
Metastases, or the consequences of their treatment, are 
the greatest contributors to deaths from cancer. Clinical 
metastatic disease results from several selective forces. 
Pathways that fuel initial tumorigenesis, described as 
the ‘trunk’ of a cancer evolutionary tree, can also endow 
tumour cells with metastatic properties and de novo drug 
resistance. Two types of ‘limb’ pathway emerge from the 
tree trunk: events that induce acquired resistance to ther-
apy and pathways that induce or accelerate metastasis 
to distant organs1. Cancer therapy has largely concen-
trated on druggable targets in the trunk tumorigenesis 
pathways, such as receptor tyrosine kinases, and uses 
sequential and combination therapies to minimize drug 
resistance. Metastasis-related limbs of the cancer evolu-
tionary tree lag far behind in terms of identifying and 
drugging targets, validating their efficacy in rationally 
designed clinical trials and incorporating these therapies 
into the standard of care (SOC). Many of the metastasis- 
directed therapies under development are cytostatic, 
not cytotoxic, in preclinical experiments, making their 
clinical validation problematic. Overt scepticism exists 
in the pharmaceutical industry and some academic 
quarters about the concept of drugging metastasis. 
This Review challenges this notion with the hypothesis 
that our emerging understanding of metastasis, in par-
ticular the last step, metastatic colonization, will identify 
druggable pathways that will enhance the efficacy of 
current treatments.

What is metastasis? Genomically, analyses of matched 
sets of a patient’s primary tumour and distant metas-
tasis reveal mutations common to both and, almost 
universally, mutations that are distinct to a metastasis. 
Functionally, tumour cells begin metastasis by invasion of 
the tissue surrounding the primary tumour. Tumour cells 
enter the bloodstream, either directly or via the lymphat-
ics system; traversal of the bloodstream most frequently 

ends in arrest at the first capillary bed encountered. 
Tumour cells then extravasate the bloodstream to land on 
‘foreign soil’. Paget2, 100 years ago, described metastasis 
in botanical terms as the interaction of ‘seeds’ (tumour 
cells) and ‘congenial soil’ (the metastatic microenviron-
ment). How a foreign tissue becomes congenial contrib-
utes to metastatic colonization, that is, the progressive 
outgrowth of tumour cells at the distant site. The meta-
static soil can be altered by bone marrow-derived cells 
before tumour cell arrival, termed the premetastatic 
niche. Eventually the cellular composition, immune sta-
tus, blood supply, extracellular matrix (ECM) and virtu-
ally every other aspect of the metastatic site can be altered 
to favour colonization.

Besides the component pathways, other attributes 
of metastasis are important considerations in its ther-
apeutic targeting. Multiple mechanistic pathways can 
mediate each of the requisite steps of metastasis. Like the 
repertoire of receptor tyrosine kinases, in which inhibi-
tion of one pathway can be overcome by activation of 
another kinase or a downstream mutation, inhibition 
of one metastasis pathway may be insufficient. Metastasis 
can pause part way — a state known as dormancy3. Do 
dormant metastatic cells require distinct therapeutic 
agents? Pathways mediating metastasis can be opera-
tive in multiple organs or they can be more site specific. 
Site-specific metastasis trials are becoming more com-
mon for bone and brain lesions. The metastatic process 
may begin early or late in primary tumour formation4, 
and may require a brief period or decades to complete. 
These factors may influence patient selection and trial 
design. So when, in the patient’s clinical course, do we 
most effectively halt metastasis? The fuel for metastasis 
may be genomic instability in all of its forms: metastases 
stand at the end of a progressive loss of the checks on 
normal chromosome stability, DNA repair and regulated 
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Standard of care
(SOC). Also known as best 
practice, treatment for each 
type and stage of cancer that is 
accepted in general practice by 
health care professionals, and 
iterated in guidelines such as 
those of the US National 
Comprehensive Cancer 
Network.

Metastatic colonization
The progressive growth of a 
lesion in a foreign location.

Invasion
Cancer cells traverse normal 
tissues in groups or as single 
cells, using reversible adhesion, 
proteolytic destruction 
and motility.

Genomic instability
A state of high frequency of 
mutations in a cell, including 
nucleic acid sequences, 
chromosomal rearrangements 
and aneuploidy.

Targeting metastasis
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Abstract | Tumour metastasis, the movement of tumour cells from a primary site to progressively 
colonize distant organs, is a major contributor to the deaths of cancer patients. Therapeutic goals 
are the prevention of an initial metastasis in high-risk patients, shrinkage of established lesions 
and prevention of additional metastases in patients with limited disease. Instead of being 
autonomous, tumour cells engage in bidirectional interactions with metastatic 
microenvironments to alter antitumour immunity, the extracellular milieu, genomic stability, 
survival signalling, chemotherapeutic resistance and proliferative cycles. Can targeting of these 
interactions significantly improve patient outcomes? In this Review preclinical research, 
combination therapies and clinical trial designs are re-examined.
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a  Localized disease

b  Regional disease

c  Distant disease

Localized disease
In the clinic, disease that is 
limited to the tissue or organ in 
which it began.

Regional disease
Cancer that has grown 
beyond the original tumour 
and spread to nearby lymph 
nodes or tissues.

gene expression. Genomic instability can be found in a 
metastatically competent subclone of a primary tumour 
and/or can appear in the metastatic lesions5–9. Genomic 
instability is hypothesized to create many cellular 
pheno types, any one of which may have all the neces-
sary properties to complete the metastatic process. Can 
therapeutic targeting of processes that control genomic 
stability improve outcome? Few of the tumour cells that 
originally invade the surrounding tissue of the primary 

tumour complete the metastatic process10; however, those 
that do go on to kill the patient. Can we identify the meta-
statically competent tumour cells or their products in the 
circulation as biomarkers or end points for earlier inter-
vention? These and other complexities of metastasis must 
be thoughtfully confronted to produce successful drugs.

This Review identifies functional pathways of metas-
tasis that are potentially efficacious for the prevention 
and treatment of metastases. It discusses the preclinical 
credentials that are required of lead antimetastatic agents. 
Finally, it looks into how we demonstrate an antimeta-
static outcome in the clinic within reasonable time, 
patient and funding limits and how these drugs could be 
incorporated into the existing SOC.

Where are we?
Patient survival. For the overwhelming majority of cancer 
patients, a diagnosis of metastatic disease indicates a ter-
minal illness. Although cancer death rates have declined, 
do patients with metastatic disease share equally in the 
improvements? Cancer incidence and 5-year survival 
data11,12 provide a broad impression (FIG. 1). Patients initially 
diagnosed with localized disease often experience excel-
lent 5-year survival (FIG. 1a).Those with regional disease at 
diagnosis (for example, patients with invasion of cancer 
to the regional lymph nodes) have lower survival overall, 
but, excluding patients with bladder or prostate cancer, 
patients often have survival gains between the 2005 and 
2015 reporting periods (FIG. 1b). Only 4 of the 12 cancer 
sites assessed (colorectal, oesophageal, lung and oral) 
were associated with gains in the survival of patients with 
distant metastatic disease at diagnosis, and only 1 site 
demonstrated a survival gain of more than 3% (FIG. 1c). 
Alarmingly, the 5-year survival of several types of cancer 
(including ovarian, prostate and uterine cancer) decreased 
between the two reporting periods. These trends could 
be debated because newer immunotherapy and molecular 

Figure 1 | Few improvements in 5‑year survival for 
cancer patients initially diagnosed with metastatic 
disease. The percentage of patients surviving for 5 years is 
plotted based on their initial disease staging of localized 
(organ confined), regional (invasion to lymph nodes) or 
distant (metastases detected by imaging) using the US 
National Cancer Institute Surveillance, Epidemiology and 
End Results (SEER) registries11,12. Data covering 1995–2000 
and 2004–2010 were reported in 2005 and 2015, 
respectively, to determine where improvements were 
attained. With few exceptions, 5-year survival after a 
diagnosis of localized disease was excellent; where it was 
low in 2005, gains were observed in 2015. Regional disease 
survival rates fluctuated by cancer type, but the majority 
saw increased survival in the later reporting period. 
Patients with metastatic disease at diagnosis had lower 
overall 5-year survival rates, with fewer than 20% of 
patients surviving after 5 years for half of the cancer sites. 
The increase in survival between the 2005 and 2015 
reporting periods was under 3% in three of the four cancer 
types for which increased survival was seen. For each type, 
stage categories may not total 100% because of 
insufficient information for all cases. Beneath each plot is 
the incidence of each stage at diagnosis for the reporting 
period. *Localized and regional data were combined.
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Overall survival
(OS). The length of time, either 
from disease diagnosis or the 
beginning of treatment, until 
death.

Progression-free survival
(PFS). A metric of patient 
response to therapy, measured 
from the time of treatment 
initiation or clinical trial 
enrolment until either 
detectable lesions increase, 
based on standard 
measurement criteria,  
or the patient dies.

Adjuvant trials
Clinical trials to test whether 
an additional treatment after 
primary therapy will lower the 
risk of cancer recurrence.

