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FITTING A STRAIGHT LINE

Consider training data (xn, yn)n=1,...,N . We want to find the best
linear fit to this data, i.e. the best straight line y(x) = w1 · x + w0

Let’s take a curve fitting approach, and find the coefficients
w = (w0,w1) that minimise sum-of-squares error

E(w) =
NX

n=1

[yn � y(xn)]
2
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N w0 w1
5 5.3812 8.1856

10 2.9735 9.6608
20 3.5493 9.6204
50 3.2084 9.9253

100 2.8327 9.8894
1000 3.0451 9.9464

10000 2.9937 10.0147
100000 3.0084 9.9992
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GENERALISED BASIS FUNCTIONS

Suppose our inputs are real vectors, and outputs are real
numbers, and we have observations (xi , yi), i = 1, . . . ,N.
We consider a set of M basis functions �j : Rn ! R, and
write �(x) = (�0(x), . . . , �M�1(x)). By convention, �0 ⌘ 1.
We consider the linear model

y(x,w) = w

T�(x) =
M�1X

j=0

wj�j(x)

y(x,w) is linear in the parameters w, but can be non-linear
in the input state x.
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GENERALISED BASIS FUNCTIONS

Basis functions can, and usually are, non-linear functions of the
inputs. Examples are

Polynomials up to degree d . In 1 dimension, 1, x , x2, . . . , xd

Gaussian basis functions: �j = exp{� (x�µj )
2

2s2 , where µj is
the location and s is the lengthscale of the Gaussian.
Sigmoid functions �j = �

⇣ x�µj
s

⌘
, with �(a) = 1

1+exp(�a)140 3. LINEAR MODELS FOR REGRESSION
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector �(x) of basis functions is simply the identity �(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + � (3.7)

where � is a zero mean Gaussian random variable with precision (inverse variance)
�. Thus we can write

p(t|x,w, �) = N (t|y(x,w), ��1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean
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MAXIMUM LIKELIHOOD REGRESSION

Assume Gaussian noise: t = y(x,w) + ✏, ✏ ⇠ N(0, ��1)

Hence p(t |x,w, �) = N(y(x,w), ��1)

Given observations X, t: (x
i

, ti)i=1,...,N , the likelihood is then

p(t|X,w, �) =
NY

i=1

N(yi |wT�(x
i

), ��1)

giving a log likelihood of
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will be simply

E[t|x] =

�
tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and �, in the form

p(t|X,w, �) =
N�

n=1

N (tn|wT�(xn), ��1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, �) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, �) =
N�

n=1

ln N (tn|wT�(xn), ��1)

=
N

2
ln � � N

2
ln(2�) � �ED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1

2

N�

n=1

{tn � wT�(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and �. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

� ln p(t|w, �) =
N�

n=1

�
tn � wT�(xn)

�
�(xn)T. (3.13)
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MAXIMUM LIKELIHOOD REGRESSION

Compute the gradient w.r.t. w of the log-likelihood, set it to zero
and solve for w.

Looking for the ML solution of the precision �, we get
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142 3. LINEAR MODELS FOR REGRESSION

Setting this gradient to zero gives

0 =
N�

n=1

tn�(xn)T � wT

�
N�

n=1

�(xn)�(xn)T

�
. (3.14)

Solving for w we obtain
wML =

�
�T�

��1
�Tt (3.15)

which are known as the normal equations for the least squares problem. Here � is an
N�M matrix, called the design matrix, whose elements are given by �nj = �j(xn),
so that

� =

�

���

�0(x1) �1(x1) · · · �M�1(x1)
�0(x2) �1(x2) · · · �M�1(x2)

...
...

. . .
...

�0(xN ) �1(xN ) · · · �M�1(xN )

�

��� . (3.16)

The quantity
�† �

�
�T�

��1
�T (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix � (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if � is square and invertible,
then using the property (AB)�1 = B�1A�1 we see that �† � ��1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1

2

N�

n=1

{tn � w0 �
M�1�

j=1

wj�j(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t �
M�1�

j=1

wj�j (3.19)

where we have defined

t =
1

N

N�

n=1

tn, �j =
1

N

N�

n=1

�j(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter �, giving

1

�ML
=

1

N

N�

n=1

{tn � wT
ML�(xn)}2 (3.21)

Looking for the ML solution of the precision �, we get
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MAXIMUM LIKELIHOOD REGRESSION: BIAS TERM

The parameter w0 is known also as bias term.

142 3. LINEAR MODELS FOR REGRESSION
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then using the property (AB)�1 = B�1A�1 we see that �† � ��1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1

2

N�

n=1

{tn � w0 �
M�1�

j=1

wj�j(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t �
M�1�

j=1

wj�j (3.19)

where we have defined

t =
1

N

N�

n=1

tn, �j =
1

N

N�

n=1

�j(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter �, giving

1

�ML
=

1

N

N�

n=1

{tn � wT
ML�(xn)}2 (3.21)
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MULTIPLE OUTPUTS

What if we have a vector of d-outputs rather than a single
one, i.e. what if observations X,T are (x

i

, t
i

)I=1,...,N?
If we use separate weights for each output dimension,
W = (wij), then the model is

y(x,W) = W

T�(x)

which is easily seen to factorise in the different outputs, so
that we need to solve d independent ML problems, giving

WML = (�T�)�1�T
T

Generalise to the case in which some coefficients of W are
shared among outputs (i.e., constrained to be equal).
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AN EXAMPLE (BISHOP)

As an example, consider data generated by the model
t = sin(2⇡x)+ ✏, from which we generate few observations:

4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2�x) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.

x

t

0 1

−1

0

1

detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2�x)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x � (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t � (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function

We want to fit a polynomial model of degree M, where M is
to be chosen:

y(x ,w) = w0x0 + w1x1 + . . .+ wMxM
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AN EXAMPLE (BISHOP)

Max likelihood solution for different M1.1. Example: Polynomial Curve Fitting 7
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

�
2E(w�)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2�x). Values of M in the range 3 � M � 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2�x), as can be seen, for the case of M = 3, from
Figure 1.4.
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AN EXAMPLE (BISHOP)

For M = 9 we face the problem of overfitting: the model is too
complex - ML explains noise rather than data.
To validate a model, we need test data, different from the train
data. Then we can compute the root mean square error on test
(and train) data.

