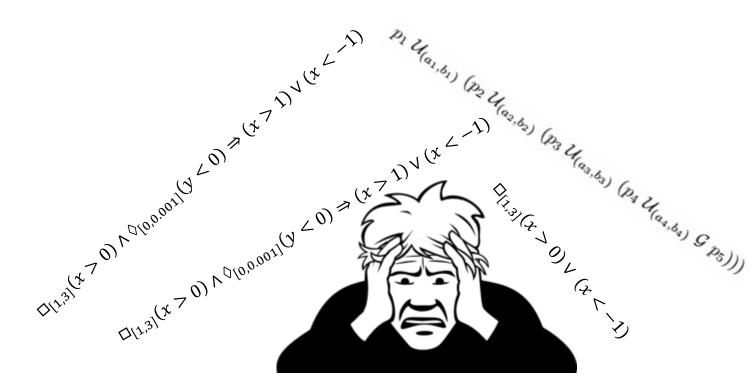
Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste Il Semestre 2019

Lecture 8: Temporal Logic



 $\square_{[1,3]}(x>0) \Rightarrow \lozenge_{[1,3]}((y>0) \land \lozenge_{[0,0.001]}(y<0) \Rightarrow (x>1) \lor (x<-1)$

Specifications/Requirements

- Specifications for most programs: functional
 - ▶ Program starts in some state q, and terminates in some other state r, specification defines a relation between all pairs (q,r) given $q,r \in Q$

- Specifications for reactive systems:
 - Program never terminates!
 - \blacktriangleright Starting from some initial state (say q), all infinite behaviors of the program should satisfy certain property

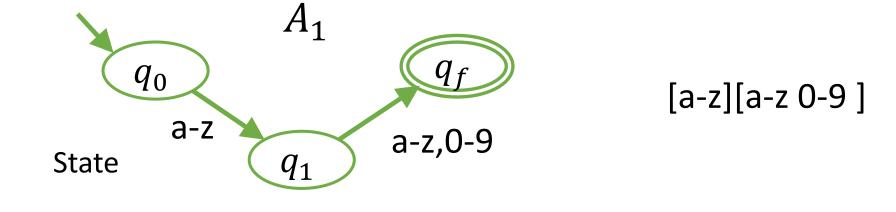
Detour to automata and formal languages

- Most programmers have used regular expressions
- Regular Expressions (RE) are sequences of characters that specify acceptable pattern of *finite* length
- **Example:**
 - ► [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by **one** lowercase letter or number
 - ► [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by *finitely* many numbers followed by a lowercase letter

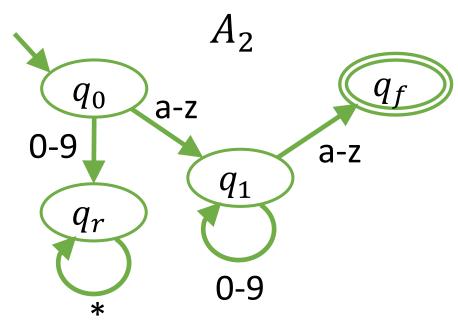
Finite State Automata (FSA)

Famous equivalence between FSA and regular expressions:

- For every regular expression R_i , there is a corresponding FSA A_i that accepts the set of strings generated by R_i .
- For every FSA A_i there is a corresponding regular expression that generates the set of strings accepted by A_i .



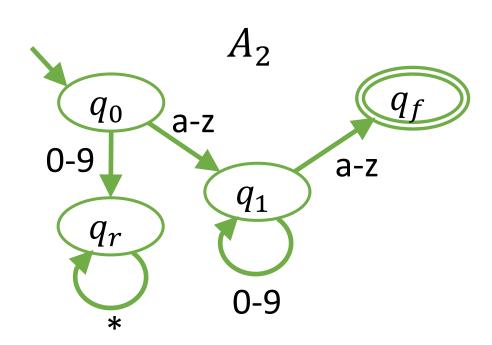
How does a Finite State Automaton work?



$$[a-z][0-9]*[a-z]$$

- Starts at the initial state q_0
 - In q_0 , if it receives a letter in a-z, goes to q_1 else, it goes to q_r
 - In q_1 , if it receives a number in 0-9, it stays in q_1 else, it goes to q_f (as it received a-z)
- In q_r , no matter what it gets, it stays in q_r
- $ightharpoonup q_f$ is an accepting state where computation halts
- Any string that takes the automaton from q_0 to q_f is accepted by the automaton

