LESSON 18.

1. FINITE MORPHISMS AND BLOW—UPS.

In this section we will see the notion of finite morphism, and a fundamental example of
a morphism which is not finite: the blow-up of a variety at a point, or, more in general,
along a subvariety. The blow-up is the main ingredient in the resolution of singularities of
an algebraic variety. As usual we will assume that K is algebraically closed.

First of all we will give an interpretation in geometric terms of the notions of integral
elements and integral extensions introduced and studied in Lessons 5 and 9.

Let f: X — Y be a dominant morphism of affine varieties, i.e. we assume that f(X) is
dense in Y. Then the comorphism f*: K[Y] — K[X] is injective (by Ex. 4, Lesson 13): we
will identify K[Y] with its image f*K[Y] C K[X].

Definition 1.1. f is a finite morphism if K[X] is an integral extension of K[Y].

This means that, for any regular function ¢ on X, there is a relation of integral dependence

(1) O+ o) 4 g) =0

with g1,..., g, € K[Y]. Finite morphisms enjoy the following properties.

Proposition 1.2. (1) The composition of finite morphisms is a finite morphism.
(2) Let f: X =Y be a finite morphism of affine varieties. Then, for anyy €Y, f~(y)
s a finite set.
(3) Finite morphisms are surjective, i.e. f~'(y) is non-empty for anyy €Y.

(4) Finite morphisms are closed maps.

Proof. (1) It follows from the transitivity of integral dependence, Lesson 5, Corollary 1.2.
(2) Let X be a closed subset of A", so K[X] is generated by the coordinate functions
ty,...,t,. Let y € Y. We want to prove that any coordinate function ¢; takes

only a finite number of values on the set f~!(y). For the function ¢; there is a
relation of integral dependence of type (1): & + f*(g)t; "+ -+ + f*(g,) = 0 €

K[X] with g1,...,9. € K[Y]. We apply this relation to z € f~!(y) and we get

tr(x) + g1 (y)t; (z) + -+ + g-(y) = 0. This means that the i-th coordinate of any

point in f~!(y) has to satisfy an equation of degree r, so there are only finitely many

possibilities for this coordinate. This proves what we want.
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(3) This is a consequence of the property of Lying over - LO (Lesson 9, Theorem 1.3).
Let y = (y1,---,Ym) €Y C A™ let uy, ..., u, be the coordinate functions on Y. A
point z € X belongs to f~!(y) if and only if u;(f(z)) = f*(u;)(z) = y; for any i,
or equivalently if and only if the function f*(u;) — y; vanishes on z. In view of the
relative version of the Nullstellensatz, the condition f~!(y) = () is therefore equivalent
to the fact that the ideal generated by f*(u1) —y1, ..., f*(um) — Ym in K[X] is the
entire ring K[X]. Consider now the maximal ideal Iy (y) of regular functions on Y
vanishing in y, it is generated by u; — y1, ..., Uy — ym. From the Lying over applied
to the integral extension f*K[Y] C K[X], it follows that there is a prime ideal P
of K[X] over f*(Iy(y)), which is generated by f*(u1) — y1,..., f*(tm) — Ym. This
implies that f~1(y) # 0.

(4) Let f: X — Y be a finite morphism and Z C X an irreducible closed subset. We
consider the restriction of f to Z, ie. f : Z — f(Z). We observe that, via the
comorphism f* : K[f(Z)] — K|Z], K|Z] ~ K[X]/Ix(Z) is an integral extension of
K[f(Z)], because it is enough to reduce modulo Ix(Z) the integral equations of the
elements of X. So, using (3), we conclude that f is surjective, i.e. f(Z) = f(Z).

O

An example of non-finite morphism is the projection V(zy — 1) — Al. Instead the pro-
jection py : V(y — 2?) — Al is finite.

Theorem 1.3 (Geometric interpretation of the Normalisation Lemma). Let X C A" be an
affine irreducible variety of dimension d. Then there exists a finite morphism X — A9

Moreover the morphism can be taken to be a projection.

