COMPUTATIONAL STATISTICS LINEAR REGRESSION

Luca Bortolussi

Department of Mathematics and Geosciences University of Trieste

Office 238, third floor, H2bis luca@dmi.units.it

Trieste, Winter Semester 2015/2016

1 LINEAR REGRESSION MODELS

- Consider training data $(x_n, y_n)_{n=1,...,N}$. We want to find the best linear fit to this data, i.e. the best straight line $y(x) = w_1 \cdot x + w_0$
- Let's take a curve fitting approach, and find the coefficients $\mathbf{w} = (w_0, w_1)$ that minimise sum-of-squares error

$$E(\mathbf{w}) = \sum_{n=1}^{N} [y_n - y(x_n)]^2$$

- Consider training data (x_n, y_n)_{n=1,...,N}. We want to find the best linear fit to this data, i.e. the best straight line y(x) = w₁ · x + w₀
- Let's take a curve fitting approach, and find the coefficients $\mathbf{w} = (w_0, w_1)$ that minimise sum-of-squares error

$$E(\mathbf{w}) = \sum_{n=1}^{N} [y_n - y(x_n)]^2 \qquad \bigvee_{\omega} E(\omega) = 0$$

- Consider training data $(x_n, y_n)_{n=1,\dots,N}$. We want to find the best linear fit to this data, i.e. the best straight line $y(x) = w_1 \cdot x + w_0$
- Let's take a curve fitting approach, and find the coefficients $\mathbf{w} = (w_0, w_1)$ that minimise sum-of-squares error

$$E(\mathbf{w}) = \sum_{n=1}^{N} [y_n - y(x_n)]^2$$

Set
$$\nabla_{w} E(w) = 0$$

 $\frac{2}{2} E(w) = \sum_{n=1}^{N} -2[u_{n} - w_{0} - w_{1}x_{n}] = 0$
 $\frac{2}{2} E(w) = \sum_{n=1}^{N} -2[u_{n} - w_{0} - w_{1}x_{n}] \times n = 0$
 $\frac{2}{2} W_{1} = \frac{1}{2} \sum_{n=1}^{N} \frac{1}{2} \sum_{n$

- Consider training data $(x_n, y_n)_{n=1,...,N}$. We want to find the best linear fit to this data, i.e. the best straight line $y(x) = w_1 \cdot x + w_0$
- Let's take a curve fitting approach, and find the coefficients $\mathbf{w} = (w_0, w_1)$ that minimise sum-of-squares error

E(w			
Wo =	1.		
N	W ₀	<i>W</i> ₁	I OKTASET
5	5.3812	8.1856	
10	2.9735 ·	9.6608 •	
20	3,5493	9.6204	
50	3.2084	9.9253	
100	2.8327	9.8894	
1000	3.0451	9.9464	
10000	2.9937	10.0147	
100000	3.0084	9.9992	

GENERALISED BASIS FUNCTIONS

ERW

- Suppose our inputs are real vectors, and outputs are real numbers, and we have observations $(x_i, y_i), i = 1, ..., N$.
- We consider a set of *M* basis functions $\phi_j : \mathbb{R}^n \to \mathbb{R}$, and write $\phi(\mathbf{x}) = (\phi_0(\mathbf{x}), \dots, \phi_{M-1}(\mathbf{x}))$. By convention, $\phi_0 \equiv 1$.
- We consider the linear model

$$\mathbf{v}(\mathbf{x},\mathbf{w}) = \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}) = \sum_{j=0}^{M-1} w_{j} \phi_{j}(\mathbf{x})$$

• $y(\mathbf{x}, \mathbf{w})$ is linear in the parameters \mathbf{w} , but can be non-linear in the input state \mathbf{x} .

LINEAR REGRESSION MODELS BAYESIAN LINEAR REGRESSION DUAL REPRESENTATION AND KERNELS

GENERALISED BASIS FUNCTIONS

1~ 1. L. puly basis d>N

Basis functions can, and usually are, non-linear functions of the inputs. Examples are $\omega_{t}\omega_{t}\chi_{t}$

- Polynomials up to degree *d*. In 1 dimension, $1, x, x^2, \ldots, x^d$
- Gaussian basis functions: $\phi_j = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$, where μ_j is the location and *s* is the lengthscale of the Gaussian.

