COMPUTATIONAL STATISTICS
LINEAR REGRESSION

Luca Bortolussi

Department of Mathematics and Geosciences
University of Trieste

Office 238, third floor, H2bis
luca@dmi.units.it

Trieste, Winter Semester 2015/2016



OUTLINE

@ LINEAR REGRESSION MODELS



LINEAR REGRESSION MODELS 3/41

FITTING A STRAIGHT LINE

@ Consider training data (Xp, ¥n)n=1,..n. We want to find the best
linear fit to this data, i.e. the best straight linely(x) = wy - x + wo

@ Let’s take a curve fitting approach, and find the coefficients

w = (W, wy) that minimise\sum-of-squares error

N
E(W) = > [yn - y(xa)I?
n=1
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FITTING A STRAIGHT LINE

@ Consider training data (xp, ¥n)n=1...~- We want to find the best
linear fit to this data, i.e. the best straight line y(x) = wy - x + wy

@ Let’s take a curve fitting approach, and find the coefficients
w = (Wp, wy) that minimise sum-of-squares error

N
E(w) = > [yn - y(xa)I?

Wo=2 wyzgo

N Wo 2 1 DaT45 ET
5 53812 | 8.1856

10 2.9735 9.6608 -
‘20 35493 | 9.6204
50 32084 | 9.9253
100 | 2.8327 | 9.8894
1000 | 3.0451 | 9.9464
10000 | 2.9937 | 10.0147
100000 | 3.0084 | 9.9992
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GENERALISED BASIS FUNCTIONS

£RY
@ Suppose our inputs are real vectors, and outputs are real
numbers, and we have observations (X4, y;), i =1,..., N.

o We conS|der a set of M basis functions ¢ : R” — R, and

write ¢ (go L dm-1(X)). By conventlonf¢0 =
o We conS|der the Imear model
MO M
yoxw) what ‘ i (x

~ __— /:0

e y(x,w) is linear in the parameters w, but can be non-linear
in the input state x. o
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GENERALISED BASIS FUNCTIONS d> j\f

Basis functions can, and usually are, non-linear functions of the
inputs. Examples are Loe T Kt 4Ly Y

o Polynomials up to degree d. In 1 d|men3|on 1Lx x5, x9

o Gaussian basis functions: ¢; = exp where ujis
“\ " the location and s is the lengthscal€ of the Gaussian. _

o Sigmoid functions ¢; = o (=), with 0(8) = emg
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.
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MAXIMUM LIKELIHOOD REGRESSION [{" ‘?ﬁac«smj
—z
@ Assume GausLsiaLn noise: y(X,w)+ e

o Hencelp(tix W, 5) = N(y(x, w).5")

v
e~ N0,
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MAXIMUM LIKELIHOOD REGRESSION

@ Assume Gaussian noise: t = '}7(x,w) +’ €, e~N(0,87)
@ Hence p(t|x,w,ﬁ) = N(y(x’ W),,B ) il WBiPannEAT

lr;uu'naA»Lb
@ Given observations X, t: (Xi, t;)i=1...n> the likelihood is t'ﬁen
N

ptX.w.8) = | [ N(w ¢(xi).87)
L <

i=1

.....
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MAXIMUM LIKELIHOOD REGRESSION

@ Assume Gaussian noise: t = y(X,W) + ¢, e ~ N(0,57")
e Hence p(tlx,w,8) = N(y(x,w),5™")
@ Given observations X, t: (X, f;)i—1...n, the likelihood is then

.....

N 1
ptX,w,8) = | | N(yiw¢(xi).57") —
11':1[ ‘)Z”t\;—l

giving a Jog-likelihood of

N
Inp(tiw,8) = Y N (ta|w d(xn), 87"

_ &_\?m(gw) w}zﬂ) (3.11)

where the sum-of-squares error function is defined by

—_— 3
N
Ep(w) = % D {tn = w(xn)}. (3.12)
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MAXIMUM LIKELIHOOD REGRESSION

@ Assume Gaussian noise: t = y(X,W) + ¢, e ~ N(0,57")
e Hence p(tlx,w,8) = N(y(x,w),5™")
@ Given observations X, t: (X, t;)i—1...n, the likelihood is then

.....

=

ptX, w.p) = | N(yiwT¢(x;),57")

1

giving a log likelihood of

N
lnp(t\w,ﬁ) = ZlnN(tn|WT¢(X"),5_l)

n=1

N N

where the sum-of-squares error function is defined by

n(2r) — BEp(w) 3.11)
¢ R

N
Ep(w) = % D {tn = w(xn)}. (3.12)
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MAXIMUM LIKELIHOOD REGRESSION

@ Compute the gradient w.r.t. w of the log-likelihood, set it to zero
and solve for w.
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MAXIMUM LIKELIHOOD REGRESSION

@ Compute the gradient w.r.t. w of the log-likelihood, set it to zero
and solve for w. =
<