Pathological complete 
response
(pCR). The absence of residual 
invasive tumour cells by 
microscopic examination of 
resected tissue after 
neoadjuvant therapy.

Neoadjuvant trial
In cancer, a trial testing a 
potential therapy before the 
‘definitive’ treatment, such as 
primary tumour surgery.

advances were not incorporated. Recent immuno therapies 
have extended survival in melanoma13, and new androgen 
receptor inhibitors have improved the survival of patients 
with metastatic prostate cancer14. However, independent 
analyses of survival in the metastatic setting for specific 
cancers paint a similarly dismal picture. Over a 30-year 
period, results of randomized clinical trials failed to show 
sustained evidence of increased survival of patients with 
metastatic breast cancer15. Modest gain or no gain in sur-
vival was reported for metastatic gastric and pancreatic 
cancers16,17. These reports also include data for patients 
who were diagnosed with non-metastatic disease and 
then became metastatic, in contrast to the more lim-
ited data from the Surveillance, Epidemiology and End 
Results (SEER) programme of the US National Cancer 
Institute. Current approaches to metastatic disease are 
not improving satisfactorily.

Metastasis as an uninvited aspect of traditional drug 
development. Most of the cancer drugs approved by 
the US Food and Drug Administration (FDA) or other 
regulatory agencies were preclinically validated as anti-
tumorigenic and were initially tested in clinical trials that 
enrolled patients with metastatic disease. These trials 
recruit patients with measurable metastatic disease and 
ask whether a treatment will shrink established lesions 
(responses) or extend patient overall survival (OS) or 
progression-free survival (PFS). Success in the metastatic 
setting often sets in motion the next hypothesis: that the 
drug will be effective in preventing metastasis. Many of 
these drugs were not initially tested in metastatic pre-
clinical models. It was assumed either that drugs that 
target tumour growth would also target metastasis, or 
that interrupting distinct metastatic limbs of the can-
cer evolutionary tree would not be necessary in the face 
of overwhelming growth inhibition. In the setting of 
adjuvant trials, patients with evidence of aggressive disease 
but no identifiable distant metastases are treated to pre-
vent metastatic colonization, with disease recurrence, OS 
and PFS as end points. These trials assume that cancer is a 
systemic disease. The adverse effect profile is very impor-
tant, as the patient population is healthier than patients 
with metastatic disease.

Where metastasis preclinical data have been reported 
in the traditional drug development process, they have 
often muddied the waters. Different androgen deprivation 
therapies exerted disparate effects on invasion and metas-
tasis in prostate cancer by engaging distinct metastasis- 
associated signalling pathways18. Several approved drugs, 
including mutant BRAF inhibitors19, paclitaxel20, cis-
platin21, anti-androgens22, everolimus23 and sunitinib24, 
have stimulated metastasis in preclinical models. These 
stimulatory effects may result from systemic toxic effects, 
initiating wound healing-type recovery that is laced with 
growth factors used by metastasizing tumour cells25. 
Preclinical metastasis data are often directed at identifying 
resistance mechanisms and potential rational treatment 
combinations26,27.

Although progress in the adjuvant setting, and to a 
lesser extent the metastatic setting, is undeniable, would 
the identification of therapies that halt metastasis improve 

outcomes for patients? Would we select different lead 
agents or combinations by incorporating preclinical data 
on metastatic progression?

A metastasis drug development report card. Given the 
potential contributions of metastasis to drug develop-
ment and patient outcomes, how have the several recent 
attempts to incorporate metastasis pathways and end 
points into drug development fared? TABLE 1 summarizes 
the preclinical and clinical experience for four potential 
antimetastatic drugs. Denosumab, a humanized monoclo-
nal antibody that binds receptor activator of NF-κB ligand 
(RANKL; also known as TNFSF11), interrupts the ‘vicious 
cycle’ of bone metastasis colonization. In the vicious cycle, 
tumour cells arriving in the bone produce factors that acti-
vate bone-forming osteoblasts to produce RANKL, which 
in turn activates bone-destroying osteoclasts to degrade 
bone. As it is destroyed, the bone matrix releases bound 
factors such as transforming growth factor-β (TGFβ), acti-
vating tumour cells and reinitiating the cycle28. Preclinical 
data demonstrated that denosumab hit its intended target 
in healthy mice29. In the metastatic setting, trials of deno-
sumab enrolled patients with bone metastases and used an 
unusual metastasis-relevant end point, a skeletal-related 
event (SRE). This is a deleterious event such as a bone 
fracture from expansion of an existing metastasis or a new 
metastasis. Significant reductions in SREs for denosumab 
compared with SOC were observed for both breast and 
prostate cancer30,31. No difference was observed in the 
traditional OS end point. Denosumab was then tested 
in adjuvant trials and was shown to delay initial bone 
metastases in patients with castration-resistant prostate 
cancer or patients with postmenopausal breast cancer on 
aromatase-inhibitor therapy32,33.

The responses to bevacizumab, a humanized antibody 
to vascular endothelial growth factor (VEGF) — which 
is important in angiogenesis  —  have been mixed. 
Angiogenesis is hypothesized to contribute to metastatic 
colonization by providing new capillaries to deliver oxy-
gen and nutrients34. VEGF is a growth and permeability 
factor for capillary endothelial cells. Preclinically, beva-
cizumab was initially tested on corneal angiogenesis, 
multiple primary tumours and, occasionally, metastasis 
models. Trials were conducted in the initial or refractory 
(after progression on other therapy) metastatic settings 
with survival end points. Bevacizumab is approved by the 
FDA for several cancers (FDA approval for bevacizumab), 
although the absolute increases in survival have been 
nominal in ovarian35,36 and refractory non-small-cell 
lung cancer37. Conditional approval was revoked in 
breast cancer38 and other cancers were negative for sur-
vival end points39,40. Adjuvant trials were negative in 
triple-negative breast cancer41 and colorectal cancer42,43. 
The lack of adjuvant efficacy in breast cancer contrasts 
with an increase in pathological complete response (pCR), 
or the complete disappearance of a primary tumour, in a 
neoadjuvant trial (treatment before surgery) using a similar 
patient population44,45.

What is behind these mixed results? Preclinical data 
indicate that bevacizumab can initiate a vascular remod-
elling response, to normalize vessels and render them 
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resistant to the drug46; bevacizumab also stimulates 
compensatory pathways, increasing tumour cell motility 
and invasion47,48. Other anti-angiogenic regimens shrink 
primary tumours but enhance metastasis in response to 
the resultant hypoxia24,49–51. Bevacizumab seems to have 
been a good prospect for targeting tumours but was it 

an optimal one for targeting metastases? Additional 
contributing factors include the existence of other func-
tional pathways that regulate angiogenesis, for instance, 
the angiopoietin 2 (ANGPT2) pathway involved in vessel 
stabilization52. It will be of interest to determine whether 
targeting multiple aspects of angiogenesis provides a 

Table 1 | Preclinical and clinical history of four metastasis‑directed drug development efforts

Description Pathway Preclinical validation Pivotal trials and end points Outcomes

Denosumab

Monoclonal 
antibody to 
RANKL

Nature Reviews | Cancer

Tumour 
cell

Bone

Osteoblast Osteoclast

RANKL RANK

Denosumab

RANKL activates osteoclasts 
and promotes bone destruction; 
denosumab reduced bone 
resorption in mice expressing 
human RANKL29

SREs* in metastatic setting; 
adjuvant trials used time 
to first bone metastasis or 
fracture30–33

FDA approved for 
prevention of SREs 
in solid tumours; 
approved as adjuvant 
therapy in prostate 
cancer

Bevacizumab

Monoclonal 
antibody to 
VEGF

Nature Reviews | Cancer

Angiogenesis

VEGFR

VEGF

VEGFVEGF

VEGF

Bevacizumab
• Bevacizumab inhibited 

corneal angiogenesis and 
lymphangiogenesis244

• In multiple cancer xenograft 
models, bevacizumab reduced 
primary tumour growth rates 
and, in some studies, enhanced 
survival. Reduced angiogenesis 
and vessel normalization was 
observed245

• Prevention or, less frequently, 
abrogation of metastasis246,247

• Recurrent ovarian cancer, 
PFS35,36

• Metastatic colorectal 
cancer, OS260,261

• Metastatic or resistant 
HER2+ breast cancer, PFS38

• Metastatic renal cancer, 
PFS262

• Glioblastoma, OS, PFS263

• Advanced lung cancer, OS37

• Adjuvant therapy in 
triple-negative breast 
cancer, DFS41

• FDA approved for 
resistant ovarian, 
cervical and 
colorectal cancers, 
glioblastoma, 
also advanced or 
metastatic lung, 
colorectal and renal 
cancers

• Revoked for 
metastatic breast 
cancer

• Negative trials for 
first-line treatment of 
glioblastoma

Cilengitide

αvβ3 
and αvβ5 
integrin 
peptide 
inhibitor

Nature Reviews | Cancer

Tumour cell Endothelial cell

• Adhesion
• Motility
• Viability

• Angiogenesis
• Viability

αv integrin

Cilengitide ECM • Stabilization of glioma growth 
and angiogenesis. Synergistic 
inhibition of glioma with TMZ61–64

