
0.1 Introduction to cryptography

0.1 Introduction to cryptography

The discipline devoted to the study of secrecy systems is called crittology. It is divided
into two main branches which are cryptography, i.e. the design and implementation of
secrecy systems, and criptoanalysis, which is aimed to breaking such systems in order to
test them. In this thesis we will focus on the cryptographic ascpects of crittology.
Some fundamental definitions we need in this branch of study are the following:

Definition 0.1.1. We call plaintext a message that is to be altered into a secret form,
called cyphertext.

Definition 0.1.2. A cypher is a method to alter such plaintext into cyphertext.

Definition 0.1.3. A cryptosystem consists of a finite set P of possible plaintexts, a set
C of possible cypertext messages, a space K of possible keys and, for every k ∈ K, an
ecription function E and a decription function D such that D(E(x)) = x.

Cryptography as a way to encode messages is not a recent discovery: we have proof
of the existence of cyphers already in roman times. A famous one is Caesar’s Cypher,
which consisted in replacing every letter of the alphabet by the letter three spots further,
in a cyclic way:

C = P + 3(mod26)

This is just one example of a larger class of cyphers we calll monographic, which consist
in replacing each letter of the alphabet with another trough some algorithm. The
monographic encryptions can however be easily broken using the frequency of letters in
a given language. For this reason modern cryptosystems are based on more complicated
mathematical methods.

0.1.1 The Pohling-Hellman exponentiation cyphre

Let p be a prime number and let k be an encryption key that is an integer coprime to
p− 1. The Pohling-Hellman algorithm encription of a plaintext P < p works as follows:
We compute the cyphertext

C = P k mod p.

In order to decrypt such a message we need a decryption key d such that dk ≡ 1
mod p− 1. Then the original plaintext can be easily found as

P = Cd mod p.

proof:
Cd = (P k)d = P kd, but since p is prime and does not divide P , we have that P p−1 ≡ 1
mod p by Fermat’s Little Theorem. On the other hand dk ≡ 1 mod p − 1, so
dk = q(p − 1) + 1. Therefore Cd = P kd = P q(p−1)+1 ≡ P mod p, and we have
succesfully decrypted the message.

1

0.1 Introduction to cryptography

The security of such a code consists in the fact that even if someone were to intercept an
encrypted message C = P k mod p, finding k (and therefore d) would still be a difficoult
probelm even if they knew the value of p. This is because the exponential encryption
function is believed to be a one-way function, i.e. a function that can be computed in
polynomial time, however is “hard to invert” in the average-case. Modern cryptography
is based on the belief that there exist functions with such property. There is however no
canonical proof to of this, as it would imply P 6= NP which is a long-standing open
problem.

Let’s now take a closer look at the inverse of the exponentiation function used in the
Pohling-Hellman exponentiation cyphre:

0.1.2 The Discrete Logarithm Problem

Definition 0.1.4. Let G be a cyclic group of cardinality n and α a generator of G, β
an element of G. Then we say that x is a Discrete Logarithm of β to the base α in G if
0 ≤ x ≤ n− 1 and x is the solution to the equation αx = β.

Definition 0.1.5. The Discrete Logaritm problem consists in finding the Discrete
Logarithm of an element β ∈ G to the given base α.

The Discrete Logarithm Problem is not polynomial, it depends on the cardinality n
of the group G and the naive alghorithm for it requires exponential running time, while
faster algorithms- such as the “Baby-step giant-step” algorithm- reduce running time
up to

√
n.

There is however a class of groups for which the Pohling-Hellman alghorithm provides a
quicker solution: the cyclic groups of order n = Πpeii such that pi are small primes. In this
particular instance the computational complexity of solving DLP is O(

∑
ei(logn+

√
p
i
))

group operations.
Because of this, in order to efficiently encrypt information using cyphres based on the
DLP, it is required for the group order to have at least one large prime factor. In the
case of the multiplicative group G = Z?p it is convenient to consider p a prime such that
p = 2q + 1 where q is a large prime. This will make sure that p− 1 has a large prime
factor.
Finally, we also have to mention the Index-calculus algorithm, which is a probabilistic
algorithm collecting relations among the Discrete Logarithms of small primes, computes
them and then expresses the desired Discrete Logarithm with respect to the ones of
small primes. This method is subexponential, however it does not work on all grups, for
example it does not work on the group of points of an elyptic curve.

Going back to the Pohling-Hellman exponentiation cyphre we see that the DLP ensures
that given a wise choice of a prime number p, breaking such cyphre requires exponential
time. But a great problem still persist: in order to encrypt and decrypt our messege we
need to recieve the encryption key, without it being intercepted by anyone trying to
attack our system. This issue can however be resolved with with public key cryptography.

2

0.1 Introduction to cryptography

0.1.3 Public key cryptography

In the 1970’s new cryptosystems were developed in which encryption keys could be made
public. Suppose Allice (A) announced a key K so that anyone, say Bob (B) could send
her an encrypted message using such key. In order to assure such message were actually
kept secret decryption must require some additional information which only Alice has.
This idea was first proposed by Diffle and Hellman in 1976, however its first implemen-
tation was later developed by Rivest, Shamir and Adleman in 1977, and is still known
as the RSA cryptosystem.

The Diffle-Hellman key- exchange protocol

The Diffle-Hellman key-exchange protocol allows two parties- say Alice and Bob- to ex-
change a secret key through a possibly not secure comunication link. This cryptosystem
is based on the discrete logarithm problem, therefore its unbreakability
The algorithm works as follows:
Let p be a large prime number and let r be a primitive root modulo p, i.e. a generator
of the multiplicative group Z?

p . Both Alice and Bob pick an integer between 2 and p− 2,
say kA and kB, then Alice sends Bob

x ≡ rkA mod p

so then Bob can generate the common key

K = xkB = rkAkB mod p

Similarly, Bob sends Alice y ≡ rkB mod p so she can also generate the common key K.

The RSA cryptosystem

Let us first give two useful notions:

Definition 0.1.6. Euler’s phi function φ(n) gives the number of positive integers smaller
or equal to n which are coprime to n.

Theorem 0.1.7. Euler theorem: If a and m are coprime, then aφ(m) ≡ 1 mod m.

Suppose that Alice wants to generate a public key so that Bob - or anyone else - can
send her encrypted messages using the RSA cypher. To do so Alice chooses two large
(different) prime numbers p and q and computes their product pq = R. Then she also
selects a large integer e which is coprime to φ(R) = (p− 1)(q − 1), and makes the pair
K = (R, e) public.
Bob can now encrypt his plaintext P in the following way:

C ≡ P e mod R,

and send it to Alice.
Finally, Alice can decrypt the message using her secret decryption key d which is the

3

0.1 Introduction to cryptography

solution of the equation de ≡ 1 mod φ(R), and is therefore easily computed by Alice
who knows φ(R).
Using Euler’s theorem it is easy to check that d decrypts the message:
Cd ≡ P ed mod R, but ed ≡ 1 mod φ(R), and P φ(R) ≡ 1 mod R; so P ed mod R ≡ P
mod R.

What guarantees the security of the RSA cyphre?
Security of the RSA is based on the difficoulty of:

• factorising large numbers: from R finding p andq;

• the discrete logarithm problem: finding d from K = (R, e);

The two problems above are actually not proven to be equivalent. The implication is

factorisation⇒ DLP.

The ElGamalov cyphre

The El Gamalov cyphre, named after Taher ElGamal who designed it in 1985, is a
public key cryptographic system. It can be divided into three main steps:

• Alice and Bob exchange a secret key K using the Diffle-Hellman key-exchange
protocol.

• Alice sends Bob a message P by encrypting it:

C = KP mod p

• Bob camputes
P = K−1C mod p

An advantege of this algorithm are the fact that for every comunication Alice and Bob
can generate a different key K using the Diffle-Hellman algorithm, so the same plaintext
can be coded differently every time.

The ElGamalov system is actually not that used as an encryption method but more
as a way to tackle the following problem that all of the above cyphers share: the lack
of authentication. Suppose Alice recieves a message that she believes is from Bob.
She actually has no proof that the sender really is Bob, therefore the security of the
comunication is at risk.

0.1.4 Digital signature

A digital signature is a way of proving the identity of the sender of a digital encrypted
message. In general, a digital signature procedure can be divided into three steps:

• an algorithm to generate the key;

4

0.1 Introduction to cryptography

• a polynomial algorithm to generate the digital signature that applies the senders
signature to a message;

• a polynomial algorithm that checks the digital signature and has two possible
outputs: “valid” or “invalid”.

.

0.1.5 The ElGamal signature scheme

Let p be a large prime number and r a generator of the multiplicative group Z?
p . Suppose

Alice and Bob both have private keys kA and kB that they used to exchange the key
K = rkAkB using the Diffle-Hellman protocol. To sign her message m, Alice can use the
pair (t, s) such that

rm = ytAt
s mod p, (?)

where yA = rkA mod p.
To verify the signature Bob computes both sides of (?) and checks that they are the
same. This is a scheme is once again based on the unbreakability of the DLP.
But how does Alice find such a pair (t, s)? She chooses a random 0 < x < p− 1 and
then sets t = rx mod p.
Then

rm = ytAr
xs = rkAtrxs

Which allowes her to compute s,

m = kAt+ xs⇒ s = (m− kAt)x−1.

We observe that the digital signature is tied to the message we are sending. This is to
prevent an impostor from copying the signature and applying it to different content.

0.1.6 Hash functions and DSA

Definition 0.1.8. A hash function is a function h that can send arbitrarily long data
into a string of fixed length:

h : {0, 1}? → {0, 1}n

In order for a hash function to be useful for cryptographic use the following properties
are desirable:

• given an imput x, the value of h(x) must be easy to compute;

• its output should look like a random number and if two messages differ by even
only one entry the relative function values should appear two uncorrelated random
numbers;

• it is a one-way function: given a string z it is infeasible to find x such that h(x) = z;

• given a plaintext P it is infeasible to find another P1 such that h(P) = h(P1);

5

0.1 Introduction to cryptography

• it is deterministic: the same imput always yields the same output.

Now, let h be a hash function, which does not need to be kept secret. Again Alice
wants to prove her identity to Bob by applying a singnature. However this time, to add
another layer of security, she will sign the hash funchion of her message h(m).

