the power spectrum of temperature
fluctuations of the CMB (the acoustic peaks, see the upper figure above) and in
the power spectrum of matter at later times (the Baryonic Acoustic Oscillations,
BAOs, see the lower figure above). After recombination this scale expands with
the scale factor.

The Planck satellite, whose cosmological parameters are given in slide 10 of
Lecture 18, gives a recombination redshift of zrec = 1060 and a sound horizon
comoving length of rsh = 147 Mpc.

(1) Consider a model that contains matter, radiation, cosmological constant
and curvature. Compute the comoving distance and the diameter distance
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as a function of redshift; numerical integration is the most obvious choice
for this step. To do this, show that the comoving distance dc(z) (or Llos(z))
of an object emitting light at redshift z can be written as:

dc(z) =

∫ t0

t(z)

cdt′

a(t′)
=

∫ z

0

cdz′

H(z′)

Recall that the second Friedmann equation can be written as:

H(z)2

H2
0

= Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + ΩK(1 + z)2

with ΩK = 1− Ωm − Ωr − ΩΛ.

Hint: It is a very good idea to test the numerical result against analytic
calculations for the cases in which these are available.

Describe the numerical approach adopted, and report the diameter dis-
tance (in Mpc) as a function of z, in the range z ∈ [0, 10], for Planck
cosmological parameters, assuming a flat Universe, and for the same pa-
rameters but adding ±0.1 to Ωm, so as to have non-flat models. Hint: the
parameters given in slide 10 of Lecture 18 assume indeed that the universe
is flat, with the exception of Ωk. We will not need parameter errorbars
here. Do not forget radiation, but fix the density parameters so as to keep
the universe flat.

(2) The sound horizon at recombination can be estimated as 1/
√

3 times the
particle horizon at the recombination redshift zrec = 1060, assumed to be
constant. Use the tools developed above to compute the sound horizon
for the Planck cosmological parameters. Report its physical (at zrec) and
comoving values in Mpc; how much does the latter differ from the 147 Mpc
comoving value found by Planck? This difference is mainly due to the fact
that the sound speed cs evolves in time, details are explained in Chapter
7 of the Vittorio textbook. Hint: you can correct for this difference by
rescaling the sound horizon (i.e. multiplying it by a constant) to be 147
Mpc for the Planck flat cosmology.

(3) Suppose astronomers report that, at redshift z = 0.3, the BAO scale
rsh subtends an angle of θ = 0.1166 ± 0.0023 rad. Keeping H0 and Ωr

fixed to their Planck values, what region of the Ωm−ΩΛ parameter space
is consistent with this measurement at 1 and 2 σ? Look carefully at
your result, and comment it, in the light of our need to get the tightest
constraints on cosmological parameters. Hint: do not bother with negative
values of ΩΛ, but do not restrict either to flat universes.

(4) The rsh scale is best constrained by CMB observations. Suppose that it
subtends an angle of θ∗ = 0.01041 ± 0.00031 rad (it’s actual errorbar is
100 times smaller than this!). What region of the Ωm − ΩΛ parameter
space is consistent with this measurement at 1 and 2 σ? Look carefully
at your result and argue what parameter is most accurately constrained
by this observation.
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