Proof. The coordinate ring of X is an integral K-algebra, finitely generated by the coor-
dinate functions, whose quotient field has transcendence degree d over K. The Normal-
ization Lemma (Theorem 1.3, Lesson 5) then asserts that there exist elements z1, ..., zg
algebraically independent over K, such that K[X] is an integral extension of the K-algebra
B = K[z,...,24]. But B is the coordinate ring of A and the inclusion B — K[X] can
be seen as the comorphism of a finite morphism f : X — A9 The proof of Normalization
Lemma shows that zi,..., 24 can be chosen linear combinations of the generators of K[X].

In this case, f results to be a projection. 0

One can prove that being a finite morphism is a local property, in the following sense: let
f X — Y be amorphism of affine varieties. Then f is finite if and only if any y € Y has an
affine open neighbourhood V, such that U := f~!(V) is affine, and the restriction f |: U — V
is a finite morphism. This property allows to give the definition of finite morphism between
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arbitrary varieties, as a morphism which is finite when restricted to the open subsets of an
affine open covering. See [Safarevic] for more details and consequences.
For instance one can obtain the following non-trivial facts, that I quote here only for

information.

Example 1.4. 1. Let X C P" be a closed algebraic set, let A C P™ be a linear subspace of
dimension d such that X N A = (). Then the restriction of the projection wp : X — Pr—d-1
defines a finite morphism from X to mp(X).

2. Let X C P™ be a closed algebraic set and Fy, . .., F,. be homogeneous polynomials of the
same degree d without any common zero on X. Then ¢ : X — P" defined by the polynomials

Ey, ..., F. is a finite morphism to the image.

For a proof of the first property, see [Safarevié]. To prove the second one, we observe
that ¢ is the composition of the Veronese morphism v, 4 with a projection. The conclusion

follows from part 1., remembering that v, 4 is an isomorphism.

We will define now the blow-up (or blowing-up) of an affine space at the origin O(0, ..., 0).
It is a variety X with a morphism ¢ : X — A" which results to be birational and not finite.
The idea is that X is obtained from A" by replacing the point O with a P"~!, which can be
interpreted as P(Tp an ), the set of the tangent directions to A™ at O.

To construct X we first consider the product A™ x P*~1 which is a quasi-projective variety
via the Segre map. Let x1,...,x, be the coordinates of A", and ¥, ...,y, the homogeneous
coordinates of P"~!. We recall that the closed subsets of A" x P"~! are zeros of polynomials

in the two series of variables, which are homogeneous in yq, ..., y,.

Definition 1.5. Let X be the closed subset of A" x P"~! defined by the system of equations

(2) {xiyj =2y,4,5=1,...,n.
The blow-up of A™ at O is the variety X together with the map o : X — A" defined by
restricting the first projection of A" x P"~1. O is also called the centre of the blow-up.

The equations (2) express that yy,...,y, are proportional to z1,...,z,. Let us see what
this means. Let P € A" be a point, we consider o~!(P). We distinguish two cases:

1) If P # O, then o~ '(P) consists of a single point and precisely, if P = (ay,...,a,),
o~ Y(P) is the pair ((a1,...,an), [a1,...,ay]).

2) If P = O, then 071(0) = {O} x P! ~ P! because if z; = --- = x, = 0 there are
no restrictions on ¥ ...,y,. It is a standard notation to denote o=*(O) by E. It is called
the exceptional divisor of the blow-up.

It is easy to check that o gives an isomorphism between X \ 0~!(O) and A™\ {O}. Indeed
both o and o' so restricted are regular.



4 LESSON 18.

The points of 07!(0) are in bijection with the set of lines through O in A™. Indeed if L is
a line through O, it can be parametrized by {z; = a;t, t € K, with (aq,...,a,) # (0,...,0).
Then o' (L \ O) is parametrized by

xT; = a,-t
(3)

yi - ait7t ;é 07
or, which is the same, by

xTr; = ait
(4)

Yyi = ai,t # 0.

If we add also t = 0, we find the closure L' = o=1(L \ O), it is a line meeting o~ (0) at the
point O X [ay,...,a,]: L' can be interpreted as the line L “lifted at the level [ay, ..., a,]”.

So we have a bijection associating to the line L passing through O the point o=1(L\ O) N
o1 (0)=LnNE.