Language of a finite state automaton



- What strings are accepted by A_2 ?
 - ▶ ab, zy, s2r, q123s, u3123123v, etc.
- \blacktriangleright What strings are not accepted by A_2 ?
 - ▶ 2b, 334a, etc.
- The set of all strings accepted by A_2 is called its *language*
- The language of a finite state automaton consists of strings, each of which can be arbitrarily long, but finite

Temporal Logic

- Temporal Logic (literally logic of time) allows us to specify infinite sequences of states using logical formulae
- Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal Logic (LTL) for requirements of reactive systems: later selected for the 1996 Turing Award
- Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model checking algorithm, originally designed for checking Computation Tree Logic (CTL) properties of distributed programs

What is a logic in context of today's lecture?

Syntax: A set of operators that allow us to construct formulas from specific ground terms

Semantics: A set of rules that assign meanings to well-formed formulas obtained by using above syntactic rules

Simplest form is Propositional Logic

Propositional Logic

- Simplest form of logic with a set of:
 - atomic propositions:

$$AP = \{p, q, r, ...\}$$

▶ Boolean connectives:

$$\land, \lor, \neg, \Rightarrow, \equiv$$

Syntax recursively gives how new formulae are constructed from smaller formulae

Syntax of Propositional Logic

$$arphi ::= true \mid ext{the true formula}$$
 $p \mid p ext{ is a prop in AP}$
 $\neg \varphi \mid ext{Negation}$
 $\varphi \land \varphi \mid ext{Conjunction}$
 $\varphi \lor \varphi \mid ext{Disjunction}$
 $\varphi \Rightarrow \varphi \mid ext{Implication}$
 $\varphi \equiv \varphi \mid ext{Equivalence}$

Semantics

- Semantics (i.e. meaning) of a formula can be defined recursively
- Semantics of an atomic proposition defined by a *valuation* function ν
- Valuation function assigns each proposition a value 1 (true) or 0 (false), always assigns the true formula the value 1, and for other formulae is defined recursively

Semantics of Prop. Logic	
v(true)	1
$\nu(p)$	1 if $v(p) = 1$
$\nu(eg \varphi)$	$\begin{array}{l} 1 \text{ if } \nu(\varphi) = 0 \\ 0 \text{ if } \nu(\varphi) = 1 \end{array}$
$\nu(\varphi_1 \wedge \varphi_2)$	1 if $\nu(\varphi_1)$ = 1 and $\nu(\varphi_2)$ = 1, 0 otherwise
$\varphi_1 \lor \varphi_2$	$\nu(\neg(\neg\varphi_1 \land \neg\varphi_2))$
$\varphi_1 \Rightarrow \varphi_2$	$\nu(\neg \varphi_1 \lor \varphi_2)$
$\varphi_1 \equiv \varphi_2$	$\nu((\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1))$

Examples

- p: There is an upright bicycle in the middle of the road
- r: the bicycle has a rider
- $p \Rightarrow r$: If there is an upright bicycle in the middle of the road, the bicycle has a rider
- ightharpoonup q: There is car in the field of vision
- o_i : Car i is in the intersection
- $(o_1 \land \neg o_2) \lor (\neg o_1 \land o_2)$

Interpreting a formula of prop. logic

- $\nu: p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0.$ What is $\nu((p_1 \land p_2) \Rightarrow p_3)$?
- $\qquad \qquad \nu \big((p_1 \land p_2) \Rightarrow p_3 \big)$
- $\nu: p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0$. What is $\nu((p_1 \Rightarrow p_3) \land (p_2 \Rightarrow p_3))$
- $\qquad \qquad \nu \big((p_1 \Rightarrow p_3) \land (p_2 \Rightarrow p_3) \big)$
- Is this true? $\nu\left((p_1 \land p_2) \Rightarrow p_3 \equiv (p_1 \Rightarrow p_3) \land (p_2 \Rightarrow p_3)\right) = 1$? (For all valuations)?

Temporal Logic = Prop. Logic + Temporal Operators

- Propositional Logic is interpreted over valuations to atoms
- ► Temporal Logic is interpreted over traces/sequences/strings
- Trace is an infinite sequence of valuations
- ρ :

Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),...,(42,1,1), ...