The digital signature (t, s) can be applied in the following way:

• pick two prime numbers p, q such that p = 1 mod q. When making such choices
we want the length L (in bits) of q to be less or equal to the length of the output
of the hash function.

• pick a genetator g of the subgroup of order q of Z?p. A way to generate g that

works most of the times is to pick a random 1 < r < p − 1 and set g = r(p−1)/q

mod p(in the case that we get g = 1 we repeat the step by selecting a different r).
The triplet (p, q, g) is public.

• As in Diflle-Hellman, Alice has a private key 0 < kA < q and she computes
yA = gkA mod p.

• Alice than chooses a random 0 < x < q− 1 and computes t = (gx mod p) mod q

• finally she finds s by solving s = (h(m) + kAt)x
−1. The pair (t, s) is the wanted

digital signature.

In order to verify the signature Bob then needs check the correctness of the equation

t ≡ gs
−1h(m) mod q(yA)s

−1t mod q mod p mod q.

which by ommitting the mod q in the exponents becomes

t ≡ gs
−1(h(m)+kAt) mod p mod q.

Bob has all the information he needs to make this computation.

Observation 0.1.9. In the equation above we have mod q in the exponents which

we have then ommited. This is because of thw way we have chosen g : g = r
p−1
q . Indeed,

suppose x 6= y but x ≡ y mod q. Then x = kq + y and

gx = gkqgy ≡ gy mod p

because gq = r
p−1
q
q ≡ 1 mod p by Fermat’s little theorem.

A more recent approach to cryptography involves elliptic and hyperelliptic curves.
The idea is to substitute the classic groups Zp with a different kind, related to such
curves. A good reason for such change is that elliptic curve cryptography requires
smaller keys to provide equivalent security, and is therefore used today in many online
comunications. Hyperelliptic curves are on the other hand not wildely used today, even
though they require even smaller keys than ECC, because the implemenation of the
arithmetic of such systems is not very efficient.
In the next chapters we introduce some theoretic geometric notions regarding these two
classes of curves which will give us some insight into how we can associate them with
groups and what is their role in modern cryptography.

6

0.2 Elliptic curves

0.2 Elliptic curves

Definition 0.2.1. An elliptic curve E over a filed K is a curve that is projectively
equivalent to a projective smooth cubic in P2

K which consists of a point at infinity
∞ = [0 : 1 : 0] and affine points (x, y) satisfying what we call the generalised Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

This equation can be further reduced into different formulas which depend on the
characteristic of the filed K. In particualr we distinguish three cases:

• if char(K) = 2 the formula remains as above.

• if char(K) = 3 the formula can be reduced to:

y2 = x3 + ax2 + bx+ c.

proof:
Let’s apply the affine trasformation

(x, y)→ (x, y − a1x+ a3
2

).

Then the left side of the generalised Weierstrass equation becomes:(
y − a1x+ a3

2

)2

+ a1x

(
y − a1x+ a3

2

)
+ a3

(
y − a1x+ a3

2

)
=

= y2−y(a1x+a3)+
a21x

2 + 2a1a3x+ a23
4

+a1xy−
a21x

2

2
− a1a3x

2
+a3y−

a1a3x

2
− a

2
3

2

= y2 − a21x
2

4
− a23

4
− a1a3x

2

So the whole equation is now

y2 = x3 +

(
a2 −

a21
4

)
x2 +

(
a4 −

a1a3
2

)
x+

(
a6 −

a23
4

)
which we can simplify as

y2 = x3 + ax2 + bx+ c.

• if char(K) 6= 2, 3 the elliptic curve E can be written as

y2 = x3 + Ax+B

We call this equation the Weierstrass form of the elliptic curve.

proof:

7

0.2 Elliptic curves

First we reduce the cubic to the equation y2 = x3 + a′x + b′x + c′ as we did for
the field of characteristic 3. Then it is enough to apply the transformation

(x, y)→ (x− 1

3
a′, y)

and the right side of the equation becomes

x3 + (
1

3
(a′)2 + b′)x+ (c′ − 1

27
(a′)3)

which, after renaming the constants, is our formula.

Observation 0.2.2. A natural question is whether every cubic of the form y2 =
x3 + Ax + B is an elliptic curve. The answer is no, as we also have to satisfy the
smoothnes hypothesis, which can be expressed in the form of ∆ = 4A2 + 27B2 6= 0.

Let’s proove this observation:
A curve is smooth when there is no point in which all the partial derivatives are null.
We first look at the affine part of the curve, and we compute the partial deirvative by y
and obtain 2y which of course is zero iff y = 0. On the other hand the partial derivative
by x is zero iff x is a root of x3 + Ax + B at least twice. This is true if and only if
∆ = 4A2 + 27B2 = 0. So this part of the curve does not have a singular point only in
the case that ∆ 6= 0.
We now need to prove that also the point ∞ = [0 : 1 : 0] is not singular. We homogenise
the equation and get

F (x0, x1, x2) = x30 + Ax0x
2
2 +Bx32 − x21x2

∂F

∂x0
(∞) = 0

∂F

∂x1
(∞) = 0

∂F

∂x2
(∞) = −1

So the smoothness condition is satisfied.

Observation 0.2.3. All cubics in Weierstrass form have a flex in ∞ = [0 : 1 : 0].

Corollary 0.2.4. Every elliptic curve E in over an algebraically closed field K with
char(K) 6= 2, 3 is projectively equivalent to an affine cubic

y2 = x(x− 1)(x− c)

for some c ∈ C− {0, 1}.
We call this the Legendre form of the elliptic curve.

8

0.2 Elliptic curves

Another way to look at elliptic curves which is often found in literature is the
following:

Definition 0.2.5. An elliptic curve is an algebraic projective smooth curve of genus
one with a specified point ∞.

A very useful theorem when working with genuses is the following:

Theorem 0.2.6. Given a non singular curve C ∈ P2 of degree d we can express its
genus as

g =
1

2
(d− 1)(d− 2).

An immediate consequence is that smooth curves of genus one must be smooth
cubics in P2.

We will mostly work with elliptic curves over finite fields, the points of which form
an abelian group. It is however interesting to note the case K = C, where every elliptic
curve is isomorphic to a torus. Indeed in C a torus can be constructed as T = C/L
from a lattice L = {z1w1 + z2w2, z1, z2 ∈ Z}, where w1, w2 are two linearly indipendend
complex numbers. The canonical sum of complex numbers induces a group structure on
T and there is group isomorphism between each such torus to an elliptic curve E.

Observation 0.2.7. It is easy to see that

P = (x1, y1) ∈ E ⇒ P ′ = (x1,−y1) ∈ E.

0.2.1 The group law

Theorem 0.2.8. Let E be an elliptic curve in Weierstrass form over an algebraically
closed field K. The set of points of E can be endowed with the structure of a group.
First consider an operation

∗ : E × E → E

(P,Q)→ P ∗Q

where P ∗Q = R, the unique third point of intersection between E and the line through
P and Q.

In the case that P = Q such line is the tangent to the curve.
We can then define

+ : E × E → E

(P,Q)→ P +Q = P ∗Q ∗∞

The elliptic curve E, together with the operation + forms an additive group, with
neutral element ∞ = [0 : 1 : 0].

proof:

9

0.2 Elliptic curves

• The existence and unicity of P ∗ Q is given by Bezut’s theorem, which tells us
that the intersection between a line and a curve of degree three consists of three
points (counted with their multeplicity, so it is possible to have just one point
with multeplicity three). Therefore, the existence and well-definition of P +Q is
guaranteed.

• It is also clear that ∗ is a commutative operation, therefore + is.

• The neutral element of the group is ∞.
Indeed, ∞ is the only flex of the curve, so the only point with multeplicity three,
which implies ∞ ?∞ =∞, and therefore ∞+∞ =∞.
On the other hand let P ∈ E and P ∗∞ = R. Then P +∞ = R ∗∞ = P.

• It is easy to see that if P = (x1, y1) ∈ E, then P ′ = (x1,−y1) ∈ E and P+P ′ =∞,
so each element has an opposite.

10

0.2 Elliptic curves

• The sum + is associative. We ommit this proof, which can be found in (insert
reference).

0.2.2 Equations for the sum of points on an elliptic curve

Proposition 0.2.9. Let K be a field of char(K) 6= 2, 3,, and let P = (x1, y1), Q =
(x2, y2) ∈ E elliptic curve. The coordinates of the point P +Q = (x3, y3) are:

• if P 6= Q:

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2

and

y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1

• if P = Q:

x3 =

(
3x21 + a

2y1

)2

− 2x1

and

y3 =

(
3x21 + a

2y1

)
(x1 − x3)− y1.

Proposition 0.2.10. If char(K) = 3, then

• if P 6= Q:

x3 =

(
y2 − y1
x2 − x1

)2

− a− x1 − x2

11

0.2 Elliptic curves

• if P = Q:

y3 =

(
2ax1 + b

2y1

)
(x1 − x3)− y1

If char(K) = 2, then the formulas are a little more complicated and we need to distinguish
four cases

• if a1 6= 0 and P 6= Q

x3 =

(
y1 + y2
x1 + x2

)2

+
y1 + y2
x1 + x2

+ x1 + x2

y3 =

(
y1 + y2
x1 + x2

)
(x1 + x3) + x3 + y1

• if a1 6= 0 and P = Q

x3 = x21 +
a6
x21

y3 = x21 + (x1 +
y1
x1

+ 1)x3

• if a1 = 0 and P 6= Q

x3 =

(
y1 + y2
x1 + x2

)2

+ x1 + x2

y3 =

(
y1 + y2
x1 + x2

)
(x1 + x3) + y1 + a3

• if a1 = 0 and P = Q

x3 =
x41 + a22
a23

y3 =

(
x21 + a2
a3

)
(x1 + x3) + y1 + a3

For the computations that yield to these results we refer to referencexy

Observation 0.2.11. If the coordinates of P and Q are elements of a field K, then
also P + Q has coordinates in K, so the hypothesis of having an algebraically closed
field is actually not necessary to form a group with the points of an elliptic curve.

0.2.3 Divisors

Definition 0.2.12. Let C be a curve. A divisor D is a linear combination

D =
∑
P∈C

ap · P

with only a finite number of aP 6= 0.

12

0.2 Elliptic curves

It is important to note that this is a purely formal sum, that we do not actually
compute.
On the other hand we can also consider the actual sum of points, which is given by the
function:

sum : Div(C)→ C

D =
∑

ap · P →
∑

apP.