• Synergy with therapeutics in 
melanoma primary tumour 
growth63, synergy with radio- 
immunotherapy in breast cancer 
tumour growth248

• Inhibition of metastasis62

• Synergy with verapamil increased 
angiogenesis and reduced 
metastasis249

• Phase III CENTRIC EORTC, 
with radiation therapy and 
TMZ, for glioma, OS. Newly 
diagnosed glioma, same 
combination, recurrence65

• Phase II trials in melanoma  
and lung and prostate 
cancers, PFS66–68

All advanced trials were 
negative

Dasatinib and saracatenib

SRC 
kinase and  
BCR–ABL 
kinase 
inhibitor

Nature Reviews | Cancer

SRC
Tumour 
cell

• Dasatinib
• Saracatinib

• FAK
• Actin 

cytoskeleton

Integrins

ECMRTK

Proliferation

• Inhibition of CML models250

• Inhibition of primary tumour 
growth in multiple model 
systems, as monotherapy or in 
combination251–253

• Prevention of metastasis 
in multiple cancer model 
systems254–258, but not 
osteosarcoma259

• Inhibition of prostate cancer 
growing in bone and bone 
remodelling82,83

• Cytogenetic response end 
points for CML

• Response for advanced 
solid tumours71–80

• OS in Phase III prostate 
cancer87

• FDA approved for 
CML and resistant 
ALL

• Discontinued in 
advanced lung, 
ovarian, colorectal 
and breast cancers

• Negative in prostate 
cancer Phase III trial 
with docetaxel

• Multiple adjuvant 
trials terminated

ALL, acute lymphoblastic leukaemia; CML, chronic myelogenous leukaemia; DFS, disease-free survival; ECM, extracellular matrix; FAK, focal adhesion kinase;  
FDA, US Food and Drug Administration; OS, overall survival; PFS, progression-free survival; RANK, receptor activator of NF-κB; RANKL, RANK ligand; RTK, receptor 
tyrosine kinase; TMZ, temozolomide; VEGF, vascular endothelial growth factor. *Skeletal-related event (SRE) captures the deleterious effects of new lesions and 
progression of existing lesions to cause patient morbidity.
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Half-life
In pharmacology, the time it 
takes for a compound to fall 
to one-half of its initial 
steady-state level.

G-protein-coupled receptors
A family of integral membrane 
receptors that sense 
extracellular signals and 
activate intracellular signalling 
by binding to G proteins.

Focal adhesion kinase
(FAK). Cytosolic non-receptor 
protein kinase typically linking 
extracellular matrix with the 
actin network, regulating 
cell adhesion, viability 
and spreading.

Stable disease
A metric of patient response 
to therapy, in which 
measurable lesions are neither 
increasing nor decreasing 
based on standard 
measurement criteria.

Maximum tolerated dose
(MTD). The highest dose of 
a drug or treatment that 
does not cause unacceptable 
side effects.

more substantial survival advantage. Also, the require-
ment for angiogenesis in metastasis varies53,54. In some 
models angiogenesis is unnecessary — co-option of the 
existing vasculature is sufficient for metastasis, or tumour 
cells induce a vascular network55–57.

Cilengitide, a cyclic peptide inhibitor of αvβ3 and 
αvβ5 integrins, has been considered as a prospective can-
didate for metastasis therapeutics. Integrins are receptors 
that consist of one each of several possible α and β sub-
units and they mediate the adhesion of tumour cells to 
the ECM to affect angiogenesis, viability, invasion and 
colonization58–60. Preclinical work demonstrated preven-
tion of metastasis by cilengitide as monotherapy61,62 or in 
combination with other agents63, as well as prevention of 
glioma growth and invasion64. Clinical development pro-
ceeded through Phase III trials in glioma and were neg-
ative for an OS end point65. As glioma progression does 
not involve distant metastasis, these trials could poten-
tially be dismissed. However, Phase II trials were con-
ducted in patients with bone metastatic prostate cancer, 
metastatic melanoma and advanced non-small-cell lung 
cancer without showing significant clinical activity66–68. 
Failure here may be due to simple drug development 
principles rather than an absence of a role of these inte-
grins in the metastasis pathway, as the compound had a 
very short half-life in vivo.

Another set of disappointments were the SRC inhib-
itors dasatinib and saracatinib. Dasatinib inhibits the 
BCR–ABL fusion protein underlying chronic myelo-
genous leukaemia (CML) and the SRC non- receptor 
kinase. Saracatinib is an independent inhibitor of the 
same targets. SRC is phosphorylated downstream 
of multiple receptors, including those for adhe-
sion and cytokines, as well as receptor tyrosine kinases 
and G-protein-coupled receptors. SRC signalling is best 
described in tumour motility and invasion, in which 
activated SRC forms a complex with focal adhesion kinase 
(FAK, also known as PTK2), forming focal adhesions, 
lamellipodia and stress fibres, and causing contraction 
of the actin cytoskeleton; roles in angiogenesis, prolif-
eration and survival are also documented. SRC activa-
tion stimulated metastasis in multiple model systems69. 
Metastasis was significantly prevented when dasatinib or 
saracatinib was given early and continuously in model 
systems, including pancreatic, thyroid, prostate, uro-
thelial, ovarian and gastric cancers, melanoma, multiple 
myeloma and fibrosarcoma, and synergized with sev-
eral other drugs. Regression of lesions was infrequently 
demonstrated. In breast cancer, primary tumours 
regressed using a dasatinib combination with rapa-
mycin, an mTOR inhibitor. In this same model, dasatinib 
reduced the number of lung metastases, but no additive 
or synergistic effect was observed with the dasatinib plus 
rapamycin combination70.

On the basis of this substantial preclinical evi-
dence, SRC inhibition was anticipated to be a block-
buster antimetastatic agent. Dasatinib is approved 
by the FDA for treatment of CML and relapsed acute 
lympho blastic leukaemia based on its BCR–ABL kinase 
inhibitory activity (FDA approval for dasatinib), but its 
clinical activity in metastatic disease has been nothing 

but disastrous. Saracatinib development was discontin-
ued by its manufacturer. The overwhelming majority of 
the trials conducted were in the metastatic setting with 
response and PFS as end points, and both drugs some-
times resulted in long-term stable disease. As mono-
therapy, saracatinib and dasatinib were both negative 
in trials of hormone receptor-negative breast cancer71,72, 
hormone receptor-positive or HER2 (also known as 
ERBB2)-positive advanced breast cancer73, recurrent or 
persistent ovarian cancer74, refractory colorectal can-
cer75, advanced melanoma76,77, extensive stage small-
cell lung cancer78, recurrent or metastatic head and 
neck cancer79 and metastatic or locally advanced gastric 
cancer80. Combination trials in similar settings were 
negative, as was a trial using a gene signature of SRC 
activation to personalize trial enrolment81. Bone metas-
tasis in castration-resistant prostate cancer provides 
another example: in mice, saracatinib in combination 
with docetaxel inhibited bone turnover, prevented bone 
metastasis82 and inhibited growth of tumour implanted 
into bone83. In patients with refractory disease, dasatinib 
monotherapy was negative for a response end point84; 
when administered to chemotherapy-naive men, dasati-
nib produced stable disease and reductions in bone turn-
over markers in urine85,86. The combination of dasatinib 
and docetaxel was negative for an OS end point87.

These data actually raise a wealth of potential 
reasons why SRC inhibition may still be a good anti-
metastatic agent. First, the overwhelming majority of 
the preclinical data indicated a prevention of metastasis, 
not a shrinkage of overt lesions. This would be tested in 
an adjuvant trial. The trial end points may be wrong: for 
the prostate cancer bone metastasis trials, the SRE end 
point that was successfully applied to the denosumab 
trials was not used. The patient populations used may 
have been inappropriate for the trial: the role of SRC 
inhibition in chemoresistant disease was not estab-
lished preclinically, but this patient population was fre-
quently enrolled; the prostate cancer trials using earlier, 
chemotherapy-naive patients were the most promising. 
Second, drug combination studies in general may be 
problematic. Preclinical studies are often conducted 
using a low dose of both drugs to see a statistical inter-
action. In the clinic, both drugs are used at or near the 
maximum tolerated dose (MTD). Is this the same? Third, 
standard drug development features of the SRC inhib-
itors may have been important; substantial Grade 3 
and some Grade 4 adverse reactions occurred. Would 
the side effect profile preclude an adjuvant trial in 
healthier patients?

In summary, denosumab indicates that metastasis 
can be drugged. Attributes of this effort included pre-
clinical experiments conducted in the target organ of 
metastasis and a clinical trial design based on a relevant 
end point caused directly by the metastatic pathway. 
Limitations identified in other drug development efforts 
include an inadequate understanding of the molecular 
pathway in metastatic colonization, poor drug charac-
teristics, overinterpretation of early-phase trial data, a 
preclinical focus on effects on the primary tumour and 
the wrong trial design.
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Extravasation
In metastasis, the movement 
of tumour cells out of the 
circulatory system into 
surrounding tissues.