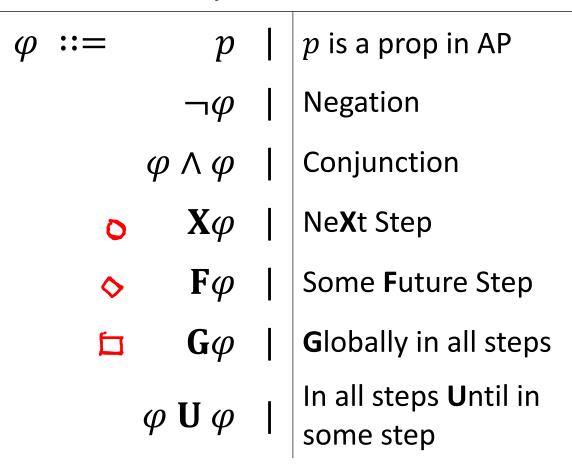
Linear Temporal Logic

- LTL is a logic interpreted over infinite traces
- ► Temporal logic with a view that time evolves in a linear fashion
 - Other logics where time is branching!
- Assumes that a trace is a discrete-time trace, with equal time intervals
- Actual interval between time-points does not matter: similar to rounds in synchronous reactive components
- ▶ LTL can be used to express safety and liveness properties!

LTL Syntax

- LTL formulas are built from propositions and other smaller LTL formulas using:
 - Boolean connectives
 - ► Temporal Operators
- ▶ Only shown \land and \neg , but can define \lor , \Rightarrow , \equiv for convenience

Syntax of LTL



LTL Semantics

- Semantics of LTL is defined by a valuation function that assigns to each proposition at each time-point in the trace a truth value (0 or 1)
- We use the symbo (read models) to show that a trace-point satisfies a formula
- ρ , $n \models \varphi$: Read as trace ρ at time n satisfies formula φ
- If we omit n, then the meaning is time 0. I.e. $\rho \models \varphi$ is the same as ρ , $0 \models \varphi$
- Semantics is defined recursively over the formula
- Base case: Propositional formulas, Recursion over structure of formula

Recursive semantics of LTL: I

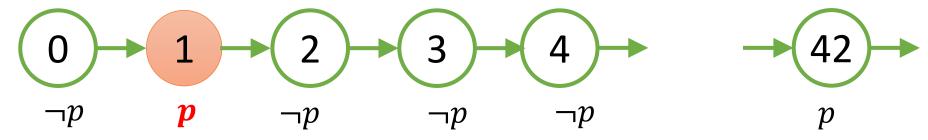
- ρ , $n \models p$ if $\nu_n(p) = 1$,
 - \blacktriangleright i.e. if p is true at time n
- ρ , $n \vDash \neg \varphi$ if ρ , $n \not\vDash \varphi$,
 - \blacktriangleright i.e. if φ is **not** true for the trace starting time n
- - \blacktriangleright i.e. if φ_1 and φ_2 **both hold** starting time n

Recursive semantics of LTL: II

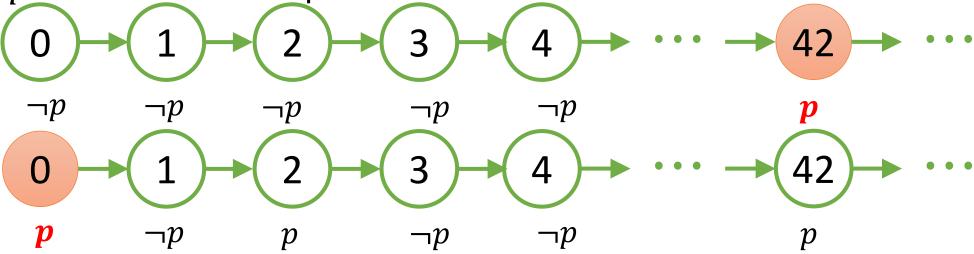
- ρ , $n \models \mathbf{X}\varphi$ if ρ , $n + 1 \models \varphi$
 - \triangleright i.e. if φ holds starting at the next time point
- ho, $n \models \mathbf{F} \varphi$ if $\exists m \geq n$ such that ρ , $m \models \varphi$
 - i.e. φ is true starting now, or there is some future time-point m from where φ is true
- $\rho, n \models \mathbf{G} \varphi \text{ if } \forall m \geq n : \rho, m \models \varphi$
 - i.e. φ is true starting now, and for all future time-points m, φ is true starting at m
- ho, $n \models \varphi_1 \mathbf{U} \varphi_2$ if $\exists m \geq n$ s.t. ρ , $m \models \varphi_2$ and $\forall \ell$ s.t. $m \leq \ell < n$, ρ , $\ell \models \varphi_1$
 - ightharpoonup i.e. $arphi_2$ eventually holds, and for all positions till $arphi_2$ holds, $arphi_1$ holds