Definition 0.2.13. We define a sum of two divisors D =
∑
ap ·P and E =

∑
bP ·P as

D + E =
∑

(aP + bP) · P.

The divisors on a curve C together with the sum + form an abelian group (Div(C),+)
with neutral element 0 =

∑
0 · P .

Definition 0.2.14. We define the degree of a divisor D =
∑
ap · P as

deg(D) =
∑

ap;

and we define its support as the set of all points P such that aP 6= 0.

Observation 0.2.15. The class of degree zero divisors of a curve C forms a subgroup
Div0(C) ⊂ Div(C).

We now want to define a particular class of divisors called principal divisors, for
which we need the notion of valuation that we briefly introduce here.
Let E be an elliptic curve, embedded into the projective plane P2

K , with K algebraically
closed. Then, as an algebraic variety, it is associated to a homogeneous ideal IH(E). We
can then define

S(E) = K[x0, x1, x2]/IH(E)

and since elliptic curves are irreducible, we have that IH(E) is a prime ideal and S(E)
is a domain. We can therefore consider the quotient field

Q(S(E)) = {f
g
for f, g ∈ S(E) and g /∈ IH(E)}.

This is however not really well defined in the projective space, as we also need to add
the condition that nominator and denominator are polynomials of the same degree.
With this adjustment we can then obtain a well defined field, called the field of rational
functions:

K(E) = {f
g
for f, g ∈ Q(S(E)) and deg(f) = deg(g)}.

Finally, we can also define the following structure:

OE,P = {h ∈ K(E)|∃f, g ∈ Q(S(E)(d)) such that h =
f

g
and g(P) 6= 0}

This is a local ring, with maximal ideal MP = {h = f
g
∈ OE,P |f(P) = 0}.

13

0.2 Elliptic curves

Definition 0.2.16. Let R be a local ring that is a domain and let its maximal ideal
M =< t > for some t ∈ R. Then R is a discrete valuation ring (briefly DVR) if every
element of the ring can be written as utn for some invertible element u and some integer
n ≤ 0. We call the element t uniformizing element or uniformiser.

Proposition 0.2.17. OE,P is a DVR.

Proof. In order to prove this proposition we need the following lemma and corollary,
the proof of which can be founf in referencexy

Lemma 0.2.18. (Nakayama)
Let R be a local ring with maximal ideal M. Then if M is a finitely generated R-module
and MM = M , then M = 0.

Corollary 0.2.19. Let R be a local ring with maximal ideal M and M a finitely
generated R-module. Consider the K = R\M vector space:

< m1, . . .mr >= M/MM.

Then M =< m1, . . . ,mr > .

Let us now use the above results to prove that OE,P is a DVR.
First, we need to show that the maximal ideal MP is generated by one element t.
Let’s consider the tangent space to the curve at the point P .

TpE =
(
MP/M2

P

)∗
= Hom

(
MP/M2

P , K
)

We know that if P is a nonsingular point the dimension of the tangent space at the
point is the dimension of the projective variety. In our case the elliptic curve is smooth,
so every point is nonsingular, and we get

dim(
(
MP/M2

P

)
) = dim(

(
MP/M2

P

)∗
) = dim(TPE) = dim(E) = 1.

Therefore (MP/M2
P) =< t > as a vector space. But MP is a finitely generated OE,P -

module (OE,P is noetherian, so every ideal of this ring is finitely generated). So by the
corollary above we obtain MP =< t > .
Secondly, we show that every element a ∈ OE,P can be written as a = utn for some u
invertible element.
We define

M = ∩Mn.

Again, M is a finitely generated ideal because OE,P is noetherian. However it is easy
to see that MM = M , so by Nakayama’s lemma M = 0. Now, if a is inveritble,
we simply have a = at0, while if a is not invertible, a ∈ M and more specifically,
a ∈ Mn\Mn+1 =< tn > \ < tn+1 > for some n. So a = utn for some u ∈ OE,P
invertible.

We can now canonically define a function on OE,P called valuation.

14

0.2 Elliptic curves

Definition 0.2.20. A valuation on the local ring OE,P is a function

vP : OE,P\{0} → Z+

f = utn → n

It is easy to see that the following hold:

• vP (fg) = vP (f) + vP (g);

• vP (f + g) ≥ min(vP (f), vP (g));

• f /∈M iff vP (f) = 0.

Observation 0.2.21. From the third property it is clear that n = vP (f) > 0 if and
only if f is not invertible which in the local ring OE,P implies f(P) = 0. In particular,
n is the multeplicity of the zero P .

We can then extend the valuation to the whole field of rational functions. If h ∈ K(C)
is a rational function which can be represented around P as h = f

g
, then

vP : K(E)→ Z

vP (h) = vP

(
f

g

)
= vP (f)− vP (g).

We therefore have vP (h) = aP > 0 iff P is a zero of h of multeplicity aP and
vP (h) = bP < 0 iff P is a pole of multeplicity bP .

Let now h be a rational function over a closed field K. We can associate a divisor to
h as

(h) =
∑
P∈C

vP (h) · P

where vP (h) is the valuation of h in P . In the case that the field we are working in is
not algebraically closed, we can still generate a divisor in this way by considering the
field of rational functions K(C) over its algebraic closure.

Observation 0.2.22. Sometimes we will denote the divisor of a rational function h as
div(h) as it will facilitate reading.

Example 0.2.23. Let’s consider the elliptic curve E : y2 = x3 − x and the rational
function f = x

y
. We want to compute vP (f) for the point P = (0, 0).

We consider OE,P and its maximal ideal MP which contains all non invertible elements
of the local ring. We need to compute the uniformiser t, i.e. an element of the ring such
that < t >=MP and ∀a ∈ OE,P , a = tnu with u /∈MP .
Since P = (0, 0), MP =< x, y >. We are however working on the elliptic curve
y2 = x(x2 − 1), where x = y2 · 1

x2−1 . So MP =< y > and y is uniformising element.
We can now easily compute vP (f):

x

y
= y · 1

x2 − 1
,

so vP (f) = 1.

15

0.2 Elliptic curves

Observation 0.2.24. In general if P = (α, 0) then y is uniformising element, wherease
if P = (α, β) with β 6= 0 then x− α is uniformiser.

Definition 0.2.25. All divisors D for which there exists a rational function h such that
(h) = D are called principal divisors.

Proposition 0.2.26. The set of principal dicisors of a curve C forms a subgroup P (C)
of Div(C). In particular, P (C) ⊂ Div0(C) as all principal divisors have degree zero.

The first part of the proposition can be easily proved, as we can construct a group
homomorphism:

(K(C)\0, ·)→ (P (C),+)

f · g → (f · g) =
∑

(vP (f) + vP (g)) · P.

The second part, a proof that all principal divisors have degree zero we give the reference
of [6], chapter 2, corollary 6.10.

Definition 0.2.27. We define Picard group Pic(C) of a curve C the quotient group

Pic(C) =
Div(C)

P (C)
.

Proposition 0.2.28. Let E be an elliptic curve and Pic0(E) = Div0(E)
P (E)

. Then there
exists a bijective map, called the Abel Jacobi map,

σ : Pic0(E)→ E

[D]→ P

where P is the unique point such that [D] = [P −∞], i.e. D − P −∞ is principal.
Furthermore, if E is given by the Weierstrass equation, the geometric group law we saw
in the previous chapter and the group law induced on Pic0(E) as a quotient group are
the same, so σ is also a group isomorphism.

Proof. We refer to [3].

Corollary 0.2.29. Let E be an elliptic curve and D ∈ Div0(E). Then D is principal
iff sum(D) =∞.

Proof. Let D =
∑
aP · P be principal. Then in Pic0(E) we have

[D] = [0]⇒ σ([D]) = σ([0]) =∞.

But since D is a divisor of degree zero we can also rewrite it as D =
∑
aP · (P −∞).

By applying again the function σ which is also a group homomorphism we obtain

σ([D]) = σ([
∑

aP · (P −∞)] =
∑

apσ([P −∞]) =
∑

apP = sum(D).

Therefore sum(D) =∞.
In order to proove the converse we just need to reverse the implication arrows.

Example 0.2.30. If P 6=∞, then D = P −∞ is not a principal divisor.

16

0.3 Elliptic curves over a finite field

0.3 Elliptic curves over a finite field

In order to use elliptic curve groups in cryptography, we need to consider them over
a finite field as this makes computations feasible. This means that given a curve in
Weierstrass form

y2 = x3 + Ax+B

we take A,B ∈ Fq, where Fq is a finite field of cardinality q.

Example 0.3.1. Consider the curve in Weierstrass form

y2 = x3 − 2x+ 2

Who is E(F5)?
The choices for x are 0, 1, 2, 3, 4. We now just need to check which of the f(x) are
squares in this field. So let’s first observe that in F5 all possible squares are:

02 ≡ 0, 12 ≡ 1, 22 ≡ 4, 32 ≡ 4, 42 ≡ 1.

Now we compute:
f(0) ≡ 2
f(1) ≡ 1
f(2) ≡ 1
f(3) ≡ 3
f(4) ≡ 3
and we get that the points of the curve are (1, 1), (1, 4) (2, 1,) (2, 4), ∞, i.e E(F5) = Z5.

In the case that the cardinality of the group that we obtain is not a prime we could
have more choices. For example if #E(Fq) = 9 we could have either Z9 or Z3 × Z3. We
then look at the order of some elements to understand which group is the right one.

Let’s now recall some properties of finite fields that will be useful in future computations:

• Given a finite field Fq we have that q = pn for some prime p and integer n. The
characteristic of such field is p;

• All finite fields of order q are isomorphic;

• given a finite field Fq, its’ algebraic closure is a countable union of finite fields
Fq = ∪Fqn ;

• Fq = {roots of xq − x}

• When q = p the sum and multiplication are the classic ones, modulo p;

• When q = pn for n > 1 we do not represent the field elements with numbers
any more as the sum and product operations are not the modular ones. We can
however represent the elements as polynomials of degree smaller then n. We then
sum them as polynomials, and reduce the coefficients modulo p. The product is
constructed by multilpying them as polynomials, and then taking the remander of
a division by an irreducible polynomial of degree n.