ERMS =
q

2ED(wML

)/N8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .
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For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w�) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2�x)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2�x) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w� obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w� for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w�

0 0.19 0.82 0.31 0.35
w�

1 -1.27 7.99 232.37
w�

2 -25.43 -5321.83
w�

3 17.37 48568.31
w�

4 -231639.30
w�

5 640042.26
w�

6 -1061800.52
w�

7 1042400.18
w�

8 -557682.99
w�

9 125201.43
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AN EXAMPLE (BISHOP)

Overfitting depends also on how many observations: the more
observations, the less overfitting:1.1. Example: Polynomial Curve Fitting 9
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.

ing polynomial function matches each of the data points exactly, but between data
points (particularly near the ends of the range) the function exhibits the large oscilla-
tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible
polynomials with larger values of M are becoming increasingly tuned to the random
noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the
data set is varied, as shown in Figure 1.6. We see that, for a given model complexity,
the over-fitting problem become less severe as the size of the data set increases.
Another way to say this is that the larger the data set, the more complex (in other
words more flexible) the model that we can afford to fit to the data. One rough
heuristic that is sometimes advocated is that the number of data points should be
no less than some multiple (say 5 or 10) of the number of adaptive parameters in
the model. However, as we shall see in Chapter 3, the number of parameters is not
necessarily the most appropriate measure of model complexity.

Also, there is something rather unsatisfying about having to limit the number of
parameters in a model according to the size of the available training set. It would
seem more reasonable to choose the complexity of the model according to the com-
plexity of the problem being solved. We shall see that the least squares approach
to finding the model parameters represents a specific case of maximum likelihood
(discussed in Section 1.2.5), and that the over-fitting problem can be understood as
a general property of maximum likelihood. By adopting a Bayesian approach, theSection 3.4
over-fitting problem can be avoided. We shall see that there is no difficulty from
a Bayesian perspective in employing models for which the number of parameters
greatly exceeds the number of data points. Indeed, in a Bayesian model the effective
number of parameters adapts automatically to the size of the data set.

For the moment, however, it is instructive to continue with the current approach
and to consider how in practice we can apply it to data sets of limited size where we

The fine-tuning of model to data reflects usually in large
coefficients.

8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .
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For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w�) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2�x)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2�x) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w� obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w� for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w�

0 0.19 0.82 0.31 0.35
w�

1 -1.27 7.99 232.37
w�

2 -25.43 -5321.83
w�

3 17.37 48568.31
w�

4 -231639.30
w�

5 640042.26
w�

6 -1061800.52
w�

7 1042400.18
w�

8 -557682.99
w�

9 125201.43
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REGULARISED MAXIMUM LIKELIHOOD

One way to avoid overfitting is to penalise solutions with
large values of coefficients w.
This can be enforced by introducing a regularisation term
on the error function to be minimised:

ED(w) + �EW (w)

� > 0 is the regularisation coefficient, and governs how
strong is the penalty.
A common choice is

EW (w) =
1
2

w

T
w =

1
2

X

j

w2
j

known as ridge regression, with solution

w

RR

= (�I +�T�)�1�T
t
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EXAMPLE: REGULARISED ML

Let’s consider the sine example, and fit the model of degree
M = 9 by ridge regression, for different �0s.10 1. INTRODUCTION

x

t

ln � = �18

0 1

−1

0

1

x

t

ln � = 0

0 1

−1

0

1

Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter � corresponding to ln � = �18 and ln � = 0. The
case of no regularizer, i.e., � = 0, corresponding to ln � = ��, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

�E(w) =
1

2

N�

n=1

{y(xn,w) � tn}2 +
�

2
�w�2 (1.4)

where �w�2 � wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient � governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of ln � = �18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2�x). If,
however, we use too large a value for � then we again obtain a poor fit, as shown in
Figure 1.7 for ln � = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

If we compute the RMSE on a test set, we can see how the error
changes with �

1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w� for M =
9 polynomials with various values for
the regularization parameter �. Note
that ln � = �� corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
� increases, the typical magnitude of
the coefficients gets smaller.

ln � = �� ln � = �18 ln � = 0
w�

0 0.35 0.35 0.13
w�

1 232.37 4.74 -0.05
w�

2 -5321.83 -0.77 -0.06
w�

3 48568.31 -31.97 -0.05
w�

4 -231639.30 -3.89 -0.03
w�

5 640042.26 55.28 -0.02
w�

6 -1061800.52 41.32 -0.01
w�

7 1042400.18 -45.95 -0.00
w�

8 -557682.99 -91.53 0.00
w�

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against ln �,
as shown in Figure 1.8. We see that in effect � now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or �). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln � for the M = 9
polynomial.

E
R

M
S

ln �−35 −30 −25 −20
0

0.5

1
Training
Test