~ \ oY
‘s + o To—
Dow=9't .
wy = (&7®) "t (3.15)

which are known as the normal equations for the least squares problem. Here @ is an
N x M matrix, called the design matrix, whose elements are given by ®,,; = ¢;(x),

so that L 4
¢0(X1) o1 Xl) e ¢]\171(X1)
do(x2)  ¢1(x2) -+ dm-1(x2)

. . . (3.16)
¢0(;(N) le(;{N) Qs]\l—l.(XN)

10/41
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MAXIMUM LIKELIHOOD REGRESSION

@ Compute the gradient w.r.t. w of the log-likelihood, set it to zero
and solve for w.

wyr = (87®) ' ®"t (3.15)
which are known as the normal equations for the least squares problem. Here @ is an

N x M matrix, called the design matrix, whose elements are given by ®,,; = ¢;(x5),
so that

¢0(X1) <Z51(X1) ¢J\171(X1)
do(x2)  ¢1(x2) -+ dm-1(x2)

. . (3.16)
bo(xn) Gr(xn) oo duri(xn)

@ Looking for the ML solution of the precision 8, we get

10/41
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MAXIMUM LIKELIHOOD REGRESSION

@ Compute the gradient w.r.t. w of the log-likelihood, set it to zero
and solve for w.

wyr = (87®) ' ®"t (3.15)

which are known as the normal equations for the least squares problem. Here @ is an

N x M matrix, called the design matrix, whose elements are given by ®,,; = ¢;(x5),
so that

¢0(X1) <Z51(X1) ¢]\171(X1)
¢0(.X2) ¢1(.X2) ¢A17.1(X2) 3.16)

dolxn) G1(xn) o Gari(xn)
@ Looking for the ML solution of the precision 8, we get

/3
5ML ¥ Z{t — Wi (%)} (3.21)

n=1

10/41
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MAXIMUM LIKELIHOOD REGRESSION: BIAS TERM
P (x4

@ The parameter wy is known also as bias term.
282

At this pofnt, we can gaiﬁ some insight into the role of the bias parameter wy. If
we make the bias parameter explicit, then the error function (3.12) becomes

N M—1
1
~S Ep(w) =3 > it 77 Z w5 (xn)}2. (3.18)
n=1 Jj=1
Setting the derivative with respect to w equal to zero, and solving for wy, we obtain

(3.19)

(3.20)

Thus the bias w, compe: s Tor the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.
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MULTIPLE OUTPUTS

o What if we have a vector of d-outputs rather than a single
one, i.e. what if observations X, T are (X, tj)/=1.__.n?

o If we use separate weights for each output dimension,
W = (wj), then the model is

wolyx W) = Wigx) |

— |

\-A_/_/
which is easily seen to factorise in the different outputs, so
that we need to solve (d independent ML problems, giving

~~ \~WML - (¢T¢)-1¢7@]

o Generalise to the case in which some coefficients of W are
shared among outputs (i.e., constrained to be equal).

12741
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AN EXAMPLE (BISHOP)

o As an example, consider data generated by the model
t —W@ from which we generate few observations:

0 i
o We want to fit a polynomial model of degree M, where M is

to be chosen: ) gi WV~ x")

y(x,w) = wox® + wyx' + .. 4+ wyxV v~
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AN EXAMPLE (BISHOP)

o Max likelihood solution for different M
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AN EXAMPLE (BISHOP)

@ For M = 9 we face the problem of overfitting: the model is too
complex - ML explains noise rather than data.

o To validate a model, we need test data, different from the train
data. Then we can compute the root mean square error on test
(and train) data.

EHMS = 2Ep(wmL)/N _]
- _

—6— Training4—
—6— Test ¢

&
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AN EXAMPLE (BISHOP)

° m depends also on how many observations: the more
observations, the less overfitting:

@ The fine-tuning of model to data reflects usually in large

coefficients. L |

M=0 M=1 M :’@ M=9
wy 019 0.82 03T 0.35
wy -1.27 7.99 23237
wy -25.43 -5321.83
wy 17.37 48568.31
wy -231639.30
wh 640042.26
we -1061800.52
wh 1042400.18
wh -557682.99
wg 125201.43
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REGULARISED MAXIMUM LIKELIHOOD

e One way to avoid overfitting is to penalise solutions with
large values of coefficients w.

@ This can be enforced by introducing a regularisation term
on the error function to be minimised:

i =
° 15?3 is the regularisation coefficient, and governs how

is the penalty.
@ A common choice is
AT

d
Ew(w) :\—w w‘_ Z w?
j

known as ridge regression, with solution
NAA~—

“7 Weg = (ﬁjr)qdﬂﬁt\ 7
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EXAMPLE: REGULARISED ML
N - Ny ™ ERTATAHERER
@ Let’s consider the sine example, and fit the model of degree
M = 9 by ridge regression, for different A’s.

o If we compute the RMSE on a test set, we can see how the error
changes with 2

1

Training
Test

Erms

35 300, 25 | 20