17

0.3 Elliptic curves over a finite field

Example 0.3.2. Elements of F9:

0, x, 2x, 1, x+ 1, 2x+ 1, 2, x+ 2, 2x+ 2.

sum of two elements:
(2x+ 1) + 2x = 4x+ 1 = x+ 1

product of two elements:

(2x+ 1)(x+ 2) = 2x2 + 5x+ 2

As 2x2 + 5x+ 2 is not one of the elements of our field we need to divide this polynomial
by an irreducible one in Z3[x], say x2 + 1. We then get 2x.

0.3.1 Torsion points

Suppose first the field K of charcteristic not 2, and E an elliptic curve over it. We will
consider the curve in the Legendre form, with a point ∞ which is the neutral element of
the ellipric curve group.

Definition 0.3.3. We define

E[n] = {P ∈ E(K) such that nP =∞}

the (sub)group of n- torsion points of the curve.

Example 0.3.4.
E[2] ' Z2 ⊕ Z2

indeed, E can be put in the form y2 = x(x− 1)(x− c) and a point P is of torsion with
n = 2 if and only if P + P = ∞, i.e the tangent line at P is vertical. In an elliptic
curve this means y = 0, so E[2] = {∞, (0, 0), (1, 0), (c, 0)}.

Theorem 0.3.5. If the characteristic of K does not divide n (or is 0),then

E[n] ' Zn ⊕ Zn

If the characteristic p divides n, we can write n = prm with p not dividing m. Then

E[n] ' Zm ⊕ Zm

or
E[n] ' Zn ⊕ Zm

(insert proof)

In order to study the torsion subgroups, it is useful to introduce the following maps:

Definition 0.3.6. Let y = x3 + Ax+B be an elliptic curve in Weierstrass form. Then
we can recursively define the following maps, called division polynomials

ψn ∈ Z[x, y, A, b] :

18

0.3 Elliptic curves over a finite field

• ψ0 = 0

• ψ1 = 1

• ψ2 = 2y

• ψ3 = 3x4 + 6Ax2 + 12Bx− A2

• ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3)

• ψ2n = (2y)−1(ψn)(ψn+2ψ
2
n−1 − ψn−2ψ2

n+1)

• ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ3

n+1

We observe that the division polynomial ψn is a function of x when n is odd.

Theorem 0.3.7. Consider the polynomials:

φn = xψ2
n − ψn+1ψn−1

and

ωn = (4y)−1(ψn+2ψ
2
n−1 − ψn−2ψ2

n+1).

Then the endomorphism of an elliptic curve E(Fq) (with q odd) that given a point
P = (x, y) ∈ E returns nP can be expressed as

(x, y)→ (
φn(x)

ψ2
n(x)

,
ωn(x, y)

ψn(x, y)3
).

proof: (insert reference (Ellicptic curves number theory)).

Observation 0.3.8. Given P = (x, y) ∈ E(Fq) and n odd, then P ∈ E[n] iff ψn(x) = 0.

Lemma 0.3.9. ψ2
n is always a polynomial only in x and

ψ2
n = n2xn

2−1 + lower degree terms.

(insert proof)

Proposition 0.3.10. Let n be an odd prime. Then

{x coordinates of points of E[n]} = {roots of ψn}

Proof. Since n is prime E[n] ' Zn⊕Zn, so #E[n] = n2. This means that #E[n]−∞ =
n2−1, so as n 6= 2, there are n2−1

2
distinct first coordinates in E[n]. But, by the previous

lemma, ψn is a polynomial in x (n is odd) of degree n2−1
2
. and all of its roots are in E[n],

so we get the equality.

19

0.3 Elliptic curves over a finite field

0.3.2 Order of the group and order of a point

The concepts of order (cardinality) of a group and order of one of its points are quite
correlated. Indeed, let P be a point on an elliptic curve over a finite field E(Fq), and
let n be its order (the smallest integer such that nP =∞). We know from Lagerange’s
theorem that given an element of a group, its order divides the cardinality of the group,
so n| #E(Fq).
Renè Schoof first proposd in 1985 a way to calculate such cardinality in polynomial time,
the Schoof algorithm, which is based on Hesse’s theorem and on the Chinese Remainder
theorem. Before analysing the algorithm let’s first look at some results that will prove
useful for its understanding.

Theorem 0.3.11. Hesse theorem

q + 1− 2
√
q ≤ #E(Fq) ≤ 2

√
q + q + 1

(insert proof of Hesse theorem)

Observation 0.3.12. In the case that we are not interested in the exact cardinality of
#E(Fq) but just its approximation, Hesse’s theorem tells us that it is not very far from
q.

Corollary 0.3.13. The probability that an x ∈ Fq is the absciss of a point P ∈ E(Fq)
is close to 1

2
for a large q.

Proof. The number of such x is approximately #E(Fq)

2
since for almost every (x, y) on

the curve, also (x,−y) is. But then by Hesse’s theorem

1

2
+

1

2q
− 1
√
q
≤ #E(Fq)

2q
≤ 1

2
+

1

2q
+

1
√
q

Where #E(Fq)

2q
is the probability that a random x ∈ Fq is the first coordinate of a point

of the curve.

This is very useful for cryptographic purposes, as it allowes us to easily pick a random
point on an elliptic curve.

Definition 0.3.14. The Frobenius endomorphism on a finite field Fq is a map

φq : Fq → Fq

x→ xq

In particular, if E(Fq) is an elliptic curve, φq acts on the coordinates of a point in
the following way:

φq(x, y) = (xq, yq)

and
φq(∞) =∞.

20

0.3 Elliptic curves over a finite field

Definition 0.3.15. We call the trace of a Frobenius endomorphism φq

aq = q + 1−#E(Fq).

It is easy to observe that by Hesse’s theorem |aq| ≤ 2
√
q.

Proposition 0.3.16.
φ2
q − aqφq + q = 0

(insert proof)

0.3.3 Schoof’s algorithm

Let E(Fq) be our elliptic curve over a finite field Fq of char 6= 2, 3 with q = pn. Let the
following be its Weierstrass equation

y2 = x3 + Ax+B.

The idea behind Schoofer’s algorithm is quite simple: to count the points on the elliptic
curve we first calculate the number of points modulo l1, . . . , lk and then use the chinese
remainder theorem to get #E(Fq) mod l1 . . . lk. Finally we can get rid of the modulo
by using the range given by Hesse’s theorem.

Let S be a set of primes such that its product is larger then 4
√
q, assume that p

is not one of them and let aq be the trace of the Frobenius endomorphism. We calculate
aq mod li:

Proposition 0.3.17. aq ≡ 0 mod 2 iff x3 + Ax+B has a root in Fq.

Proof. “⇒”
If x3 + Ax + B has a root x̃ ∈ Fq, the point (x̃, 0) is on the curve, and since the
second coordinate is 0 it has order two. By Lagrange’s theorem we then have that
#E(Fq) = q + 1− aq is even, i.e q + 1− aq ≡ 0 mod 2. But since we supposed q odd,
this implies aq ≡ 0 mod 2.
“⇐”
If aq ≡ 0 mod 2, then the group order is ≡ 0 mod 2. But, by Cauchy’s theorem, for
every prime dividing the order of the group there exists an element of that order. So
in our case we have that ∃(x̃, ỹ) of order two, which in an elliptic curve group implies
ỹ = 0, i.e. x̃ is a root of the equation.

But when does the equation above have a root? Whenever gcd(x3+Ax+B, xq−x) 6= 1.

From this proposition we see that the case li = 2 is quite simple.

If li 6= 2, the computations are more complex:
Let us now use a instead of aq, l instead of li and note the following property that will

21

0.3 Elliptic curves over a finite field

be useful for notation purposes: (xq, yq) = φq and (xq
2
, yq

2
) = φ2

q.

Let P = (x, y) ∈ E[l] be a torsion point, and ql ≡ q mod l, with |ql| ≤ 1
2
l. Then,

from proposition xy,
(xq

2

, yq
2

) + ql(x, y) = a(xq, yq)

We can use this relation to find a mod l, since (xq, yq) is also a point of order l.
We can now distinguish three cases:

• If (xq
2
, yq

2
) = −ql(x, y), then a(xq, yq) =∞, so a ≡ 0 mod l.

• If (xq
2
, yq

2
) = ql(x, y) ∀(x, y) ∈ E[l], then a ≡ +(−)ω mod l, with ω2 ≡ q mod l:

Since from the hypothesis we have φ2
q(x, y) = ql(x, y), we get aφq(x, y) = 2ql(x, y).

But then:
a2ql(x, y) = a2φ2

q(x, y) = a2φq(x
q, yq) =

= a2ql(x
q, yq) = a2qlφq(x, y) = 4q2l (x, y)

So
a2ql = 4q2l mod l

In order for this equation to have a solution we need ql to be a square mod l, so
let w2 = ql mod l. Now, for any P ∈ E[l],

(φq + w)(φq − w)P = (φ2
q − q)P =∞

So then there are two options, either

(φq − w)P =∞

or P ′ = (φq − w)P 6=∞,but (φq + w)P ′ =∞.
In the first case we obtain φqP = ωP , which implies

∞ = (φ2
q − aφq + ql)P = (2ql − aω)P

so aw ≡ 2q ≡ 2ω2 mod l and we finally get

a ≡ 2ω mod l

In the second case, we have φqP
′ = −ωP ′, and we get

a ≡ −2ω mod l.

• otherwise, ∃P = (x, y) ∈ E[l] such that P ′ = φ2
q(P) + qlP 6=∞, and the line used

to sum these two points is not a tangent to the curve.
We use the following notation:

k(x, y) = (xk, yk).

We will then compute (xql , yql) and then test for all integers 0 < k < l if they
frullfil the formula

φ2
q(x, y) + (xql , yql) = (xqk, y

q
k).

22

0.3 Elliptic curves over a finite field

But since xk = x−k, the algorithm it is actually convenient to check the property
for 0 < ±k < l−1

2
. Observe that if we get a match ±k for which the formula holds,

then it will hold for all points of the elliptic curve, not only P . So we will obtain

a ≡ k mod l

or
a ≡ −k mod l.

Let φ2
q(x, y) + (xql , yql) = (x′, y′), and let’s first look at the first coordinate. Using

the addition formulas of an elliptic curve group and the equation y2 = x3 +Ax+B
we can express x′ as a rational function G(x), indeed:

x′ = (
yq

2 − yql
xq2 − xql

)− xq2 − xql

but since yql = yr(x) for some rational function r, we get

(yq
2 − yql) = y2(yq

2−1 − r(x))2 = (x3 + Ax+B)((x3 + Ax+B)
q2−1

2 − r(x))2.