L Ly

FIGURE 1

Finally we note that X is irreducible: indeed X = (X \ E) U E; X \ E is isomorphic to
A™\ O, so it is irreducible; moreover every point of E belongs to a line L, the closure of
oY (L\ O) C X\ E. Hence X \ E is dense in X, which implies that X is irreducible.
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Therefore X is birational to A™: they are both irreducible and contain the isomorphic
open subsets X \ 07!(0) and A"\ O. In particular dim X = n, and 07'(0) = E ~ P"! has
codimension 1 in X. The tangent space Tp g» coincides with A" = K", and the set of the
lines through O can be interpreted as the projective space P(Tp an). So there is a bijection
between the exceptional divisor E and P(Tp an).

Figure 1, taken from the book of Safarevi¢, illustrates the case of the plane.

If we consider the second projection py : X — P"~1 for any [a] = [ay,...,a,] € P"7,
py '[a] is the line L' of (4). X with the map p, is an example of non-trivial line bundle, called
the universal bundle over P" 1.

If Y is a closed subvariety of A" passing through O, it is clear that c=!(Y’) contains the
exceptional divisor F = ¢7'(0). It is called the total trasform of Y in the blow-up. We
define the strict transform of Y in the blow-up of A™ as the closure Y := o~ (Y \ O). It
is interesting to consider the intersection Y N E, it depends on the behaviour of Y in a
neighborhood of O, and allows to analyse its singularities at O.

Example 1.6.

1. Let Y C A? be the plane cubic curve of equation y* — 22 = x3. The origin is a singular
point of Y, with multiplicity 2, and the tangent cone T'Cp y is the union of the two lines of
equations z —y = 0, z + y = 0, respectively. We consider the blow-up X C A2 x P! of A?
with centre O. Using coordinates tg,¢; in P!, X is defined by the unique equation zt; = toy.
Then o~ !(Y) is defined by the system

y? — 2% = 2P

IL’tl = t()y

As usual P! is covered by the two open subsets Uy : tg # 0 and U : t; # 0, so A2 x P! =
(A% x Up) U (A% x Uy), the union of two copies of A® and we can study X considering its
intersection Xy, X; with each of them. If ¢, # 0, we use t = ¢;/t, as affine coordinate;
if 1 # 0 we use u = ty/t;. Xo has equation y = tz and X; has equation z = uy. For
o~ 1Y) N X, we get the equations y* —2? — 23 = 0 and y = tz in A3 with coordinates x,y, t.
Substituting we get t?z? — 2% — 23 = 2%(t>* — 1 — x) = 0. So there are two components: one

r=t*-1
is defined by z = y = 0, which is £ N Xy; the other is defined by , 1t is
y=t(t*—1)
Y N X,. Note that it meets E at the two points P(0,0,1),Q(0,0,—1). They correspond on
E to the two tangent lines to Y at O: y —x =0 and x +y = 0.
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If we work on the other open set A2x Uy, 071 (Y) is defined by x = uy and y*—u?y*—u3y? =

T =uy

y2(1 —u? — udy) = 0. So Y N X is defined by . We find the same two

1—u?—udy=0
points of intersection with E£: (0,0,1), (0,0, —1).
The restriction of the projection o : Y - Yisan isomorphism outside the points P, on
Y and O on Y. The result is that the two branches of the singularity O have been separated,
and the singularity has been resolved.

2. Let Y C A? be the cuspidal cubic curve of equation y> — 22 = 0. The total transform
is defined by

y2 _ $3 =0
lL‘tl = toy

On the first open subset it becomes y? — 23 = 0 together with y = ta; replacing and
simplifying ¢, which corresponds to E, we get the equations for Y:

x =t
y="t

This is the affine skew cubic, that meets E at the unique point (0,0,0), corresponding to
the tangent line to Y at O: y = 0. By the way, we can check that E is the tangent line to
Y at (0,0,0). On the second open subset, we have the equations y? — 23 = 0 together with
x = uy; the strict transform is defined by 1 — w3y = 0 and # = uy. There is no point of
intersection with F in this affine chart. The map o : Y — Y is therefore regular, birational,
bijective, but not biregular; Y and Y cannot be isomorphic, because one is smooth and the
other is not smooth.