Stem or tumour-initiating 
cell
A cell found within a cancer 
that is tumorigenic and can 
differentiate into one of 
several cell types found 
within the tumour.

Anoikis
A form of programmed cell 
death induced by anchorage- 
dependent cells detaching 
from an extracellular matrix.

Neoantigens
Peptides absent from the 
normal genome, caused by 
somatic mutations.

New targets
Which part of the metastatic cascade? Many pathways 
have been validated to facilitate or interrupt meta-
stasis, but have yet to be drugged. The most promising 
candidate pathways will not only be functionally vali-
dated but will be open to intervention in many patients 
after diagnosis.

The entire metastatic process represents a potential 
therapeutic target for patients with localized disease. 
However, localized disease represents a minority of cer-
tain cancers at diagnosis (localized disease is particularly 
rare for patients with cancer of the ovary, pancreas, oral 
cavity, lung, oesophagus and colorectum; FIG. 1) and is 
therefore of limited applicability. For regional disease, 
the likelihood of distant metastasis formation increases, 
as reflected in survival rates. Regional disease includes 
more than a quarter of all diagnosed breast, colorectal, 
lung, pancreatic, cervical, oral and oesophageal cancers 
(FIG. 1b). At this stage, tumour cells have probably spread 
systemically and are sitting dormant in distant organs or 
beginning to colonize, but are too small to be detected 
by imaging. Adjuvant systemic therapy is administered 
but unfortunately does not adequately control progres-
sion. What remains as an open therapeutic window is 
the metastatic colonization process. Could interruption 
of mechanistic pathways mediating metastatic coloniza-
tion supplement standard adjuvant regimens to prevent 
further progression and improve survival? For patients 
with limited, treatable metastatic disease, interruption 
of the metastatic colonization by other tumour cells 
in the distant organs could prevent the outgrowth of 
additional metastases.

Seeding. Many mechanistic pathways are involved in the 
initial invasion of tumour cells from the primary site: 
travel through the circulation, arrest either at the next cap-
illary bed or in a site-specific manner, and extravasation. 
These include: tumour–tumour and tumour–ECM adhe-
sion molecules; diverse proteases; plasticity programmes 
such as the epithelial–mesenchymal transition (EMT) 
and stem or tumour-initiating cell pathways that are fuelled 
by EMT; anoikis; and adhesion to the vascular endothe-
lium. As noted above, most cancer patients at the time of 
diagnosis may have already completed these processes, 
leaving them unavailable for therapeutic intervention. 
An exception would be the reseeding of metastases 
from established metastases. Clinical evidence for this is 
emerging from DNA sequencing studies88, but additional 
human and preclinical mechanistic data are needed to 
support translational efforts.

Dormancy. For breast and prostate cancers, metastatic 
colonization is delayed by years or decades in a propor-
tion of patients, a process termed dormancy. Dormancy 
may be a key therapeutic window by which to target 
metastatic colonization. Clinically, dormancy is defined 
as an unusually long time between removal of the pri-
mary tumour and subsequent relapse in a patient who 
has been clinically disease free. In preclinical models, 
tumour cells disseminate but do not steadily form overt 
metastases. Tumour cells can enter dormancy nestled 

in their eventual metastatic site; alternatively, tumour 
cells are found in bone marrow, with prognostic rele-
vance89. Bone marrow may constitute a reservoir for 
dormant tumour cells that can eventually mobilize and 
colonize elsewhere.

Dormancy can be achieved by many means — for 
example, an exit from the cell cycle by tumour cells, 
balanced proliferation and apoptosis signalling, or host 
responses such as angiogenesis or immune activation. In 
immune dormancy, immunoediting may occur, whereby 
tumour cells expressing strong neoantigens are eliminated 
by the immune system. Dormant residual tumour cells 
expressing relatively weak antigens remain, to escape if 
further evolution blunts immune control90. In this sce-
nario, it could be hypothesized that dormant tumour cells 
expressing relatively weak antigens may be refractory to 
immunotherapies upon relapse.

A lack of preclinical model systems that adddress 
the complexity of dormancy has precluded widespread 
research. In the past, many poorly metastatic cell lines 
were established and compared with related, more aggres-
sive cell lines91. With more modern testing, it is possible 
that they may provide additional dormancy model sys-
tems. Even with a model in hand, experiments require 
relatively long times and the end points are difficult, that 
is, identification and characterization of single tumour 
cells in distant sites. Areas of research interest include the 
identification of niches that promote dormancy92,93, dor-
mancy as a p38 (also known as MAPK14)-driven stress 
response94,95, the relationship of stem cell pathways and 
dormancy96, tumour cell adhesion molecules97 and ECM 
cues for reactivation of cell growth98.

To illustrate the potential clinical relevance of cell 
cycle exit in dormancy, a hormone receptor-negative 
breast cancer preclinical model was used. Mice were 
injected with either a steadily metastasizing or a dormant 
cell line; they were randomized to vehicle or the chemo-
therapeutic agent doxorubicin. The progressing cell line 
produced abundant metastases, which were reduced by 
drug treatment. The dormant cell line produced few 
metastases, which were unaffected by the drug99. The 
dormant tumour cells were insensitive to traditional 
antiproliferative drugs.

Potential translational approaches to dormancy 
include targeting signalling pathways that maintain 
the dormant state95, synthetic lethal combinations to 
kill G0 tumour cells, monoclonal antibody targeting of 
single tumour cells and extension of the length of main-
tenance anti-hormonal treatments100. As an example, a 
small-molecule inhibitor of the tumour cell lysophos-
phatidic acid receptor 1 (LPAR1) pathway not only pre-
vented overt metastasis formation in models of breast 
cancer, but shifted the majority of the remaining dissem-
inated tumour cells to the G0 resting state and activated 
p38 stress signalling95. This type of inhibitor may stand 
as a candidate dormancy-inducing agent. One of the 
simplest ways to test this hypothesis clinically may be to 
enroll patients with breast cancer who are at highest risk 
of metastasis, such as patients with remaining primary 
tumours after neoadjuvant chemotherapy and surgery, 
patients with multiple positive lymph nodes or patients 
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Myofibroblasts
Cells with attributes of 
fibroblasts and smooth muscle 
cells that are activated to 
participate in wound repair.

Mismatch repair
A form of DNA repair that 
corrects erroneous 
misincorporation of bases 
during replication, and other 
insertions, deletions and 
DNA damage.

Double strand break repair
Repair of hazardous lesions in 
which both strands of DNA are 
broken, by non-homologous 
end joining or homologous 
recombination repair.

with chest wall recurrences. After randomization to the 
intervention or placebo, the primary end point would 
then be time to the development of a distant metastasis. 
Further validation of potential biomarkers of residual 
disease, such as circulating mutant DNA may provide a 
secondary readout.

Metastatic colonization. Metastatic colonization 
remains the optimal window for therapeutic develop-
ment in prevention of metastasis in the adjuvant setting, 
and prevention of the development of additional lesions 
in the limited metastatic setting. So, what is metastatic 
colonization, and why is it not just like primary tumour 
growth? Metastatic colonization fuses pathways and 
alterations found in the primary mass, early events in 
metastasis and events important to outgrowth in a for-
eign location. Genomic alterations provide examples: 
each tumour has oncogenic mutations; they represent 
the trunk of the cancer evolutionary tree. The prevalence 
and expression patterns of these mutations, for instance, 
in TP53 (REF. 101), KRAS101, ESR1 (which encodes oes-
trogen receptor-α; ERα)102,103, MYC104 and BRAF105,106, 

may be further exacerbated in metastases. Many of the 
pathways affected by these truncal mutations have been 
demonstrated to affect metastatic ability107–111, although 
a causal role in post-extravasation colonization has not 
been established.

In other cases, new genetic alterations, not seen in the 
matched primary tumour, are observed. These alterations 
are considered limbs on the phylogenetic tree, as they 
occur late in the evolution of the disease. In a landmark 
study of prostate cancer progression, amplification or 
mutation of both mismatch repair and DNA double strand 
break repair genes was a hallmark only of the metastases9. 
The data suggest that dual inhibition of DNA repair path-
ways, if achievable without synergistic toxicities, may 
be lethal to metastases. In a study of matched primary 
tumours and brain metastases, 53% of the brain metas-
tases harboured clinically actionable mutations not seen 
in the patient’s primary tumour112. These data suggest 
that therapies directed at truncal mutations may be effi-
cacious in distinct clinical settings based on expression 
patterns in metastasis. Epigenetic changes are likely to 
outnumber genetic alterations and may change during 
the colonization process.