Visualizing the temporal operators

 \triangleright **X**p : Ne**X**t Step

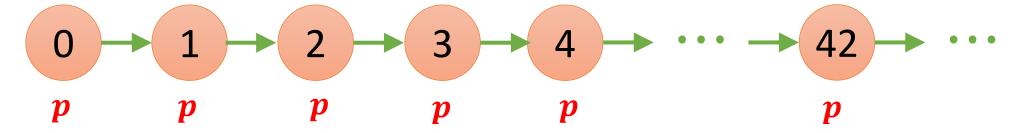


► **F***p* : Some **F**uture step

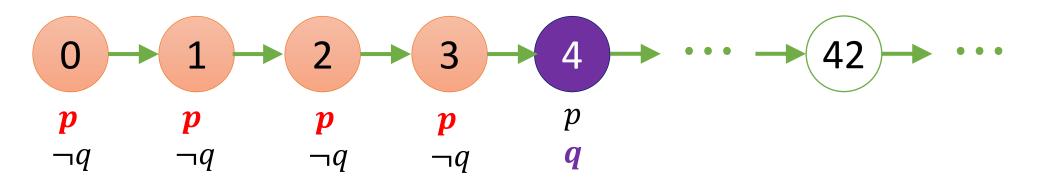


Visualizing the temporal operators

▶ $\mathbf{G}p$: Globally p holds

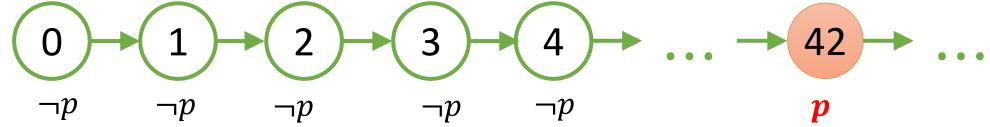


p U q: p holds Until q holds

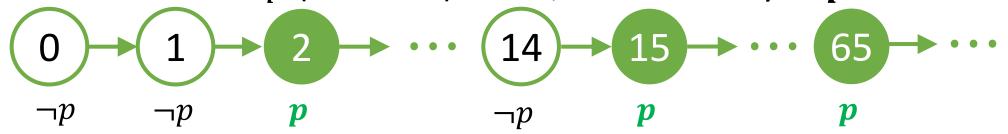


You can nest operators!

- What does XF p mean?
 - ▶ Trace satisfies $\mathbf{XF}p$ (at time 0) if at time 1, $\mathbf{F}p$ holds. I.e. p holds at some point strictly in the future

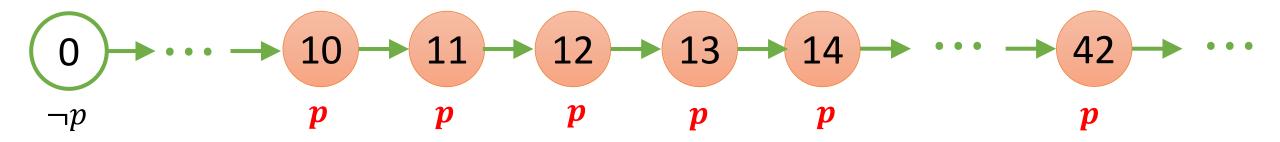


- What does GF p mean?
 - ightharpoonup Trace satisfies $\mathbf{GF}p$ (at time 0) if at n, there is always a p in the future

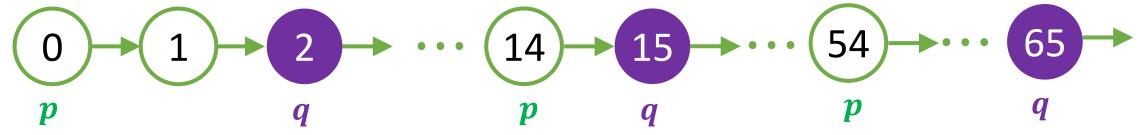


More operator fun

What does FGp mean?

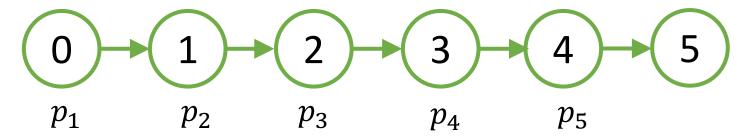


▶ What does $G(p \Rightarrow Fq)$ mean?