So the k that fullfills the condition on the first coordinate is the one such that

xqk = G(x).

From Propositionxy we know that {x coordinates of E[l]} = {roots of ψl}, so
the condition above is satisfied iff

x′ = G(x) ≡ xqk mod ψl

If we have found such a k, then

(x′, y′) = ±(xqk, y
q
k) = (xqk,±y

q
k).

To determine the correct sign we look at the second coordinates. We can express
y′

y
and

yqk
y

as functions of x, so if we have
(y′−yqk)

y
≡ 0 mod ψl, then a ≡ k mod l,

otherwise a ≡ −k mod l.

Now to conclude Schoof’s algorithm we conside a mod l ∀l ∈ S and apply the Chinese
remainder theorem, obtaining a mod Πl. Since by hypothesis we have chosen S so that
the product of all its elements is bigger than 4

√
q we can then use Hesse theorem to

find the unique a such that |a| ≤ 2q.

Running time of the algorithm and its implementation:(da completare)

Observation 0.3.18. This algorithm was later refined by Atkin and Elkies, for more
information see (insert reference).

23

0.4 Pairings

Observation 0.3.19. As noted in the beginning of this chapter, if #E(Fq) = n, then
the order of any point P ∈ E(Fq) is a divisor of n. This means the relation can be used
to restrict the options for a points order, but also the other way around: we can use
some large order of a point to find n.

Example 0.3.20. Let y2 = x3−10x+21 be an elliptic curve in Weierstrass form over the
finite field F557. Then it is possible to show that the point (2, 3) has order 189, so #E(F557)
is a multiple of 189 in the range given by Hesse’s theorem 511 ≤ #E(F557) ≤ 605. The
only integer satisfying both requirements is 567.

Observation 0.3.21. Knowing the order of an elliptic curve over a finite field can be
crucial in choosing the curve we want to use for our cryptographic incription. Indeed,
there are some requirements on the cardinality of the group we are using, such as for
example that it should have at least one large prime factor. So even if we do not need to
know #E(Fq) in order to encrypt and decrypt the message, the security of the system
depends on some group cardinality properties.

0.3.4 Supersingular elliptic curves

Definition 0.3.22. Let E(Fq) be an elliptic curve over a finite field of order q = pn.
Let aq be the trace of the Frobenius endomorphism φq, so #E(Fq) = q + 1− aq. We say
that E is supersingular if p divides aq, i.e. if aq ≡ 0 mod p.

It is important to note that supersingular elliptic curves are not singular curves, as
by definition of elliptic curves. The term refers to the fact that this group of curves has
a “large” endomorphism ring.

Observation 0.3.23. All elliptic curves of cardinality #E(Fq) = q+1 are supersingular.

Proposition 0.3.24. If the elliptic curve E is defined over Fp for a prime p > 3, then
E is supersingular iff #E(Fq) = p+ 1.

Proof. Let E be supersingular, then aq ≡ 0 mod p so if aq 6= 0, then |aq| ≥ p. But
by Hesse’s theorem |aq| ≤ 2

√
p, so we would get p ≤ 2

√
p which is only possible for p ≤ 4.

(possibilmente capitolo da espandere)

0.4 Pairings

0.4.1 The Weil Pairing

Let E be an elliptic curve over a field K and let n be an integer that cannot be divided
by p = char(K). Then we know that

E[n] = {P ∈ E(K) such that nP =∞} ' Zn ⊕ Zn.

24

0.4 Pairings

We set
µn = {x ∈ K|xn = 1}.

Since p = char(K) does not divide n, the equation does not have multiple solutions, so
there are exactly n distinct roots of xn in K and therefore µn is a cyclic group of order
n, i.e. µn ' Zn.

Definition 0.4.1. We call any generator of the group µn n-th primitive root of unity.

Supposing n as above we can now define the Weil Pairing as follows:

Definition 0.4.2. The Weil Pairing is a map

en : E[n]× E[n]→ µn

such that:

• it is bilinear in each variable
en(S +R, T) = en(S, T)en(R, T) and en(S, T +Q) = en(S, T)en(S,Q) ;

• it is nondegenerate in each variable
if en(S, T) = 1 ∀S ⇒ T =∞ , and if en(S, T) = 1 ∀T ⇒ S =∞ ;

• en(T, T) = 1

• en(S, T) = en(T, S)−1

• en(σS, σT) = σ(en(S, T)) for any automorphism σ of K such that it is the identity
map on all the coeficients of E;

• en(α(S), α(T)) = (en(S, T))degα for every(separable?) endomorphism of E.

Observation 0.4.3. For practical cryptographic uses of pairings it is also required for
the map en to be easily computable (i.e. in polynomial time).

We now briefly describe one way of constructing the Weil pairing map. We however
do not show that all the properties listed above hold for our map, a computation which
can be found in [1] III, Proposition 8.1.

Again, let E be an elliptic curve over a field K and let n be an integer that cannot
be divided by p = char(K). We pick a point T ∈ E[n] and consider the divisor

D = n · T − n · ∞.

Since deg(D) = 0 and sum(D) =∞ Corollary 0.2.29 states that D is a principal divisor.
Therefore

∃f ∈ K(E) such that (f) = D.

We now consider T ′ ∈ E(K) such that nT ′ = T . Such a T ′ exists because

T ∈ E[n]⇒ T ∈ E[n2] ' Zn2 ⊕ Zn2 .

25

0.4 Pairings

So, as an element of Zn2 ⊕ Zn2 , T can be written as

T = (α + kn, β + ln)

with 0 ≤ α, β ≤ n− 1, k.l ∈ Z. But the order of T is n, so T = (kn, ln). We then just
take T ′ = (k, l) ∈ Zn2 ⊕ Zn2 and nT ′ = T ∈ Zn2 ⊕ Zn2 ' E[n2] ⊂ E(K).

Now take the divisor
D′ =

∑
R∈E[n]

(T ′ +R)−R.

Again, D′ is a principal divisor, so

∃g ∈ K(E) such that (g) = D′.

Now since the divisor of the product of two rational functions is the sum of their
individual divisors we can compute (gn) as:

(gn) =
∑

R∈E[n]

n · (T ′ +R)− n ·R.

On the other hand, if we call [n] the map that given a point multiplies it by n using the
elliptic curve group addition, then the divisor

(f ◦ [n]) =
∑

R∈E[n]

n · (T ′ +R)− n ·R.

This is because we know that f has a unique zero in T of multiplicity n, but then
∀R ∈ E[n],

f(T) = f(nT ′) = f(nT ′ +∞) = f(nT ′ + nR) = (f ◦ n)(T ′ +R) = 0,

so (f ◦ n) has zeros of multipicity n in T ′ +R. Similarly, f has a unique n pole at ∞
and therefore (f ◦ n) has a n-pole at R for every R ∈ E[n].
We now see that gn and f ◦ [n] have the same divisors. Furthermore, we can actually
easily show that they differ only by a constant as maps, indeed the map

(K(E), ·)→ (P (C),+)

is a group homomorphism, and it is easy to see that its kernell consists of all constant
functions. This implies that, up to constant multiplication, two rational functions with
same principal divisors are the same. Therefore we can assume

f ◦ [n] = gn.

Now let S ∈ E[n] and X ∈ E(K) ,

g(X + S)n = (f ◦ [n])(X + S) = f(nX + nS) = f(nX) = (f ◦ [n])(X) = gn(X).

so (
g(X + S)

g(X)

)n
= 1,

26

0.4 Pairings

i.e. for every S ∈ E[n] , g(X+S)
g(X)

is a root of unity, and we can define a map

en : E[n]× E[n]→ µn

(S, T)→ g(X + S)

g(X)
.

We observe that the map does not depend on the choice of X. Indeed let’s fix S and
write

g̃ : E(K)→ K(E)

X → g(X + S)

g(X)
.

Consider the morphism of varieties

φ : E(K)→ P′

X → [g̃(X) : 1] if g̃ is regular in X

X → [1 : 0] if g̃ has a pole in X.

Since E(K) is a projective variety over a closed field it is complete, and therefore φ(E)
is closed in P′ with the Zariski topology. But all closed varieties in P′ are points, finite
unions of points or P′ itself. E(K) is irreducible, so φ(E) is irreducible and cannot be
union of finitely many points. Also the map φ is not surjective as g̃(X) can only take
finitely many values (the n-roots of unity), so φ(E) 6= P′. This leaves only the option of
φ being constant and therefore so is g̃.

We can also give another equivalent construction of the Weil pairing,

Proposition 0.4.4. Given P,Q ∈ E[n] choose divisors DP ∼ P −∞ and DQ ∼ Q−∞
such that the two have disjoint supports. It can easily be checked that nDP and nDQ are
principal divisors, and if we call fP and fQ their associated rational functions, then the
map

ẽn : E[n]× E[n]→ µn

ẽn(P,Q) =
fP (DQ)

fQ(DP)

is equivalent to the Weil pairing en as constructed above.

Observation 0.4.5. Given a divisor D =
∑
aP · P we define

f(D) = Πf(P)aP .

Observation 0.4.6. As we have already mentioned, two functions with the same divisor
can differ by constant multiplication. So if we wish to define fP (and fQ) in a canonical
way we can choose them to be normalised, i.e. such that they satisfy

uRf
−vR(f)
P (R) = 1,

where R is a fixed poinft on E of our choice, uR is the uniformising element at R and
vR(f) the valuation of fP in that same point.

27

0.4 Pairings

Proof. First we must show that the map ẽn is well defined and does not depend on our
choice of divisor DP . In order to do so we will need use the Weil reciprocity law, which
states that for every f, g ∈ K(E)

f(div(g)) = g(div(f)).

Now, let us consider another divisor of the class of DP , which we can express as
D̃ = DP + (g) for some rational function g, which we can normalise. Let us also suppose
fP to be chosen normalised, then the normalised function with divisor mD̃ = n·DP+n·(g)
is f̃ = fPg

n, so

ẽn(P,Q) =
f̃(DQ)

fQ(D̃)
=

fP (DQ)gn(DQ)

fQ(DP)fQ(div(g))
=

fP (DQ)gn(DQ)

fQ(DP)g(div(fQ))
=

=
fP (DQ)gn(DQ)

fQ(DP)g(nDQ)
=
fP (DQ)gn(DQ)

fQ(DP)gn(DQ)
=
fP (DQ)

fQ(DP)
.