• Sigmoid functions
$$\phi_j = \sigma\left(\frac{x-\mu_j}{s}\right)$$
, with $\sigma(a) = \frac{1}{1+\exp(-a)}$

Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the centre, and sigmoidal of the form (3.5) on the right.

 $\phi_{o}(x) = 1$ \rightarrow φ₁(x) = x φ₂(x) = x wo φ₀(x) = w₁φ₁(x) = 2 wotw, X

MAXIMUM LIKELIHOOD REGRESSION
• Assume Gaussian noise:
$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon = \epsilon \sim \mathcal{N}(0, \beta^{-1})$$

• Hence $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y(\mathbf{x}, \mathbf{w}), \beta^{-1})$

- Assume Gaussian noise: $t = y(\mathbf{x}, \mathbf{w}) + \epsilon, \epsilon \sim \mathcal{N}(0, \beta^{-1})$
- Hence $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y(\mathbf{x}, \mathbf{w}), \beta^{-1})$ Given observations $\mathbf{X}, \mathbf{t}: (\mathbf{x}_{i}, t_{i})_{i=1,...,N}$, the likelihood is then

$$\boldsymbol{\rho}(\mathbf{t}|\mathbf{X},\mathbf{w},\boldsymbol{\beta}) = \prod_{i=1}^{N} \mathcal{N}(\mathbf{y}_{i}|\mathbf{w}^{T}\boldsymbol{\phi}(\mathbf{x}_{i}),\boldsymbol{\beta}^{-1})$$

- Assume Gaussian noise: $t = y(\mathbf{x}, \mathbf{w}) + \epsilon, \epsilon \sim \mathcal{N}(0, \beta^{-1})$
- Hence $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y(\mathbf{x}, \mathbf{w}), \beta^{-1})$
- Given observations **X**, **t**: $(\mathbf{x}_i, t_i)_{i=1,...,N}$, the likelihood is then

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{i=1}^{N} \mathcal{N}(\mathbf{y}_i|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i), \beta^{-1})$$
giving a log-likelihood of

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \underbrace{\frac{N}{2}}_{2} \ln \beta - \underbrace{\frac{N}{2}}_{2} \ln(2\pi) - \beta E_D(\mathbf{w}) \qquad (3.11)$$

where the sum-of-squares error function is defined by

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2.$$
(3.12)

- Assume Gaussian noise: $t = y(\mathbf{x}, \mathbf{w}) + \epsilon, \epsilon \sim \mathcal{N}(0, \beta^{-1})$
- Hence $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y(\mathbf{x}, \mathbf{w}), \beta^{-1})$

- Assume Gaussian noise: $t = y(\mathbf{x}, \mathbf{w}) + \epsilon, \epsilon \sim \mathcal{N}(0, \beta^{-1})$
- Hence $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y(\mathbf{x}, \mathbf{w}), \beta^{-1})$
- Given observations **X**, **t**: $(\mathbf{x}_i, t_i)_{i=1,...,N}$, the likelihood is then

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{i=1}^{N} \mathcal{N}(y_i | \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i), \beta^{-1})$$

- Assume Gaussian noise: $t = y(\mathbf{x}, \mathbf{w}) + \epsilon, \epsilon \sim \mathcal{N}(0, \beta^{-1})$
- Hence $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y(\mathbf{x}, \mathbf{w}), \beta^{-1})$
- Given observations **X**, **t**: $(\mathbf{x}_i, t_i)_{i=1,...,N}$, the likelihood is then

$$\boldsymbol{\rho}(\mathbf{t}|\mathbf{X},\mathbf{w},\beta) = \prod_{i=1}^{N} \mathcal{N}(y_i|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i),\beta^{-1})$$

giving a log likelihood of

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$
(3.11)

where the sum-of-squares error function is defined by

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2.$$
(3.12)

• Compute the gradient w.r.t. **w** of the log-likelihood, set it to zero and solve for **w**.

so that

• Compute the gradient w.r.t. **w** of the log-likelihood, set it to zero and solve for **w**.