More, more operator fun

What does the following formula mean: $p_1 \wedge \mathbf{X}(p_2 \wedge \mathbf{X}(p_3 \wedge \mathbf{X}(p_4 \wedge \mathbf{X}p_5))$?



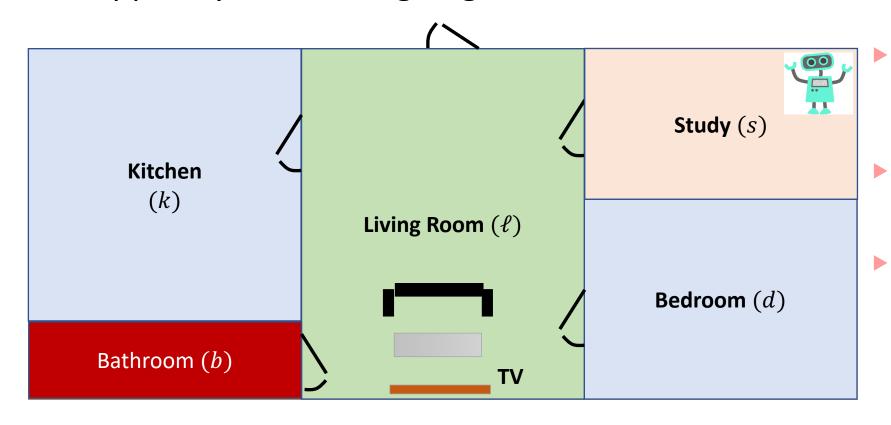
ls this true? $\mathbf{F}(p \land q)$ is the same as $\mathbf{F}p \land \mathbf{F}q$?

Operator duality and identities

- $\mathbf{F}\varphi \equiv \neg \mathbf{G} \neg \varphi$
- $\mathbf{F}(\varphi \lor \psi) \equiv \mathbf{F}\varphi \lor \mathbf{F}\psi$
- $\mathbf{F}\mathbf{F}\varphi \equiv \mathbf{F}\varphi$
- $\mathbf{G}\mathbf{G}\varphi \equiv \mathbf{G}\varphi$
- $ightharpoonup \mathbf{F}\mathbf{G}\mathbf{F}\varphi \equiv \mathbf{G}\mathbf{F}\varphi$
- $ightharpoonup GFG\varphi \equiv FG\varphi$

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions



Whenever the robot visits the kitchen, it should visit the bedroom after.

$$\mathbf{G}(k_r \Rightarrow \mathbf{F} d_r)$$

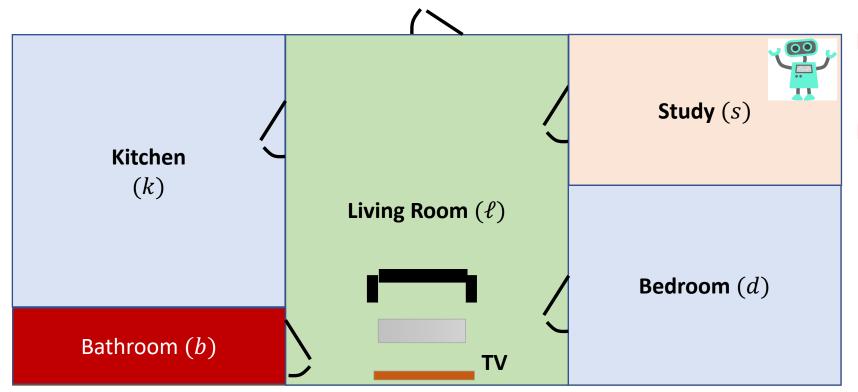
Robot should never go to the bathroom.

$$\mathbf{G} \neg b_r$$

The robot should keep working until its battery becomes low working **U** low_battery

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions



The robot should repeatedly visit the living room

GF ℓ

Whenever the TV is on and the living room has no person in it, then within three steps, the robot should turn off the TV

o(r): room occupied by a person

$$\mathbf{G}\left((\neg o(\ell) \land TV_{on}) \Rightarrow \mathbf{F}^{\leq 3}(TV_{off})\right)$$

$$\mathbf{F}^{\leq 3}\varphi \equiv \varphi \vee \mathbf{X}\varphi \vee \mathbf{X}\mathbf{X}\varphi \vee \mathbf{X}\mathbf{X}\mathbf{X}\varphi$$