We therefore see that the result is the same whether we use DP or D̃ for the computation.
The same reasoning can be applied for DQ, so our map ẽn is well defined.

The next step of the proof is to verify that en(P,Q) = ẽn(P,Q).
We choose P ′, Q′ and R such that P ′ 6= ±Q′ and

mP ′ = P, mQ′ = Q, 2R = P ′ −Q′.

We also choose
DP = P −∞, DQ = (Q+ nR)− nR.

We then consider the rational functions fP and fQ selected as explained above and using
the same reasoning as seen in the previous Weil pairing construction we can claim that
there exist functions gP , gQ:

fP ◦ [n] = gnP fQ ◦ [n] = gnQ.

Now,

ẽn(P,Q) =
fP (DQ)

fQ(DP)
=
fP (Q+ nR)fQ(∞)

fP (nR)fQ(P)
=

=
fP (nQ′ + nR)fQ(n∞)

fP (nR)fQ(nP ′)
=

(
gP (Q′ +R)gQ(∞)

gP (R)gQ(P ′)

)n
.

It can be show that the divisor of the following two functions is 0;

φ(X) =
gP (X +Q′ +R)gQ(X)

gP (X +R)gQ(X + P ′)
, ψ(X) = Πn−1

i=0 gQ(X + iQ′);

so having no zeros or poles they must both be constant.
We can now continue our computations:

ẽn(P,Q) =

(
gP (Q′ +R)gQ(∞)

gP (R)gQ(P ′)

)n
= (φ(∞))n =

28

0.4 Pairings

= Πn−1
i=0 φ(iQ′) = Πn−1

i=0

gP ((i+ 1)Q′ +R)gQ(iQ′)

gP (R + iQ′)gQ(P ′ + iQ′)
=

= Πn−1
i=0

gP ((i+ 1)Q′ +R)

gP (R + iQ′)
Πn−1
i=0

gQ(iQ′)

gQ(P ′ + iQ′)
=

=
gP (R +mQ′)

gP (R)
Πn−1
i=0

gQ(iQ′)

gQ(P ′ + iQ′)
=

=
gP (R +Q)

gP (R)
Πn−1
i=0

gQ(P ′ + iQ′)

gQ(P ′ + iQ′)
=

=
gP (R +Q)

gP (R)
= en(P,Q).

We now have two equivalent formulas for the Weil pairing, however we are still
missing an algorithm to efficiently compute it. The Miller algorithm provides a solution
to such problem, so we will briefly describe how it works. We will start by defining
a group of functions fn,P which have some properties that allow them to be easily
computed in a recursive way with respect to n. We will then show that we can use such
functions to compute the Weil pairing, and finally we will state the (Miller) algortihm
that actually computes the mentioned functions in polynomial time. The following
computations are mainly an extract of [5].

Let E be an elliptic curve, P,Q ∈ E. We call LP,Q the line through P,Q which
intersects E also in −(P +Q). Define

GP,Q =
LP,Q

LP+Q,−(P+Q)

.

Since (LP,Q) = P +Q+ (−(P +Q)− 3 · ∞, we obtain

(GP,Q) = P +Q− (P +Q)−∞.

Now we can recusively define the set of functions fn,P im the following way:

f0,P = f1,P = 1

fn+1,P = fn,PGP,nP

f−n,P =
1

fn,PGnP,−nP
.

Proposition 0.4.7. The functions fn,P satisfy:

1. (fn,P) = n · P − (n− 1) · ∞ − nP

2. fn+m,P = fn,Pfm,PGmP,nP

3. fnm,P = fnm,Pfn,mP = fmn,Pfm,nP

29

0.4 Pairings

Proof. 1. We procede by induction. The thesis is easily verifyed for n = 0, 1. Then,
assuming the property tohold for n,

(fn+1,P) = (fn,P) + (GP,nP) = n · P − (n− 1) · ∞ − nP + P + nP − (P + nP)−∞ =

= (n+ 1) · P − (n+ 1− 1) · ∞ − (n+ 1)P.

f−n,P = −(fn,P)−(GnP,−nP) = −n·P+(n−1)·∞+nP−nP−(−nP)+(nP+(−nP))+∞ =

= −n · P − (−n− 1) · ∞ − (−nP).

2. Using the formula 1. we can explicitly compute the divisors of fn,Pfm,PGmP,nP and
fn+m,P) which turn out to be the same. Being all the functions normalised the equality
follows.
3. We use the same reasoning as in 2.

Proposition 0.4.8. Let E be an elliptic curve, n be an integer coprime with char(K)
and P,Q ∈ E[n]. Then for all T 6=∞, Q,−PQ− P,

en(P,Q) =
fn,Q(T)fn,P (Q− T)

fn,P (−T)fn,Q(P + T)
.

Proof. We recall that en(P,Q) = fP (DP)
fQ(DQ)

where DP ∼ P −∞ and DQ ∼ Q −∞, they

have disjoint support and (fP) = nDP , (fQ) = nDQ .
Since (GP,T) = P + T − (P + T)−∞, we have that P −∞ ∼ (P + T)− T so we can
choose DP = (P + T)− T , and DQ = Q−∞. Since T 6=∞, Q,−P,Q−P we have that
DQ and DP satisfy the disjoint support condition.
Consider now the function

τ : E → E

R→ R− T

From the previous proposition we have the formula for div(fn,P) which we apply to
obtain

div(fn,P ◦ τ) = n · (P − T)− (n− 1) · (−T)− (nP − T) =

= n · (P − T)− n · (−T) = div(fP) = nDP .

On the other hand

(fn,Q) = n ·Q− (n− 1) · ∞ − nQ = nDQ = (fQ).

So we simply take fP = fn,P ◦ τ and fQ = fn,Q and we get a Weil pairing

en(P,Q) =
fP (Q)

fP (∞)
· fQ(T)

fQ(P + T)
=
fn,P ◦ τ(Q)

fn,P ◦ τ(∞)
· fn,Q(T)

fn,Q(P + T)
=

fn,P (Q− T)fn,Q(T)

fn,P (−T)fn,Q(P + T)
.

30

0.4 Pairings

In particular, if P 6= Q ∈ E[n] the formula can even be reduced to

en(P,Q) = (−1)n
fn,P (Q)

fn,Q(P)
,

for the proof of which we refer to [5].

The above proposition shows how we can compute the Weil pairing using the functions
we constructed recursively fn,P . What makes this particular set of functions useful is
property 2. of Proposition 0.4.7, as it allowes effective recursion computation.
Indeed, for example to compute f4,P we can procede as follows: set f1,P = 1 and then
f2,P = f 2

1,P ·GP,P , f4,P = f 2
2,P ·G2P,2P .

Theorem 0.4.9. Miller’s algorithm
input: P, n
output: fn,P

Let n =
∑t

k=0 nk · 2k with t = 1 be the binary expansion of n. Then:
. Set T = P and f = 1;
. for i = t− 1 to 0:
. f = f ·GT,T

. T = 2T

. if ni = 1:

. set f = f ·GT,P

. T = T + P

. return f

(ancora un po’ da completare, spiegare meglio)

Miller’s algorithm running time is O(logn).

Proposition 0.4.10. If {T1, T2} are a base of E[n], then en(T1, T2) is an n-th primitive
root of the unity.

Proof. en(T1, T2) = ξ is a generator of µn if the order of ξ is n. So, suppose ord(ξ) = d,
then by the bilinearity of the pairing en(T1, dT2) = en(T1, T2)

d = 1. Let now T3 ∈ E[n],
then T3 = aT1 + bT2 and

en(T3, dT2) = en(aT1, dT2)en(bT2, dT2) = en(T1.dT2)
aen(T2, dT2)

b = 1

This implies
dT2 =∞

but since T2 ∈ E[n] we have n|d, so ord(ξ) = n and ξ is an n-th root of unity.

Corollary 0.4.11. If E[n] ⊂ E(K), then µn ⊂ K.

for the proof of this corollary see referencexy(it requires galois theory)

31

0.6 Elliptic Curve Cryptography and pairings

0.4.2 The Tate-Linchtenbaum pairing

(da scrivere)

0.5 Elliptic curve cryptography- ECC

(capitolo solo iniziato, appena da scrivere)

0.5.1 Diffle-Hellman key-exchange protocol

Let E(Fq) be a large, known, elliptic curve group over a finite field. Let also R ∈ E(Fq)
be an element of order a large prime p. In order to determine a common secret key
K, Alice and Bob each indipendently pick a random integer 1 ≤ kA ≤ p − 1 and
1 ≤ kB ≤ p− 1, which will be their private secret key.
Then Alice sends Bob

P = kAR

and Bob sends Alice

Q = kBR.

Now, using their private keys, they can both easily find the common key K = kAkBR.
The security of the system is based on the unbreakability of the ECDLP:

Definition 0.5.1. Elliptic Curve Discrete Logarithm Problem:
Consider a group G of points of an elliptic curve and R ∈ G an element of the group
with order a large prime number. Then given a point P ∈ G the ECDLP consists in
finding a k such that P = kR on the curve.

0.5.2 Encoding a message on an elliptic curve

Let m be the message we want to encrypt using elliptic curve cryptography, and E(Fq)
be the curve we want to use. In order to use any of the previously described cyphres(che
sono appena da scrivere) we need to represent m as a point P ∈ E(Fq). There are
various ways to do so: (da scrivere)

0.6 Elliptic Curve Cryptography and pairings

For many years the additional structure of elliptic curve groups was not really considered
for cryptographic purposes. The finding of pairings changed that, introducing both new
cryptographic opportunities as well as further limitations on “good” curve choices.

32

0.6 Elliptic Curve Cryptography and pairings

0.6.1 The MOV attack

One crucial application of pairings in cryptography is to use them to reduce the ECDLP
in a large group into DLP in smaller ones. This is the idea behind the MOV(Menezes,
Okamoto, Vanstone) cryptographic attack.
Le e be a Weil pairing of an ellicptic curve over a finite field Fq, and let P and Q = kP
be two points on such curve. Suppose also that P has order n and that such order is
coprime with q. We want to solve the ECDLP, i.e. find k.
We will do so by reducing the ECDLP in E(Fq) to the DLP in Fqm , a finite field on
which we can use the subexponential index calculus method. This way, if qm is not
much larger than q we can solve the new problem much faster then the original one.