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$
(3.16)

 Compute the gradient w.r.t. w of the log-likelihood, set it to zero and solve for w.

$$\mathbf{w}_{\mathrm{ML}} = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$
(3.15)

which are known as the *normal equations* for the least squares problem. Here Φ is an $N \times M$ matrix, called the *design matrix*, whose elements are given by $\Phi_{nj} = \phi_j(\mathbf{x}_n)$, so that

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$
(3.16)

• Looking for the ML solution of the precision β , we get

 Compute the gradient w.r.t. w of the log-likelihood, set it to zero and solve for w.

$$\mathbf{w}_{\mathrm{ML}} = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$
(3.15)

which are known as the *normal equations* for the least squares problem. Here Φ is an $N \times M$ matrix, called the *design matrix*, whose elements are given by $\Phi_{nj} = \phi_j(\mathbf{x}_n)$, so that

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$
(3.16)

• Looking for the ML solution of the precision β , we get

$$\frac{1}{\beta_{\rm ML}} = \frac{1}{N} \sum_{n=1}^{N} \{ t_n - \mathbf{w}_{\rm ML}^{\rm T} \boldsymbol{\phi}(\mathbf{x}_n) \}^2$$
(3.21)

MAXIMUM LIKELIHOOD REGRESSION: BIAS TERM

• The parameter w_0 is known also as bias term.

At this point, we can gain some insight into the role of the bias parameter w_0 . If we make the bias parameter explicit, then the error function (3.12) becomes

~~,
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}_0 - \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}_n)\}^2.$$
 (3.18)

Setting the derivative with respect to w_0 equal to zero, and solving for w_0 , we obtain

$$w_0 = \left(\overline{t}\right) \sum_{j=1}^{M-1} w_j \overline{\phi_j}$$
(3.19)

where we have defined

$$\overline{t} = \frac{1}{N} \sum_{n=1}^{N} t_n, \qquad \overline{\phi_j} = \frac{1}{N} \sum_{n=1}^{N} \phi_j(\mathbf{x}_n).$$
(3.20)

Thus the bias w_0 compensates for the difference between the averages (over the training set) of the target values and the weighted sum of the averages of the basis function values.

MULTIPLE OUTPUTS

- What if we have a vector of *d*-outputs rather than a single one, i.e. what if observations X, T are (x_i, t_i)_{*l*=1,...,N}?
- If we use separate weights for each output dimension, $\mathbf{W} = (w_{ij})$, then the model is

$$\mathbf{v} \mathbf{v}(\mathbf{x}, \mathbf{W}) = \mathbf{W}^T \boldsymbol{\phi}(\mathbf{x})$$

which is easily seen to factorise in the different outputs, so that we need to solve d independent ML problems, giving $\mathbf{W}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{T}$

• Generalise to the case in which some coefficients of **W** are shared among outputs (i.e., constrained to be equal).

• We want to fit a polynomial model of degree *M*, where *M* is to be chosen: $y(x, \mathbf{w}) = w_0 x^0 + w_1 x^1 + \ldots + w_M x^M$ 13/41

• Max likelihood solution for different M

14/41

- For *M* = 9 we face the problem of overfitting: the model is too complex ML explains noise rather than data.
- To validate a model, we need test data, different from the train data. Then we can compute the root mean square error on test (and train) data.

• Overfitting depends also on how many observations: the more observations, the less overfitting:

• The fine-tuning of model to data reflects usually in large coefficients.

16/41

REGULARISED MAXIMUM LIKELIHOOD

- One way to avoid overfitting is to penalise solutions with large values of coefficients **w**.
- This can be enforced by introducing a regularisation term on the error function to be minimised:

 $E_D(\mathbf{w}) + \lambda E_W(\mathbf{w}) \checkmark$

• $\lambda > 0$ is the regularisation coefficient, and governs how strong is the penalty.

• A common choice is

$$E_{W}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}\mathbf{w} = \frac{1}{2}\sum_{j}w_{j}^{2}$$
known as ridge regression, with solution

known as ridge regression, with solution $\mathbf{W}_{\mathbf{RR}} = (\lambda \mathbf{I} + (\mathbf{\Phi}^T \mathbf{\Phi}))^{-1} (\mathbf{\Phi}^T \mathbf{t})^{-1}$

EXAMPLE: REGULARISED ML

Let's consider the sine example, and fit the model of degree
 M = 9 by ridge regression, for different λ's.

• If we compute the RMSE on a test set, we can see how the error changes with $\boldsymbol{\lambda}$

