
LESSON 20.

1. Fibres of a morphism and lines on hypersurfaces.

In this last Lession, we will state the Theorem on the dimension of the fibres of a morphism,

and we will see an application, involving Grassmannians, about the existence of lines on a

hypersurface of given degree in a projective space.

Let us recall that the fibres of a morphism are the inverse images of the points of the

codomain. More precisely, if f : X → Y is a morphism, for any y ∈ Y , the fibre of f over y

is f−1(y). Since in the Zariski topology every point is closed, the fibre f−1(y) is closed in X,

and we want to study the dimensions of its irreducible components. We have seen in Lesson

18 that finite morphisms have the property that all the fibres are finite and non-empty, so

all irreducible components have dimension 0.

The following theorem gives informations about the behaviour of the fibres of general

morphisms.

Theorem 1.1 (Theorem on the dimension of the fibres.). Let f : X → Y be a dominant

morphism of algebraic sets. Then:

1. dim(X) ≥ dim(Y );

2. for any y ∈ Y , and for any irreducible component F of f−1(y), dimF ≥ dim(X) −
dim(Y );

3. there exists a non-empty open subset U ⊂ Y , such that dim f−1(y) = dim(X)−dim(Y )

for any y ∈ U ;

4. the sets Yk = {y ∈ Y | dim f−1(y) ≥ k} are closed in Y (upper semicontinuity of the

dimension of the fibres).

Before giving a sketch of the proof, let us see an example.

Example 1.2. Let V be an affine variety and consider W ⊂ V × Ar defined by s linear

equations with coefficients in K[V ]:

r∑
j=1

aijxj, aij ∈ K[X], i = 1, . . . , s.
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Let ϕ : W → V be the projection. For P ∈ V , ϕ−1(P ) is the set of solutions of the system

of linear equations with constant coefficients

r∑
j=1

aij(P )xj, aij(P ) ∈ K, i = 1, . . . , s,

so its dimension is r − rk(aij(P )). For any k ∈ N the set {P ∈ V | rk(aij(P )) ≤ k} is

closed in V , defined by the vanishing of the minors of order r + 1, and it is precisely Vr−k,

the subset of V where the dimension of the fibre is ≥ r − k.

Proof of Theorem 1.1. 1. Since f is dominant, there is the K-homomorphism f ∗ : K(Y ) ↪→
K(X), and tr.d.K(Y )/K ≤ tr.d.K(X)/K, because algebraically independent elements of

K(Y ) remain algebraically independent in K(X). So dim(Y ) ≤ dim(X).

2. Fix y ∈ Y . We observe that we can replace Y with an affine open neighborhood U

of y and X with f−1(U). So we can assume that Y is closed in an affine space AN . Let

n = dim(X),m = dim(Y ). We observe that we can find a polynomial G in N variables

which does not vanish identically on any irreducible component of Y . For instance, we

can fix a point on any irreducible component and choose a hyperplane not passing through

any of these points. Then all irreducible components of Y (1) := Y ∩ V (G) have dimension

m − 1. Repeating this argument, we can find a chain of subvarieties of Y of the form

Y ⊃ Y (1) ⊃ · · · ⊃ Y (m) ⊃ Y (m+1), where all irreducible components of Y (i) have dimension

m− i. In particular the irreducible components of Y (m) are points, among which there is y,

and Y (m) is defined by m equations of the form g1 = · · · = gm = 0, with g1, . . . , gm ∈ K[Y ].

Possibly restricting the open set U , we can assume that Y (m) ∩ U = {y}. Hence, the fibre

f−1(y) is defined by the system of m equations f ∗(g1) = · · · = f ∗(gm) = 0. The conclusion

follows from the Theorem of the intersection (Lesson 15, Theorem 1.1).

3. See [Šafarevič].

4. By induction on the dimension of Y . It is obviously true if dimY = 0. We know from

3. that there is an open subset U of Y such that dim f−1(y) = n−m if and only if y ∈ U .

Let Z be the complement of U in Y ; thus Z = Yn−m+1. Let Z1, . . . , Zr be the irreducible

components of Z. We can now apply the induction to the restrictions of f , f−1(Zj) → Zj

for each j , and we obtain the result. �

As a consequence of Theorem 1.1, we are able to prove the following very useful proposition.

Proposition 1.3. Let f : X → Y be a surjective morphism of projective algebraic sets.