Let us first observe that given two points P and Q on the elliptic curve E(Fq), the k for
which Q = kP does not necessarily exist, indeed the following property holds:

Proposition 0.6.1. Let P and Q be points of an elliptic curve of order n.Then there
exists k such that Q = kP if and only if en(P,Q) = 1.

Proof. “⇒”

en(P,Q) = en(P, kP) = en(P, P)k = 1

“⇐”
Since gcd(n, q) = 1 we know that E[n] ' Zn ⊕ Zn. We can now find a point R such
that {P,R} is a basis of E[n], and we then know by proposition(xy) that en(R,P) is a
generator of µn. We now have that

Q = xP + yR,

and

1 = en(P,Q) = en(P, xP + yR) = en(P, P)xen(P,R)y = en(P,R)y.

But since en(P,R) is an n-th root of unity it has order n, and so we get y ≡ 0 mod n.
But then yR =∞, which leaves us with Q = xP . We now have our k = x.

By slightly adjusting this proof we obtain the MOV attack:

Let us choose an m such that E[n] ⊂ E(Fqm). This is possible since E[n] ⊂ Fq,
and F q = ∪iFqi .
Then we repeat the following steps unitil the least common multipe of the tuple
(d1, . . . , dk) is n.

• choose a random point Ti ∈ E(Fqm) and compute its order ni;

• let di = gcd(n, ni) and T̃i
′
= (ni/di)Ti. Now T̃i has order di, which divides n. This

implies T̃ ′i ∈ E[n].

• compute the Weil pairing ξi = en(T̃i
′
, P), and ξ′i = en(T̃i

′
, Q) = en(T̃i

′
, P)k = ξki ;

33

0.7 Hyperelliptic curves

• from corollary(xy) we have that µn ⊂ Fqm , so ξi, ξ
k
i ∈ F∗qm . So we can now try to

solve the DLP
ξ′i = ξki

in the multiplicative group F∗qm .

• this way we obtain ki = k mod di. But since we repeat the algorithm untill the
least common multiple of the di’s is n (i.e. the di are “parwise coprime”), we can
then use the chinese remainder theorem to find k mod n.

Time analysis:
Weil pairings and the chinese remainder theorem can be computed quickly, so the
running time really depends on finding the ki’s and on their number. The number of
ki’s we need is again not very high, so in the end all that is left is computing the ki’s,
which is the classic discrete logarithm problem and depends of course on how large m is,
since we are working in F?qm .

In conclusion, when using elliptic curve cyphres we need to take into consideration
the limitations on the curve choices given by the MOV attack. Usually an elliptic curve
for which the smallest m such that E[n] ⊂ E(Fqm) is bigger than 20 is considered safe.
Most of elliptic curves satisfy such condition, but not all. In particular the MOV attack
is really effective on supersingular elliptic curves. Indeed in this case if ∃P ∈ E[n], then
E[n] ⊂ E(Fq2) when the field characteristic is not 2 or 3, in which cases we however
still get m ≤ 4 and m ≤ 6. For more about this topic we refer to Alfred J. Menzenes, T.
Okamoto, and Scott A. Vanstone; Reducing elliptic curve logarithms to logarithm in a
finite field.

(espandere e spiegare bene se decidiamo di inserire le supersingular curves)

0.6.2 Weil pairing and the Decision Diffle Hellman Problem

Given a group with a known Weil pairing e the Decision Diffle Hellman Problem can
become easy.

Definition 0.6.2. Decision Diffle Hellman Problem- DDHP:
Given a point P ∈ E(Fq), aP , bP and another point Q in the same elliptic curve,
determine whether or not Q = abP .

(da scrivere)

0.6.3 The Frey-Ruck attack

0.6.4 A cyphre based on the Weil pairing

0.7 Hyperelliptic curves

Definition 0.7.1. Let X and Y be two curves. Consider for any two open subsets U
and V of X and morphisms φu : U → Y, φv : V → Y the equivalence realtion:

(U, φu) ≡ (V, φv) ⇐⇒ φu|U∩V = φv|U∩V .

34

0.7 Hyperelliptic curves

We define a rational map φ : X −−− > Y is an equivalence class [(U, φu)] under this
relation.
In particular, a rational map is called dominant if φu(U) is dense in Y .

Observation 0.7.2. In general the composition of two rational maps can be not well
defined,as we could have that the image of first map does not intersect the domain of
the second. However if we consider the first map to be dominant we avoid this problem.

Definition 0.7.3. Two curves are said to be birationally equivalent if there exists a
birational map between them, i.e a dominant rational map f : X −−− > Y such that
there exists g : Y −−− > X dominant and f ◦ g = idX , g ◦ f = idY .

Definition 0.7.4. A hyperelliptic curve of genus g over a field K is a curve that is
birationally equivalent to the affine curve

y2 + h(x)y + f(x) = 0

with f ∈ K[x] monic of degree n = 2g + 1 or n = 2g + 2 and h(x) ∈ K[x] of degree ≤ g.
We also require for all (x, y) to be nonsingular points on the affine curve, so we do not
allow the case 2y + h(x) = 0 = f ′(x).
In particular, if char(K) 6= 2 we can further simplify the equation to

y2 = f(x).

In this case we ask for f not to have zeroes of multeplicity more than one.

Example 0.7.5. y2 = x5 − 2x4 − 7x3 + 8x2 + 12x is a hyperelliptic curve of genus 2.

35

0.7 Hyperelliptic curves

Observation 0.7.6. A more formal definition of hyperelliptic curves states that any
curve of genus g ≥ 2 is hyperelliptic if there exists a finite morphism of degree two
π : C → P′. When this is the case we have that [K(P′) : K(C)] is a field extension of
degree two. We also observe that denoting the morphism with π is an indicator of the
fact that usually the finite morphism is exactly the projection on P′.

The above formula gives us a very simple way to represent hyperelliptic curves,
however by homegenising the equation we can easily see that it has a singularity at the
point ∞. We can however get rid of such singularity (i.e. find a non singular curve
birationally equivalent to the first one) by considering the blow up at the singular point,
possibly more than once. For more details we refer to referencexy(tesi manuela).

Observation 0.7.7. The behaviour of principal divisors and rational functions on a
(hyper)elliptic curve y2 = f(x) is “forced” at infinity. Let for example h = x − a for
some constant a ∈ K be our function. It is clear that h does not have poles in the affine
plane but has two zeroes in K : (a,

√
f(a) and (a,−

√
f(a)) (or a single double zero if

f(a) = 0) . But the principal divisor associated to h has degree zero, so we need to
“compensate” with two poles at infinity;

(h) = (a,
√
f(a)) + (a,−

√
f(a))− 2∞.

In order to use hyperellptic curves in cryptography we need a group structure.
Unfortunately the construction used on elliptic curves cannot be applied in this case, we
can however use divisors to define a different group correlated to the curve. In particular,
we will only use hyerelliptic curves for which the polynomial f has degree 2g + 1, so we
will consider only such ones from now forth.

0.7.1 The Jacobian variety

As mentioned before, we are looking for a group structure to associated to a hyperelliptic
curve. This will be the Jacobian variety.

Definition 0.7.8. Let C be a hyperelliptic curve. We define its Jacobian variety as

J(C) = Div0(C)/P (C)

where P (C) is the subgroup of principal divisors of C.

The jacobian has the structure of a quotient group.

Observation 0.7.9. It can be shown that if E is an elliptic curve, then

J(E) = Div0(E)/P (E) = E.

Let C be a hyperelliptic curve over a filed K. We can define a map ω that works in
the following way:

• if char(K) 6= 2
ω : C → C

(x, y)→ (x,−y)

∞→∞

36

0.7 Hyperelliptic curves

• if char(K) = 2
ω : C → C

(x, y)→ (x,−y − h(x))

∞→∞

This is an involution, i.e. ω ◦ ω = id.
Given a divisor D ∈ Div0(C), D =

∑
cj(Pj −∞) we write ω(D) =

∑
cjω(Pj).

Proposition 0.7.10. If D ∈ Div0(C), D =
∑
cj ·(Pj−∞), then D+ω(D) is a principal

divisor.

proof:
D + ω(D) =

∑
cj · (Pj + ω(Pj)− 2∞). We want to show that this is a principal divisor.

We do this by showing it is the divisor of the polynomial A(x) = Π(x− aj)cj .
If the field we are working with is not of characteristic two we can write C : y2 = f(x),
and Pj = (aj,±

√
(f(aj)) for some aj. Then D + ω(D) is the divisor of the polynomial

A(x) = Π(x− aj)cj , indeed, for every aj, Pj = (aj,
√
f(aj) and ω(Pj) = (aj,−

√
f(Pj))

are zeroes of order cj of A(x), while all the poles are at ∞.
If the field has characreristic two, C : y2 + h(x)y = f(x), and for every aj, Pj =(
aj,

−h(aj)+
√
h(aj)2+4f(aj)

2

)
and ω(Pj) =

(
aj,

−h(aj)−
√
h(aj)2+4f(aj)

2

)
are the points on

the curve corresponding to the zeroes of A(x) of order cj, while again, all poles are at
∞.

As a consequence of this proposition, we see that we can obtain the opposite element
of a divisor class [D] ∈ J(C) by using the omega function:

[D + ω(D)] = [0]⇒ [ω(D)] = [−D].

Suppose now that we are working with a field K of characteristic not 2. We want
to describe the algorithmic way we endowe J(C) with the structure of a group. In
order to do so we introduce the Mumford representation which gives us a very concrete
representation of the points of the Jacobian. We will just give an idea of how this group
structure is obtained, without proving most of the statements. In order to have a more
complete explanation we refer to [3] and [2] (inserire i capitoli delle citazioni).

Theorem 0.7.11. There is a one-to-one correspondence between elements of J(C) and
pairs of polynomials [u, v] such that:

• u is monic;

• deg(v) < deg(u) ≤ g;

• v2 − f(x) is a multiple of u.

Definition 0.7.12. The pair [u.v] as above is called the Mumford representation of the
corresponding class in J(C).

37

0.7 Hyperelliptic curves

As mentioned above we now give just an idea of how this correspondence is con-
structed.