Metastatic colonization also mechanistically involves 
tumour signalling pathways regulating diverse cellular 
functions (BOX 1). In addition to these cell-intrinsic path-
ways, metastatic colonization represents the interaction 
between the tumour cell and its foreign microenviron-
ment. FIGURE 2 outlines interactions between tumour 
cells and aspects of their new environment, including the 
premetastatic niche, the ECM, nonspecific immunity (also 
known as innate immunity), adaptive immunity, and angio-
genesis. In general, tumour cells do not land in a foreign 
site and colonize it as it is; instead, they extensively modify 
the environment, recruiting bone marrow-derived cells 
and immune cells and activating wound response pro-
grammes in the tissue. Of the metastasis translational 
targets currently under development, TGFβ, a secreted 
cytokine, provides an example of the potential and pos-
sible pitfalls in targeting colonization (BOX 2). Each of 
these pathways may hold added attraction as potential 
therapeutic targets, in that inhibition of one protein often 
inhibits myriad downstream interactions and phenotypes.

Chemokines. A family of diverse chemokines regulates 
immune cell migration in inflammation and homeostasis 
by interacting with G-protein-coupled receptors (FIG. 2c,d). 
Chemokines such as chemokine (C-X-C motif) ligand 12 
(CXCL12), interacting with chemokine (C-X-C motif) 
receptor 4 (CXCR4), are widely expressed and associated 
with multi-organ metastasis; other chemo kines have been 
proposed to mediate organ-specific colonization, such as 
chemokine (C-C motif) receptor 9 (CCR9) stimulation 
of melanoma metastasis to the intestine113. Chemokines 
contribute to metastatic colonization by promoting the 
infiltration and survival of macrophages114,115 and regula-
tion of T cell-mediated antitumour immune responses116. 
Other chemokines are inhibitory. CXCL16 expression 
by colon cancer cells inhibited metastasis by attract-
ing natural killer (NK) cells and CD8+ T cells that express 
CXCR6 (REF. 117).

Box 1 | Potential tumour cell targets in metastatic colonization

In addition to mutational events, tumour cells alter multiple signalling pathways in 
order to colonize a foreign organ. Many of the functionally validated signalling 
pathways in metastatic colonization focus on end points other than proliferation.

• Metastatic colonization involves the maintenance or enhancement of signalling 
pathways mediating tumour cell viability and resistance to death. Protection 
from apoptosis in metastatic colonization is afforded by autocrine interleukin‑6 
(IL‑6)–signal transducer and activator of transcription 3 (STAT3) signalling, which 
reduces caspase 3 activation162, overexpression of the CUB domain‑containing 
protein 1 (CDCP1)‑mediated anti‑apoptotic pathway163 and overexpression of the 
B‑cell lymphoma 2‑like (BCL‑XL) anti‑apoptotic protein156. A role for DNA repair in 
overcoming DNA damage from reactive oxygen species, leading to loss of viability, 
has been documented for brain metastasis of breast cancer164.

• The role of autophagy has been debated in cancer, but multiple reports link 
autophagy with increased metastatic colonization as an adaptive survival 
mechanism165,166. The autophagic response in colonization is negatively regulated 
by the NMYC downstream‑regulated gene 1 (NDRG1) metastasis suppressor167.

• Multiple genes involved in metastatic dissemination have been shown to have roles 
in metastatic colonization, using haematogenous metastasis assays. These include 
SRC168, diverse proteases, transforming growth factor‑β (TGFβ)169,170, RHO family 
members171, β‑catenin172 and cell adhesion molecules. Transcriptional programmes 
induced by SNAIL (also known as SNAI1)173, inhibitor of DNA binding 1 (ID1)174 and 
GATA binding protein 3 (GATA3)175 are also operative in metastatic colonization.

• Non‑coding RNAs such as microRNAs (mi RNAs)176–178 and long non‑coding RNAs179 
regulate complex gene expression patterns to effect colonization.

• Pathways operative in generating tumour‑initiating cells functionally promote 
metastatic colonization180–182.

• Protein expression patterns are often distinct in metastases, including the 
downregulation of metastasis suppressor genes183. Metastasis suppressors inhibit 
many steps in colonization including tumour cell transcriptional programmes184,185, 
survival after arrival in a distant organ186,187, stress‑induced autophagy167, 
vasoconstriction188 and cell cycle progression189.

• Metastatic tumour cell phenotypes are plastic. Tumour cells may undergo an 
epithelial–mesenchymal transition (EMT) to invade, which is reversed 
(mesenchymal–epithelial transition, MET) in colonization. It has been reported that 
layered onto this plasticity is transdifferentiation of tumour cells to myofibroblasts in 
the microenvironment. The discovery of overarching cellular programmes controlling 
this plasticity may represent another therapeutic opportunity in metastasis.
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Nonspecific immunity
Also called innate immunity, 
host responses to pathogens 
or tumour cells that do not 
provide long-term memory 
or protection.

Preclinical metastasis prevention experiments 
include anti-chemokine (C-C motif) ligand 2 (CCL2) 
for liver metastases118 and anti-CXCL12 for prevention 
of non-small-cell lung cancer metastasis119. An anti-
sense strategy for CCL17 silenced genes in T regulatory 
(Treg) cells and blocked lung metastasis in a breast can-
cer model116. AMD3100 is a small-molecule inhibitor 

of CXCR4, which has FDA approval for stem cell mobi-
lization (FDA approval for plerixafor), and has preclinical 
antimetastatic activity in ovarian cancer120. This drug is 
in widespread clinical testing in haematological tumours; 
an early-stage trial in metastatic pancreatic, ovarian and 
colorectal cancers is currently recruiting121.

An issue in the development of drugs that target 
chemokines is the existence of multiple family members 
with potentially overlapping functions. For instance, 
mela noma metastasis to the brain upregulated the 
expression of CXCL10, CCL4 and CCL17 in cerebrospi-
nal fluid122. It will be of interest to determine how the 
immune functions of chemokine targeting interact with 
immune checkpoint therapy.

Lysyl oxidase. Lysyl oxidase (LOX) is a secreted enzyme, 
induced by hypoxia, that crosslinks collagens and elas-
tin in the ECM. Its mechanism of action in metastatic 
colonization includes mobilization of bone marrow cells 
in the premetastatic niche and alterations in the ECM, 
which are thought to alter integrin engagement and sur-
vival signalling (FIG. 2a,b). An antibody to LOX, as well as 
β-aminopropionitrile (BAPN), a small-molecule inhibi-
tor of the LOX family, prevented the formation of breast 
cancer metastases123. Interestingly, both agents stabilized 
metastatic burden when administered at progressively 
later times in an experimental metastasis assay.

LOX-like 2 (LOXL2), is a relative of LOX that binds 
the E47 transcription factor and alters the expression 
of fibronectin and cytokines in the lung to affect bone 
marrow recruitment124. An antibody to LOXL2, simtu-
zumab, was tested in a randomized Phase II trial in com-
bination with chemotherapy in refractory metastatic 
colorectal cancer. Using a PFS end point, simtuzumab 
did not improve outcome beyond chemotherapy125. This 
trial suffers from issues that affected the SRC inhibitors: 
lack of an adjuvant trial to match preclinical data that 
demonstrated metastasis prevention, and reliance on syn-
ergy with chemotherapy. The LOXL family has also been 
associated with both suppression of tumorigenesis and 
stimulation of metastasis126, and patient selection may be 
a key issue for this and other trials.

Exosomes. Exosomes are small, cell-derived vesicles that 
promote cell–cell communication. Besides their biological 
roles in metastasis, they may constitute a techno logical 
marvel. Exosomes have roles in the premetastatic niche, 
angiogenesis, immune function and tumour cell com-
munication with the microenvironment (FIG.  2a,e). 
Exosome cargoes are heterogeneous, both metastasis 
suppressive127–129 and metastasis accelerating130–133. Clearly, 
additional work is needed in the field to sort out the com-
plexity of exosome cargoes as well as the conditions facil-
itating their release and uptake. Detection of exosomes or 
their cargo may provide a liquid biopsy of minimal residual 
disease to enable earlier interventions in trials.