Assume that Y is irreducible and that all fibres of f are irreducible and of the same dimension

r, then X is irreducible of dimension dim(Y ) + r.
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Proof. Note first of all that r = dim(X)− dim(Y ). Let Z be an irreducible closed subset of

X, and consider the restriction f |Z : Z → Y ; its fibres are f |−1Z (y) = f−1(y)∩Z. There are

three possibilities:

(a) f(Z) 6= Y . Then f(Z) is a proper closed subset of Y ;

(b) f(Z) = Y and dim(Z) < r + dim(Y ). Then 2. of Theorem 1.1 shows that there is a

nonempty open subset U of Y such that for y ∈ U , dim(f−1(y) ∩ Z) = dim(Z)− dim(Y ) <

r = dim(X)− dim(Y ). Thus, for y ∈ U , the fibre is not contained in Z.

(c) f(Z) = Y and dim(Z) ≥ r + dim(Y ). Then again 2. of Theorem 1.1 shows that

dim(f−1(y)∩Z) ≥ dim(Z)−dim(Y ) ≥ r for all y; thus f−1(y) ⊂ Z for all y ∈ Y , so Z = X.

Now let Z1, . . . , Zr be the irreducible components of X . We claim that (c) holds for at

least one of the Zi. Otherwise, there will be an open subset U in Y , such that for y ∈ U ,

f−1(y) is contained in none of the Zi; but f−1(y) is irreducible and f−1(y) =
⋃

i(f
−1(y)∩Zi)

so this is impossible. We conclude that X is irreducible. �

As an important application, we will study the existence of lines on hypersurfaces of fixed

degree. Let S = K[x0, . . . , xn], let d ≥ 1 be an integer number, then P(Sd) is a projective

space of dimension N =
(
n+d
d

)
−1, parametrising the hypersurfaces of degree d in Pn. Among

them there are reducible and even non-reduced hypersurfaces (i.e. those corresponding to non

square-free polynomials). Let us introduce the incidence correspondence line-hypersurface

as follows. Let G(1, n) be the Grassmannian parametrising the lines in Pn. We consider the

product variety G(1, n) × P(Sd), whose points are the pairs (`, [F ]), where ` is a line in Pn

and F ∈ Sd, that we can identify with the hypersurface VP (F ). By definition the incidence

variety (or correspondence) is Γd := {(`, [F ]) | ` ⊂ VP (F )} ⊂ G(1, n)× P(Sd).

Proposition 1.4. Γd is a projective algebraic set, i.e. it is the set of zeros of a set of

bihomogeneous polynomials in two series of variables: the Plücker coordinates pij on the

Grasmannian and the coefficients ai0...in of F .

Proof. Let P = (pij) be the skew-symmetric matrix, whose elements are the coordinates of a

line `: it has rank two and from Proposition 1.8, Lesson 19, it follows that each non-zero row

of P contains the coordinates of a point of `. So the rows of P are a system of generators of a

vector subspace W of dimension 2, such that ` = P(W ). Hence the coordinates of any point

of ` are linear combinations of the rows of P , of the form (x0 = Σiλip0i, . . . , xn = Σiλipni).

A line ` is contained in VP (F ) if and only if the equation F (Σiλip0i, . . . ,Σiλipni) = 0 is an

identity in λ0, . . . , λn. Therefore, Γd is the set of common zeros of the coefficients of the

monomials of degree d in λ0, . . . , λn: they are homogeneous of degree 1 in the coefficients of

F and of degree d in the pij’s. �
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Example 1.5.

Let n = d = 3, F = x30 − x1x2x3 ∈ S3. We put
x0 = λ1p01 + λ2p02 + λ3p03

x1 = −λ0p01 + λ2p12 + λ3p13

x2 = −λ0p02 − λ1p12 + λ3p23

x3 = −λ0p03 − λ1p13 − λ2p23

then we replace in F , and we get the identity (λ1p01 + λ2p02 + λ3p03)
3 − (−λ0p01 + λ2p12 +

λ3p13)(−λ0p02−λ1p12+λ3p23)(−λ0p03−λ1p13−λ2p23) = 0. By equating to zero the coefficients

of the 20 monomials of degree 3 in λ0, . . . , λ3 we get the equations representing the lines

contained in VP (F ).

As a matter of fact, for this particular surface finding the lines contained in it is particularly

simple. Indeed, we can distinguish the lines contained in the hyperplane “at infinity” from

the lines which are projective closure of a line in A3. The first ones are contained in x0 = 0,

and it is clear that there are only three of them: x0 = x1 = 0, x0 = x2 = 0, x0 = x3 = 0.

To find the others we dehomogenise F and get the equation x1x2x3 − 1 = 0, and consider

the parametrisation of a general line in A3: xi = ait + bi, i = 1, 2, 3. By substituting, we

immediately see that there are no solutions. We conclude that the surface contains only

three lines.