Definition 0.7.13. Let D =
∑
cj · (Pj −∞) with Pj = (aj, bj) be a divisor of degree

zero. We say it is semi-reduced if:

• cj ≥ 0 ∀j;

• if bj = 0 then cj = 0, 1;

• if bj = 0 then ω(Pj) does not appear in the sum.

In the case that we also have
∑
cj ≤ g we say the divisor is reduced.

Given a dvisor D ∈ Div0(C), we can easily find a semi-reduced divisor in its same
class, which we will still call D. So let’s now consider the semi-reduced divisor
D =

∑
cj · (Pj −∞) where Pj = (aj, bj). We take

u(x) = Πj(x− aj)cj .

Then there exists a unique v(x) such that

• ∀j v(aj) = bj;

• deg(v) ≤ deg(u) ;

• u divides f − v2 ;

• D = MCD(((u(x)), (y − v(x))).

Conversely, if u, v ∈ K[x] satisfy deg(v) < deg(u) and u divides f − v2, then D =
MCD(((u(x)), (y − v(x))) is a semi-reduced divisor.

Observation 0.7.14. By MCD of two divisors D1 =
∑
dj · (Qj −∞), D2 =

∑
ej ·

(Qj −∞) we mean

MCD(D1, D2) =
∑

min(dj, ej) · (Qj −∞).

Let’s now consider the map

φ : [u(x), v(x)]→ D = MCD((u(x)), (y − v(x))).

The map φ is actually a bijection between polynomials in the Mumford representation
and reduced divisors and since it can also be shown that for every class [D] ∈ J(C) there
is a unique representative D̃ which is reduced, φ gives us the one to one correspondence
with J(C) we were looking for.

The theorem is also valid if the hyperelliptic curve is defined over a field with
characteristic 2 (C : y2 = h(x)y + f(x)) and the proof is very similar to the one above,
so we will not write it down expliciltly.

38

0.7 Hyperelliptic curves

Example 0.7.15. The divisor 0 =
∑

0 · Pj is reduced, and its Mumford representation
is [1, 0].

Observation 0.7.16. In practice in order to get the Mumford representation of a
semi-reduced divisor D of degree zero we can find the reduced divisor in its same class
and then apply φ, or use another method which we now describe:
First, associate polynomials u,v to D as above, i.e. so that u(x) = Π(x − aj)cj and
v(x) satisfies ∀j, v(aj) = bj, deg(v) ≤ deg(u) and f − v2 is a multiple of u. Even
if this requirement is fullfilled what we obtain is still not necessarily the Mumford
representation yet, as we can still have deg(u) > g. However we can then just apply the
reduction procedure described below and get the [ũ, ṽ] associated to the reduced divisor.

Reduction procedure:

input: [u, v] representing the semi-reduced divisor

• set ũ = (f − v2)/u;

• set ṽ = −v mod ũ;

• multiply ũ by some constant to make it monic;

• if deg(ũ) > g go back to the first step.

output: [ũ, ṽ]

Example 0.7.17. Let C : y2 = x5 − 3x3 + 2x − 1 be a hyperelliptic curve over F5 of
genus 2. Let’s find the Mumford representation of

D = (0, 3) + (1, 3) + (2, 1)− 3 · ∞.

First we observe that D is semi-reduced as
∑
cj = 3 > g = 2. Then we find the

polynomials u, v
u(x) = x(x− 1)(x− 2) = x3 − 3x2 + 2x

and v(x) of degree less than deg(u) (so v(x) = ax2 + bx+ c) such that v(0) = 3, v(1) =
3, v(2) = 1, i.e.

v(x) = −x2 + x+ 3

We check that u divides f − v2:

f(x)− v2(x) = x5 − x4 − x3 − 4x = (x3 − 3x2 + 2x)(x2 + 2x+ 3) = u(x)(x2 + 2x+ 3).

Finally, we apply the reduction procedure described above

ũ =
(f − v2)

u
= (x2 + 2x+ 3);

ṽ = −v mod ũ = x2 − x− 3 mod ũ = 2x+ 4

and we are done since deg(ũ) = 2 ≤ g. The Mumford representation of D is

D = [x2 + 2x+ 3, 2x+ 4].

39

0.7 Hyperelliptic curves

We now use the Mumford representation to define a sum and inverse on J(C) where
C : y2 = h(x)y + f(x).

Theorem 0.7.18. (Inverse algorithm)
input:D = [u, v]
Take v′ = v − h
output: −D = [u, v′]

The original algorithm for the addition of two divisors in Mumford representation
was originally given by Cantor for the case h(x) = 0 and then extended by Neal Koblinz
so it can be used also on C defined over a field of characteristic two.

Theorem 0.7.19. (Cantor algorithm)
input: D1 = [u1, v1] e D2 = [u2, v2]

• set d = MCD(u1, u2, v1 + v2 + h) and find h1, h2, h3 such that

d = u1h1 + u2h2 + (v1 + v2 + h)h3;

• set v0 = (v2u1h1 + v1u2h2 + (v1v2 + f)h3)/d;

• set u = u1u2/d
2 and v ≡ v0 mod u;

• set u′ = (f − vh− v2)/u and v′ = −h− v mod u′

• u = u′ and v = v′

• make u monic by dividing it by some number;

• if deg(u) > g go back to the fourth step;

output: D1 +D2

Example 0.7.20. Le C : y2 = x5−3x3+2x−1 be the same hyperelliptic curve over F5 as
in the previous example. We show how to sum the divisors D1 = (0, 3)+(1, 3)+(2, 1)−3·∞
and D2 = (0, 2) + (2, 4)− 2 · ∞ using the Cantor algorithm.
We have already calculated the Mumford representation od D1 = [x2 + 2x+ 3, 2x+ 4].
D2 is a reduced divisor withu2(x) = x(x − 2) = x2 − 2x ans v2(x) of degree less than
two such that v2(0) = 2 and v2(2) = 4, i.e. v2(x) = x+ 2. So

D1 +D2 = [x2 + 2x+ 3, 2x+ 4] + [x2 − 2x, x+ 2].

• d = MCD(x2 + 2x+ 3, x2 − 2x, 3x+ 1) = 1, so we need to find h1, h2, h3 ∈ F5[x]
such that

d = (x2 + 2x+ 3)h1 + (x2 − 2x)h2 + (3x+ 1)h3.

By taking h1 = 0, h2 = 2, h3 = x+ 1 we obtain the desired equation.

• Now we compute

v0 = (2x+ 4)(x2 − 2x)2 + ((2x+ 4)(x+ 2) + x5 − 3x3 + 2x− 1)(x+ 1) =

= x6 + x5 − 3x4 + 3x3 + 2x2 + x+ 2.

40

0.7 Hyperelliptic curves

• we set

u = (x2 + 2x+ 3)(x2 − 2x) = x4 − x2 − x

v = v0 mod u = x2 − x+ 2

• finally,

u′ =
x5 − 3x3 + 2x− 1− (x2 − x+ 2)2

x4 − x2 − x
= x− 1

v′ = −(x2 − x+ 2) mod (x− 1) = 2

Since u′ is monic and of degree less than g = 2 we are done;

D1 +D2 = [x− 1, 2].

Observation 0.7.21. The Cantor algorithm holds for any hyperelliptic curve, whatever
its genus or whatever the field it is defined over. It is however not very efficient in
general, as it requires the Euclidean agorithm to solve the first step. However once
we have fixed the genus g of the curve we can implement it to be more efficient. In
particular, for curves of genus 2 and 3 we have polynomials u and v of small degrees, so
we can even get explicit addition formulas which are very fast. (espandere?)

For hyperelliptic curves of genus 2 we can also give a geometric idea of the sum
operation, as we did for elliptic curves, only we now use polynomials of degree three
instead of lines.
Indeed, let C : y2 + h(x)y = f(x) and consider J(C) and D1 = P1 + P2 − 2 · ∞,
D2 = Q1 + Q2 − 2 · ∞ two canonical representatives of equivalence classes in J(C).
There is exactly one polynomial of degree three containing the four points P1, P2, Q1, Q2,
let’s call it v(x).
In order to find C ∩ {y = v(x)} we solve v(x)2 + h(x)v(x) = f(x) which has degree six,
so besides the points we already had we also get other two x5 and x6 and then y5 = v(x5)
and y6 = v(x6). Therefore we have other two points R1 = (x5, y5) and R2 = (x6, y6)
that belong to the intersection of the curve with the polynomial v.
The divisor (y − v) of the curve C is then:

(y − v) = P1 + P2 +Q1 +Q2 +R1 +R2 − 6 · ∞ = D1 +D2 +R1 +R2 − 2 · ∞.

(y − v) is associated to a rational function and therefore it is a principal divisor. So

(y − v) = D1 +D2 +R1 +R2 − 2 · ∞ = 0;

but in then

D1 +D2 = w(R1 +R2 − 2 · ∞) = w(R1) + w(R2)− 2 · ∞

41

0.7 Hyperelliptic curves

0.7.2 Hyperelliptic curves over finite fields

Let’s first start with a finite field Fq for some q odd. Then the curve is of the form
C : y2 = f(x) with coefficients in Fq and no multiple roots in Fq. Let n = 2g + 1 be the
degree of f .

The hyperelliptic equivalent of Hesse’s theorem is called Weil theorem, and it gives
us an aproximation of the cardinality #JC(Fq) of J(C).

Theorem 0.7.22. (Weil) Let C be a hyperelliptic curve of genus g. Then

(
√
q − 1)2g ≤ #JC(Fq) ≤ (

√
q + 1)2g.

(insert proof?)

42

Bibliography

[1] J. Silvermann, The Arithmetic of Elliptic Curves, Second edition, Springer-Verlag
(2009).

[2] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Second
Edition, Chapman and Hall/CRC, 2008 (2008).

[3] M. Vidoni, Aspetti algebrici e geometrici della Crittografia Master thesis, University
of Trieste, (2016-2017).

[4] A. Alvarado, An exposition of Schoff’s Algorithm, https :
//mathpost.asu.edu/ sjgm/issues/2005spring/SJGMalvarado.pdf(2005)

[5] V. Miller, The Weil Pairing, and Its Efficient Calculation.J Cryptology 17, 235–261
(2004).

[6] R. Hartshorne, Algebraic Geometry, Springer-Verlag New York (1977).

43