Exosomes also hold translational importance as an 
engineering platform. Although the strategy is in its 
infancy, exogenous small interfering RNAs (siRNAs) have 
been engineered into exosomes and delivered in vivo134, 
suggesting that metastasis-suppressive cargoes could 

Figure 2 | Functional interactions between tumour cells and the metastatic 
microenvironment in colonization. a | Premetastatic niche. Primary tumour cells 
upregulate vascular endothelial growth factor (VEGF), causing VEGF receptor-positive 
(VEGFR+) haematopoietic bone marrow cells (also called myeloid-derived suppressor cells 
(MDSCs)) to migrate to the lung, upregulating fibronectin deposition in the extracellular 
matrix (ECM) by resident fibroblasts and producing inflammatory cytokines. Disseminated 
tumour cells then home to these locations for preferential colonization206,207. 
A premetastatic niche is also formed by tumour secretion of VEGF, tumour necrosis 
factor (TNF) or transforming growth factor‑β (TGFβ), stimulating lung tissue to produce 
S100A8 and S100A9 chemokines, which serve as chemoattractants for alveolar and 
peritoneal macrophages and tumour cells208,209. Primary tumour hypoxic conditions 
favour formation of a premetastatic niche by producing lysyl oxidase (LOX) to alter the 
microenvironment210, carbonic anhydrase (CAIX) to mobilize MDSCs211, and suppression 
of natural killer (NK) cell activation212. Exosomes produced by the primary tumour educate 
MDSCs and alter the premetastatic microenvironment ECM and metabolism 
directly130,131,213. b | ECM and fibroblasts. Colonizing tumour cells functionally interact with 
altered levels of hyaluronic acid, fibronectin, tenascin C and collagens in the ECM. The 
ECM is remodelled by various proteases produced by tumour cells and the activated 
microenvironment, with downstream effects on adhesion and tumour viability123. 
Integrins, receptors for ECM components, mediate many interactions between tumour 
cells and the altered ECM to effect colonization58. Fibroblasts in the microenvironment 
are activated by tumour cells or their secreted factors; comigration of primary 
tumour fibroblasts with tumour cells to metastatic sites also occurs in model systems214. 
Activated fibroblasts contribute to multiple aspects of colonization, including 
angiogenesis, inflammation, immunity and tumour growth potential. Fibrosis is an 
out-of-control activation of myofibroblasts to produce higher amounts of ECM. When 
fibrosis is induced by drugs or radiation treatment, experimental metastases are 
elevated215. c | Innate immunity. Bone marrow-derived myeloid cells, which are 
macrophage-like, are stimulated to migrate to sites of metastasis by TGFβ, which 
promotes metastatic colonization by diminishing arginase, reactive oxygen species (ROS) 
and interferon-γ (IFNγ) production, leading to decreased T cell‑dependent antitumour 
immunity198. Other tumour-derived factors118,216, ECM components217 and hypoxia 
mobilize myeloid cells. Their activity is regulated by growth factors218, toll-like receptor 
(TLR)217 and peroxisome proliferator- activated receptor-γ (PPARγ)219 signalling; a 
chemokine (C‑X3‑C motif) ligand 1 (CX3CL1) loop promotes their viability115. Myeloid cells 
also transdifferentiate into metastasis effector cells220. Macrophages from host tissue and 
circulation also facilitate colonization through chemokine cascades114. Reciprocal 
signalling between macrophages and tumour cells enhances the viability of both cell 
populations115,221. NK cells also join the site of colonization and provide innate immune 
functions. d | T cell‑mediated immunity. Influx and activation of tumour infiltrating 
lymphocytes (TILs) is mediated by chemokines such as C‑X‑C motif chemokine ligand 16 
(CXCL16)117. Programmed cell death protein 1 (PD1) immune checkpoint expression is 
increased on CD8+ TILs in the metastatic microenvironment222. In turn, CD8+ TILs secrete 
IFNγ to upregulate PD1 ligand 1 (PDL1) on metastatic tumour cells223,224. The PD1–PDL1 
pathway inactivates the cytotoxic T-lymphocyte (CTL) effector arm. Tumour cells halt 
immune responses in several ways. They produce interleukins (ILs), leading to the 
production of granulocyte-colony stimulating factor (G-CSF), mobilization of neutrophils 
and inactivation of CTLs225. Tumour chemokine networks can recruit T regulatory (Treg) 
cells, shutting down NK cell activity226. A balance of tumour zinc finger E‑box binding 
homeobox 1 (ZEB1) and microRNA miR-200 regulates PDL1 expression227. e | Vascular 
system. Angiogenesis is stimulated by hypoxia. Endothelial cells proliferate, migrate and 
encircle to form capillaries. The process is facilitated by MDSCs, which are ‘educated’ by 
tumour-derived exosomes131. Other pathways such as angiopoietin (ANGPT) signalling, 
stabilize vessels52. Residual hypoxia stimulates tumour invasion24,49–51. Other sources of 
blood supply include co‑option of the existing vasculature and vasculogenic mimicry, 
which is the formation of blood-conducting tubes by tumour cells55–57,228. CCL, chemokine 
(C‑C motif) ligand; CCR, chemokine (C‑C motif) receptor; MIF, macrophage migration 
inhibitory factor; SAA, serum amyloid A.

◀
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Adaptive immunity
Part of the immune system by 
which memory is acquired 
after an initial response to a 
specific antigen.

Natural killer (NK) cells
Lymphocytes that are 
cytotoxic for virally infected or 
tumour cells, without the need 
for major histocompatibility 
complex (MHC) and T cell 
receptor signalling.

Minimal residual disease
In leukaemia, a low level of 
tumour cells or their products 
in patients apparently treated 
successfully, detectable only 
with molecular markers.

Astrocytes
Star-shaped cells in the brain 
and spinal cord that maintain 
the blood–brain barrier, 
provide nutrients, maintain 
ion balance and assist in 
injury repair.

Microglia
Resident macrophage-like cells 
of the brain and spinal cord.

eventually be delivered to target cells. Several explora-
tory clinical studies have opened to evaluate exosomes 
from cancer patients135,136, potentially activate the 
immune system137,138 and predict response to therapy139. 
In situations in which metastasis-promoting or immune- 
suppressive exosomes dominate, an exosome-removing 
trap using affinity plasmapheresis has been developed140.

Site-specific metastases. Layered onto general pathways 
mediating metastatic colonization are functional inter-
actions between tumour cells and aspects of the micro-
environment that are either unique or selective. As an 
example, the vicious cycle of osteoclastic (bone- degrading) 
bone metastases involves RANKL, which has been suc-
cessfully targeted by denosumab (TABLE 1). The good news 
is that many additional factors functionally interact to reg-
ulate bone metastasis formation and stand as prospective 
therapeutic targets to further improve patient outcomes. 
These include adhesive events (met adherin (MTDH; also 
known as LYRIC))141, interleukin- 11 (IL-11), hypoxia and 
chemokines. A pathway for delayed formation of osteolytic 
bone metastases centres on tumour cell SRC providing 
survival signalling against the apoptotic signals induced 
by CXCL12 and tumour necrosis factor-related apop tosis-
inducing ligand (TRAIL; also known as TNFSF10) in the 
bone microenvironment142.

A series of tumour–microenvironment functional 
interactions is also emerging for brain metastases, 
which are common in lung and breast cancers, and in 
melanoma143 (FIG. 3). Some of these pathways overlap 

with those involved in metastatic colonization in other 
tissues, whereas other pathways are unique to the site. 
Reciprocal interactions have been functionally demon-
strated between tumour cells and activated astrocytes and 
microglia that are recruited as a neuroinflammatory response 
to the presence of tumour cells144. Translational develop-
ment of these metastasis pathways will also have to sur-
mount the partially intact blood–brain barrier, making 
drug delivery inefficient145.

Treating established metastases
Shrinking an established metastasis represents a higher 
bar than preventing the formation of an overt lesion. 
Drugs must kill tumour cells rather than just being cyto-
static. Overt metastases contain millions of tumour cells. 
They often have a tortuous vasculature and elevated 
hydrostatic pressure, causing poor drug penetration. 
Other than the limited efficacy of cytotoxic drugs to pro-
duce responses and, at best, marginally enhance survival, 
what approaches hold promise?

Two general approaches are under development 
for treating established metastases. BOX 3 details the 
programmed cell death protein 1 (PD1; also known 
as PDCD1) and cytotoxic T-lymphocyte-associated 
antigen  4 (CTLA4) immune checkpoint inhibitor 
approaches. In general, these inhibitors are producing 
clinical responses and long-term PFS improvements in 
a subpopulation of patients with metastatic melanoma, 
lung cancer or renal cancer146–149. These cancers rank high 
on a graph of tumour neoantigen levels90, suggesting that 
other, less antigenic, cancer types may not be immediately 
as responsive.

The second approach to shrinking established metas-
tases is cytotoxic. Use of α-particle-emitting radionuclides, 
alone or linked to monoclonal antibodies, constitutes an 
avenue of some promise. These radionuclides offer the 
advantages of high energy to kill tumour cells, and low 
penetration, which minimizes damage to surrounding 
normal tissue. In a Phase III trial, radium-223 increased 
the survival of patients with metastatic prostate cancer150. 
Most of the other α-emitting radionuclide approaches 
attach the radionuclide to a monoclonal antibody that 
binds tumour tissue to a far greater extent than normal 
tissue, so that its applicability is limited only by the abun-
dance and specificity of the antigens. Preclinical exper-
iments in which FDA-approved monoclonal antibodies 
were stably linked to α-emitters demonstrated regres-
sions in metastatic peritoneal cancer151. Similarly, addi-
tion of toxic drugs to an anti-HER2 monoclonal antibody 
enhanced response rates in breast cancer metastases152.

With this abundance of worthwhile leads for pre-
venting and treating metastases, momentum has built 
for translational progress. The next steps to consider are 
establishment of adequate preclinical credentials and 
clinical testing of potential metastasis-directed therapies.