3. Let Y = V(2? —2* —y*) C A% O is a singular point of multiplicity 2 with tangent cone
the line z = 0 counted twice. Let Y be the strict transform of Y in the blow-up of the plane
in the origin. Proceeding as in the previous example we find that Y meets the exceptional
divisor £ = O x P! at the point O’ = ((0,0), [0, 1]), which belongs only to the second open
subset A? x U;. In coordinates z,y,u = to/t, Y is defined by the equations

T =uy
u2—u4y2—y2:0 ’

and O’ = (0,0,0). We compute the equation of the tangent space T, &, it is x = 0: it is a
2-plane in A3, so Y is singular at O’. The tangent cone T'C, v 1s © = 0,u? — y* = 0, the

union of two lines in the tangent plane.
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Let us consider a second blow-up ¢/, of A% in O'. It is contained in A® x P?; using

coordinates z, 21, 2o in P2, it is defined by

rk(x 4 u>§2.
20 R1 <2

If we work on the open subset A x Uy ~ A®, with coordinates x,y, u,(; = 21/20, (2 = 22/ 20,

the exceptional divisor E’ is defined by © = y = u = 0, and the total transform Y of Y by

(

xr=uy
y=CQx
u = Cw
(a7 - i1+ e = 0

In the last equation there is a common factor 22, that gives rise to the exceptional divisor;
after simplifying it we obtain the equation (3 — (3(1 + (Ja*) = 0, which defines the strict
transform together with x = uy, y = (1, u = (ax. The intersection Y'NE'is given therefore
by x =y =u= (3 — (¢ =0, two points P, Q. Considering the two other open sets A% x Uy,
A3 x U,, we find the same points P, Q.

In conclusion, we consider the composition of the two blow-ups V' LY S Y, which is
birational. In the first blow-up o, we pass from Y, with a singularity at the blown-up point
O with one tangent line, to Y with a node in O’ , its point of intersection with E. In the
second blow-up o', O’ is replaced by two points on the second exceptional divisor E’. To
verify if Y’ is smooth, it is enough to check if P, @) are smooth, and this can be checked
easily.

The singularity of Y is called a tacnode. We have just checked that to resolve it two
blow-ups are needed. What allows to distinguish the singularity of the curve of Example 2
from the present example, is the multiplicity of intersection at the point O of the tangent
line at the singular point O with the curve: it is 3 in Example 2 and 4 in Example 3.

The general problem of the resolution of singularities is, given a variety Y, to find a
birational morphism f : Y’ — Y with Y’ non-singular. It is possible to prove that, if Y is
a curve, the problem can be solved with a finite sequence of blow-ups. If dimY > 1, the
problem is much more difficult, and is presently completely solved only in characteristic 0
(see for instance [Hartshorne|, Ch. V| 3).

To conclude this Lesson, we will see a different way to introduce the blow-up of A™ at O.
Let 7 : A"\ O — P"! be the natural projection (ay,...,a,) = [ai,...,a,]. Let T be the
graph of m, T' C (A" \ O) x P"~! € A" x P"~!. We immediately have that the closure of
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[ in A" x P*! is precisely the blow-up X of A" at O. This interpretation suggests how to
extend Definition 1.5 and define the blow up of a variety X along a subvariety Y.

Suppose that X is an affine variety and I = Ix(Y) C K[X] is the ideal of a subvariety
Y of X. Suppose that I = (fo,..., f-). Let A be the rational map X --+ P" defined by
A= [fo,---, fr]. The blow-up of Y is the closure of the graph of A\ with the projection to
X. Similarly one can define the blow-up of a projective variety along a subvariety defined
by an ideal generated by homogeneous polynomials all of the same degree. For details, see
for instance [Cutkosky].

Exercises 1.7. Sia Y C P? be a smooth plane projective curve of degree d > 1, defined
by the equation f(z,y,z) = 0. Let C(Y) C A3 be the affine variety defined by the same
polynomial f: C(Y) is the affine cone of Y. Let O(0,0,0) € A® be the origin, vertex of
C(Y). Let o : X — A? be the blow-up in O.

1. Show that C(Y") has only one singular point, the vertex O;

2. show that 5(7)7 the strict transform of C'(Y'), is nonsingular (cover it with open affine
subsets); -

3. let E be the exceptional divisor; show that C'(Y) N E is isomorphic to Y.