LTL is a language for expressing system requirements

nat
$$x := 0$$
; bool $y := 0$

A:
$$x := x + 1$$

B: even(x)
$$\rightarrow$$

$$y := 1-y$$

- So far we have seen how we can express behaviors of individual system traces using LTL
- A system M starting from some initial state q_0 satisfies a LTL requirement φ if **all system behaviors** starting in q_0 satisfy the requirement φ
- Denoted as $M, q_0 \models \varphi$
- E.g. a system is safe w.r.t. a safety requirement φ if all behaviors satisfy φ
- ▶ Does (Blinker, $(x\mapsto 0, y\mapsto 0)$) \models $G(x\geq 0)$?

Processes & Fairness

nat x := 0; bool y := 0

A: x := x + 1

B: even(x) \rightarrow

y := 1-y

- ► Liveness property: \mathbf{F} (x \geq 10)
 - Is this property guaranteed to hold?
 - ▶ No, task A may be executed less than 10 times.
- Liveness Property: F y (eventually y is true)
 - Is this property guaranteed to hold?
 - ▶ No, task B may never be selected for execution!
- But, this seems like a very unrealistic or broken scheduler!
- For infinite executions involving multiple tasks, it is important for the execution to be *fair* to each task

Weak vs. Strong fairness

nat
$$x := 0$$
; bool $y := 0$

A: x := x + 1

B: even(x) \rightarrow

y := 1-y

- A fairness assumption is a property that encodes the meaning of what it means for an infinite execution to be fair with respect to a task.
- Weak fairness: If a task is persistently enabled, then it is repeatedly executed.
 - ▶ I.e. if after some point the task guard is always true, then the task is infinitely often executed.
- Strong fairness: If a task is repeatedly enabled, then it is repeatedly executed.
 - ▶ I.e. if the task guard is infinitely often true, then the task is infinitely often executed.

Expressing fairness assumptions in LTL: I

```
nat x := 0; bool y := 0
{A,B,Ø} taken := \emptyset
```

```
A: x := x + 1; taken:= A
B: even(x) →
y: = 1-y; taken := B
```

- Fairness assumptions can be expressed in LTL!
- Add a new variable taken that takes value 'A', 'B'
- Weak fairness:wf(A) := (**FG** $guard_i$) \Rightarrow (**GF**(taken = T_i))
- Task A: $guard_A$ is true, so this simplifies to: wf(A) := **GF**(taken=A)
- Task B: $wf(B) := FG (even(x)) \Rightarrow GF (taken=B)$
- Does (wf(A) \land wf(B)) ⇒ **F** (x ≥ 10)?
 - Yes!
- Does $(wf(A) \land wf(B)) \Rightarrow F y$?
 - ► No!

Expressing fairness assumptions in LTL: II

```
nat x := 0; bool y := 0

\{A,B,\emptyset\} taken := \emptyset

A: x := x + 1; taken := A

B: even(x) \rightarrow

y := 1-y; taken := B
```

Blinker

- Strong fairness: (**GF** $guard_i$) \Rightarrow (**GF**(taken = T_i))
- Task A: $guard_A$ is true, so this simplifies to: sf(A) := GF(taken=A)
- ► Task B: sf(B) := GF (even(x)) $\Rightarrow GF$ (taken=B)
- ▶ Does $(sf(A) \land sf(B)) \Rightarrow F(x \ge 10)$?
 - Yes!
- ► Does (sf(A) \land sf(B)) \Rightarrow **F** y?
 - Yes!

If a process satisfies a liveness requirement under strong fairness, it satisfies it under weak fairness: strong fairness is a **stronger formula** than weak fairness

Types of Specifications/Requirements

- Hard Requirements: Violation leads to endangering safety-criticality or mission-criticality
 - Safety Requirements: system never does something bad
 - Liveness Requirements: from any point of time, system eventually does something good
- Soft Requirements: Violations lead to inefficiency, but are not critical
 - ► (Absolute) Performance Requirements: system performance is not worst than a certain level
 - (Average) Performance Requirements: average system performance is at a certain level

Other kind of requirements

- Security Requirements: system should protect against modifications in its behavior by an adversarial actor
 - ► Failure to satisfy security requirements may lead to a hard requirement violation
- Privacy Requirements: the data revealed by the system to the external world should not leak sensitive information
- These requirements will become increasingly important for autonomous CPS, especially as IoT technologies and smart transportation initiatives are deployed!