Formulae for greater success
Preclinical experiments. Mouse experimentation for 
preclinical therapeutic development has been justi-
fiably criticized for poor reproducibility. Many types 
of animal model exist, including xenografts, syngeneic 

Box 2 | Transforming growth factor‑β as a metastatic colonization target

Transforming growth factor‑β (TGFβ) is a secreted protein that controls the 
proliferation and differentiation of cells. It binds to a receptor complex that recruits and 
phosphorylates SMAD family proteins. The SMAD proteins enter the nucleus and act as 
transcription factors. Other SMADs and regulatory proteins can block the pathway190.

Both small‑molecule inhibitors of, and antibodies to, TGFβ have been developed, and 
they prevented metastasis in several model systems191,192. Side effects measured in 
long‑term experiments seemed nominal. One of the important advantages of TGFβ as a 
metastatic colonization target is that it affects multiple pathways, including 
extracellular matrix (ECM) remodelling193, tumour–microenvironment interactions194–196, 
transcriptional programmes197, immunity198, angiogenesis193,199 and tumour cell 
viability196,199 (FIG. 2a,c).

A potential problem is the switch in TGFβ function from a tumour suppressor in 
normal cells to a metastasis stimulator in aggressive cancer cells. The switch 
mechanism is complex and incompletely understood in mice but involves distinct 
intracellular signalling194,200,201 and tumour–microenvironment interactions that favour 
myeloid‑derived suppressor cell (MDSC)‑mediated inflammation198. To the extent that 
metastases in humans have ‘switched’ their signalling profile, which is incompletely 
known, it can be hypothesized that TGFβ targeting will be an effective antimetastatic 
colonization approach. A recent study identified a gene signature based on the 
eukaryotic translation initiation factor (eIF) family of transcription factors as 
distinguishing suppression versus promotion of tumour progression202; this and other 
pathways can be tested for prediction of patient responses to TGFβ inhibitors and, if 
positive, used to enroll patients.

Other issues in drug development for this pathway include the number of specific 
TGFβ family members that are functionally involved in metastatic progression, and 
rational combinations with standard of care therapy. Early‑stage trials of drugs that 
target TGFβ in patients with advanced cancer are under way with end points of safety, 
survival, response rate, immune function and serum markers of progression. These end 
points do not yet test metastasis prevention, which is an end point used in preclinical 
studies of these drugs203.
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Xenografts
In cancer, cells or tissues 
transplanted from one species 
to another, often human 
cancer cells into 
immunodeficient mice.

Genetically engineered 
mouse (GEM) models
Mouse models in which the 
genome has been altered, 
including transgenes and 
targeted mutations (knockouts 
or knockins).

Patient-derived xenografts
(PDXs). Patient tumour tissues 
implanted directly into 
immunodeficient mice.

models, genetically engineered mouse (GEM) models and 
patient- derived xenografts (PDXs); each has strengths 
and weaknesses153. Traditional xenograft experiments 
involve injection of tumour cells subcutaneously or ortho-
topically into the tissue of origin. Mice bearing xenograft 
tumours are dosed with an investigational compound and 
the size of primary tumour growth is measured over time. 
Retardation of primary tumour growth is considered a 
success, whereas in the clinic, tumours growing at differ-
ent rates are still growing and are considered progressive 
disease, potentially with increased patient PFS. In primary 
tumour xenograft models, the tumour cells have not inter-
acted with the metastatic microenvironments at all, and 
this preclinical experimental design would only be rele-
vant for targeting initial oncogenic trunk mutations and 
any effects they may have on metastasis.

Metastasis preclinical models are absolutely neces-
sary for the development of metastasis-related thera-
peutics. Orthotopic injection of tumour cells to form a 
primary tumour and then seed metastases (spontane-
ous metastasis) is the gold standard. The full metastatic 
process is modelled in this manner. Similar experiments 
using PDXs eliminate the potential biases by culture of 
cell lines on plastic, and have been reported to reca-
pitulate the sites of metastasis and response to therapy 
observed in the patients from which they are derived154. 
Some GEM models produce metastases. Weaknesses 
of spontaneous metastasis models include a paucity of 
metastases, usually producing ‘yes or no’ animal data, 
rendering small but potentially significant differences 
hard to validate, and requiring relatively long times for 
metastasis development.

Figure 3 | A wealth of mechanistic translational targets in metastasis to the brain. In addition to the basic pathways of 
colonization, bidirectional interactions between tumour cells and the microenvironments of specific tissues foster 
metastatic colonization. In the brain, tumour cells breach the blood–brain barrier to extravasate using tissue-nonspecific 
and tissue-specific adhesion molecules and proteases228,229. Tumour cells then adhere to the vascular basement membrane 
via β1 integrins230. Activated astrocytes congregate around the developing metastasis and are stimulated by 
tumour-derived cytokines231. The astrocytes produce growth factors that are stimulatory for the tumour cells231,232, and 
elevate tumour cell expression of receptors for cytokines in the microenvironment233. Systemic hormones such as 
oestrogen can further activate astrocytes to stimulate colonization234. Activated microglia, resident macrophage-like cells, 
also surround a developing metastasis. Their activation is determined by a balance of tumour cell stimulatory and 
inhibitory factors235–238. In turn, they activate tumour cells via the WNT pathway. The brain is infiltrated by myeloid-derived 
suppressor cells (MDSCs) in a premetastatic phase239, fuelled by cyclooxygenase 2 (COX2) and T cells. Tumours shut down 
T cell responses using ATP binding cassette transporter 1 (TAP1; also known as ABCB2)240. The brain microenvironment 
mounts a protective reaction by the secretion of reactive oxygen species (ROS)241. Overexpression of DNA double strand 
break repair genes by tumour cells attenuates the ROS-induced DNA damage164 and overexpression of serpins inactivates 
death signals from the microenvironment242. Neuronal cell death is a consequence of metastasis formation, but is 
attenuated by tumour-derived pigment-epithelial-derived factor (PEDF)243. It is likely that many of the mediators of brain 
metastatic colonization are active in other anatomical locations as well, via a different set of host microenvironmental 
cells, suggesting that any therapeutics that are developed may be more broadly applicable. CTL, cytotoxic T lymphocyte; 
IL-6, interleukin 6; JAG1, Jagged 1; PDGF, platelet-derived growth factor.
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Micrometastases
Metastatic lesions that are 
too small for conventional 
detection.

Injection of tumour cells directly into the circulation 
can mimic aspects of metastatic colonization (exper-
imental metastasis). Tumour cells are injected into the 
tail vein, portal vein or left cardiac ventricle to colonize 
the lungs, liver, and bone and brain, respectively. Tumour 
cells can also be injected into a body cavity, such as the 
peritoneum. In experimental metastasis models, a 
bolus of tumour cells is injected rather than a constant 
stream of disseminating cells from a primary tumour 
as would happen in the natural situation, and the pre-
metastatic niche has not preformed. However, for drug 
development, these assays measure most of the process of 
metastatic colonization, and provide good quantification 
in a reasonable time frame.

Beyond these generalities several considerations are 
important. FIGURE 4 shows potential designs of preclini-
cal models for the development of metastatic therapies. 
Most commonly, the designs in FIG. 4b,d are reported, 
using either spontaneous or experimental metastasis 
assays and delivering the investigational compound from 
the beginning of the experiment onwards. However, the 
adjuvant setting is best modelled by administration of 
the investigational compound after primary tumour 
removal (FIG. 4c) or, potentially, treatment delayed until 
after tumour cells have extravasated (FIG. 4d).

Additional parameters can be considered using osteo-
lytic bone metastasis (TABLE 1) as an example. Bone metas-
tases occur predominantly in ER+ breast cancer and this 

subtype of cell line should be used in the preclinical model. 
ER+ breast cancer cells can form bone metastases follow-
ing left cardiac ventricle injection155. The investi gational 
compound can be started after tumour cell injection in a 
prevention scenario, or after the development of lesions in 
a metastatic setting. Incorporation of SOC therapy is an 
often overlooked but important variable. The SOC could 
include an anti-hormonal treatment and denosumab. The 
relationship of SOC and investigational agent dosing must 
be decided — will the investigational agent be dosed with 
denosumab, or following progression on denosumab? 
Most of the proposed osteolytic bone metastasis investi-
gational agents have not demonstrated interaction with, or 
superiority to, denosumab, which constitutes incomplete 
preclinical validation.

Traditional drug development parameters also matter. 
Was a clinically achievable dose and schedule of com-
pounds used? Was the route of administration comparable 
to what will be used in the clinic, typically oral or intra-
venous? Did the compound hit its target? Can these data be 
used to identify and test biomarkers or pharmaco dynamic 
markers for prediction of clinical responses?

For outcomes, imaging must be used in conjunc-
tion with histopathology. Has the model just produced 
micrometastases? These lesions could persist without 
complications in the human, or could progressively grow, 
so their importance is uncertain. How are micrometas-
tases and macrometastases delineated? Data from more 
than one metastasis model system, and often more than 
one target organ are needed; examples exist in which 
metastasis rates vary in different organs156. In addition 
to metastasis counts, survival end points can be used.

The next generation of models will evaluate clonal 
mutational dynamics, in both treatment-naive and 
treatment- resistant settings157. Deep sequencing will 
also be valuable in identifying tumour neoantigens as 
candidates and biomarkers of immunotherapy90. More 
models must be developed to reflect the heterogeneity 
of human disease. These improved models must be tied 
to expanded data on the transcriptional and genomic 
diversity in human metastases.

Embracing combination therapies. Given the extraordi-
nary genomic and phenotypic instability of metastatic 
tumour cells, it is almost inconceivable that a single 
metastasis-directed monotherapy will cure the major-
ity of patients. Human immunodeficiency virus (HIV) 
is another deadly therapeutic target that, like metastatic 
cancer, easily mutates. Initial efforts with monother-
apies produced some responses but they lacked dura-
bility. Recognizing that a dire public health emergency 
required concerted efforts, two and eventually three 
drugs produced by different companies were combined 
into an effective, durable therapy that minimized the 
development of resistance158. Other important aspects of 
this effort that are salient to metastasis research include 
combining distinct classes of drugs, and having a test for 
minimal residual disease to monitor efficacy. Along with 
the success of the original 3-drug combination, 25 drugs 
in 6 classes have received FDA approval, providing 
back-up regimens.

Box 3 | Immune therapy approaches for established metastatic disease

Most translational metastasis research focuses on prevention, that is, mice are treated 
early and continuously with an investigational agent. Established metastases are often 
treated with radiation therapy and chemotherapy, but additional, efficacious, less toxic, 
avenues are needed. Two immune checkpoints have begun to turn the tide on immune 
therapy for patients with established metastatic disease.

• Adaptive responses to tumours involve antigen–major histocompatibility complex 
(MHC) protein binding to the T cell receptor. This is coordinated with a co‑stimulatory 
interaction of the surface glycoprotein CD28 that is expressed on the T cell with a B7 
receptor on the antigen‑presenting cell. Cytotoxic T‑lymphocyte‑associated antigen 4 
(CTLA4) outcompetes CD28 for binding to B7 to reduce immune activation. 
Ipilimumab, a monoclonal antibody that blocks CTLA4, preclinically enhanced the 
effector T cell subpopulation while downregulating a suppressor T cell 
subpopulation146,149. Clinically, ipilimumab extended overall survival (OS) in resistant 
metastatic melanoma, as monotherapy or in combination with a vaccine, leading to 
US Food and Drug Administration (FDA) approval (FDA approval for ipilimumab). 
Hallmarks of its activity were an initial flare in lesion size before gradual shrinkage 
and long‑term responses in the metastases of a minority of patients.

• Programmed cell death protein 1 (PD1, which is encoded by PDCD1) is a member of 
the CD28 co‑stimulatory receptor family found on activated T cells, B cells and myeloid 
cells. Its upregulation on T cells after chronic antigen presentation is a marker of T cell 
exhaustion. PD1 ligand 1 (PDL1), is expressed by many tumour cells to dampen 
immune responses. In initial preclinical experiments animals were treated with PD1 
antibodies or tumour cells were injected into Pdcd1–/– mice, which stabilized disease, 
both as monotherapy and in combination with other immunotherapy147,148. Both 
pembrolizumab and nivolumab, monoclonal antibodies that block PD1, show 
responses and long‑term progression‑free survival (PFS) in a proportion of patients 
with metastatic lung cancer or melanoma (FDA approval for pembrolizumab and 
nivolumab). Interestingly, PD‑1 blockade was also highly effective in mismatch 
repair‑deficient tumours, for instance, a subset of colorectal carcinomas204.

• The combination of anti‑PD1 and anti‑CTLA4 therapy was superior to either therapy 
alone in untreated metastatic melanoma205.
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Figure 4 | Meaningful incorporation of preclinical metastasis models into drug development. Potential 
experimental designs for an antimetastatic investigational agent are mapped along a timeline. Tumour cell injection can 
either be orthotopic, into the tissue of origin (white needles) or haematogenous for experimental metastasis (red needles). 
The investigational agent (purple arrowheads) can be delivered for all or part of the assay; optimally it should reflect the 
oral or intravenous dosing to be used in the clinic. Standard of care (SOC) therapy (green line), at a clinically achievable 
dose, can be added before, concurrent with or after the investigational agent and can use agents approved in the 
adjuvant or metastatic setting. a | Standard drug development uses primary tumour growth as an end point, which 
completely neglects the metastatic process. b–e | Model systems with different degrees of applicability to adjuvant 
setting trials preventing metastatic colonization. f–h | Model systems with different applicabilities to metastatic setting 
trials. End points include the number and size of metastases by histology and imaging, pharmacodynamic markers of drug 
activity or tumour biology, and survival.
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Clinical trials for metastasis-directed therapies. It is 
hypothesized that interruption of metastatic pathways 
will significantly augment the benefits of current cancer 
therapies. Because these pathways are functional in most 
cancer types, drug development and successful clinical 
testing offers the possibility of a blockbuster drug that is 
applicable to many patients159. Most preclinical metas-
tasis therapy experiments point to a significant delay in 
the development of metastases rather than a shrinkage 
of established metastatic lesions. This end point should 
be beneficial to the clinical prevention of an initial 
metas tasis, or the prevention of additional metastases 
in patients with limited, treated, metastatic disease, in 
adjuvant setting trials.

Many antimetastatic therapies under development 
interrupt colonization pathways rather than kill a pro-
liferating tumour cell. They are cytostatic, not cytotoxic. 
Such agents will shrink an established lesion only if they 
coincidentally synergize with chemotherapy or radiation 
therapy. These facts lead to the disturbing conclusion 
that antimetastatic therapies will not produce traditional 
responses (complete response (CR) or partial response 
(PR)) in metastatic setting trials — stable disease would 
be the best expected result of a cytostatic agent. It is likely 
that many compounds with metastasis- preventive activity 
have failed in traditional clinical trials and are lost.

Designs that are germane to the preclinical end point 
of prevention or delay of metastasis include trials in the 
adjuvant setting. Adjuvant trials typically deliver sys-
temic therapy following initial surgery to patients with 
colon, lung, pancreatic, breast, prostate and other can-
cers. The hypothesis is that tumour cells have already 
escaped the primary mass and are residing in distant 
locations as occult tumour cells or micrometastases and 
so adjuvant therapy should prevent their outgrowth. 
Primary end points include PFS and OS. There are 
substantial problems implementing adjuvant trials for 
potential metastasis- preventive therapies: adjuvant 
trials typically require large patient populations, take 
a relatively long time to mature and incur high costs. 
Thus they are considered only when there is a wealth of 
positive earlier clinical data. This is a problem if a cyto-
static metastasis- preventive therapy has not produced 
responses in traditional Phase II trials of patients with 
metastatic disease.

Several alternative trial designs could measure metas-
tasis prevention. Smaller trials using super-high-risk 
patients such as those with multiple positive lymph nodes 
could be useful for a signal of antimetastatic activity160. 

Metastatic disease would develop more rapidly and in 
a higher percentage of patients, minimizing the time 
needed and the size of the cohort.

For some cancers initial metastatic lesions are suc-
cessfully treated, but the patient remains at an unac-
ceptably high risk for the development of additional 
metastases. These patients can be randomized to a 
metastasis-preventive agent or placebo in a randomized 
Phase II secondary metastasis prevention trial. Examples 
include post-curative surgery for liver metastases161, and 
post-neurosurgery or stereotactic radiotherapy for brain 
metastases160. The primary end point would be time to a 
new metastasis. Alternative end points such as circulating 
tumour cells or circulating tumour DNA can be investi-
gated. If eventually validated, it is possible that these 
easily accessed biopsy methods could serve as earlier end 
points to hasten clinical trials.

In lung cancer, advanced disease is treated with chemo-
therapy, resulting in clinical benefit that is often short term 
in duration. Phase III randomized maintenance therapy 
trials have been extensively conducted. Patients with 
advanced cancer received standard initial chemotherapy 
and were then randomized to a long course of investi-
gational therapy (chemotherapy or truncal mutation inhib-
itor therapy) or placebo until progression or unacceptable 
toxicity occurred; end points were PFS or OS. Such designs 
could be adapted to include a metastasis-preventive agent, 
to halt further colonization or to induce dormancy. Similar 
trial designs of long-term treatment with a low dose of 
drug have been proposed to induce metastatic dormancy 
in genitourinary cancers, called metronomic therapy3.

Conclusion
Interruption of metastasis pathways holds preclinical and 
clinical promise for cancer patients with, or at risk of, 
metastatic disease. Multiple agents have been demon-
strated to prevent or shrink metastases and serve as tar-
gets for therapeutic development. Lessons learned from 
HIV therapeutic development may prove useful, that is, 
to combine multiple classes of therapy, treat early and 
have multiple secondary options.

It is the responsibility of researchers to provide pre-
clinical model data that adequately validate a potential 
antimetastasis therapeutic agent. Furthermore, there 
should be a responsibility to prioritize and fund grants 
to perform this work. Given the hesitancy of the pharma-
ceutical industry, academic and government organiza-
tions will need to fund alternative metastasis prevention 
trials until a sign of success emerges.
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