Figure 1. The cubic surface of Example 1.5
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We consider now the restrictions to Γd of the two projections, and we get ϕ1 : Γd → G(1, n),

ϕ2 : Γd → P(Sd). We will see now that the fibres of ϕ1 are all irreducible and of the same

dimension; this will allow to compute the dimension of Γd and get informations on the fibres

of ϕ2.

1. ϕ1(Γd) = G(1, n), because any line ` is contained in some hypersurface of degree d.

Indeed, up to a change of coordinates, we can assume that ` : x0 = x1 = · · · = xn−2 = 0.

So ` ⊂ VP (F ) if and only if F (0, . . . , 0, xn−1, xn) ≡ 0, if and only if the coefficients of the

monomials containing only xn−1, xn vanish, i.e. F is of the form x0G0 + · · · + xn−2Gn−2.

So ϕ−11 (`) is a linear subspace of dimension N − (d + 1), because the d + 1 monomials

xdn−1, x
d−1
n−1xn, . . . , x

d
n don’t appear in F . In particular we have that the fibres of ϕ1 are all

irreducible and of the same dimension. By applying Proposition 1.3, we obtain that Γd is

irreducible of dimension dimG(1, n) + dimϕ−11 (`) = 2(n− 1) +N − (d+ 1).

2. Consider now ϕ2 : Γd → P(Sd) = PN . If dim Γd < N , then ϕ2 cannot be surjective.

This happens if

dim(Γd) = 2(n− 1) +N − (d+ 1) < N if and only if d > 2n− 3.

We have proved the following theorem.

Theorem 1.6. If d > 2n − 3, there is an open non-empty subset U ⊂ P(Sd), such that

if [F ] ∈ U then the hypersurface VP (F ) does not contain any line; shortly, a “general”

hypersurface of degree d > 2n − 3 in Pn does not contain any line. The hypersurfaces

containing a line form a proper closed subset in P(Sd).

Example 1.7. Let n = 3, the case of surfaces in P3. Theorem 1.6 says that a general surface

of degree ≥ 4 does not contain lines. Let us analyse the cases d = 1, 2, 3.

• d = 1: the surface is a plane, the lines contained in a plane form a P2.

• d = 2: the surface is a quadric, any quadric contains lines, and precisely, if its rank is

4, it contains two families of dimension 1 parametrised by two conics in G(1, 3); if the rank

is 3, the quadric is a cone, and it contains a family of dimension 1 of lines, parametrised by

a conic in G(1, 3). In both cases of rank 3, 4 the fibres of ϕ2 have dimension 1. If the rank

is 2 or 1, the quadric is a pair of distinct planes or one plane with multiplicity 2, and the

fibres of ϕ2 have dimension 2.

• d = 3: in this case N = 19 = dim Γd. Two cases can occur: either ϕ2 is surjective,

and a general fibre has dimension 0, or it is not surjective. In the second case, ϕ2(Γ3), the

variety of the cubic surfaces containing at least one line, has dimension < 19, so the fibres of

Γ3 → ϕ2(Γ3) have all dimension > 0. Hence, if a cubic surface contains a line, it contains by

consequence infinitely many lines. But in Example 1.5 we have seen an explicit example of

a cubic surface containing finitely many lines; this shows that the first possibility occurs, i.e.
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a “general” cubic surface contains finitely many lines. Theorem 1.1 explains the meaning of

the adjective “general”: it means that the property holds true in an open dense subset of P19.

It is a classical fact that any smooth cubic surface contains exactly 27 lines, whose config-

uration is completely described (see for instance [Hartshorne]). Figure 2 shows the Clebsch

cubic surface, the only one having 27 real lines. In particular, among these 27 lines there are

many pairs of skew lines.

It is a nice application of the theory we have developed so far to prove that such a cubic

surface is rational.

Theorem 1.8. Let S ⊂ P3 be a cubic surface containing two skew lines. Then S is rational.

Proof. Let `, `′ be two skew lines contained in S. For any point P ∈ P3, P /∈ ` ∪ `′, there is

exactly one line rP passing through P and meeting both ` and `′: rP is the intersection of

the two planes passing through P and containing ` and `′ respectively. So we can consider

the rational map f : P3 99K ` × `′ ' P1 × P1, such that f(P ) = (rP ∩ `, rp ∩ `′), the pair of

points of intersection of rP with ` and `′. We consider now the restriction f̄ of f to S, and

we get a birational map. Indeed, for any pair of points x ∈ ` and x′ ∈ `′, the line joining

x and x′, if not contained in S, meets S in a third point. Since not all lines meeting ` and

`′ can be contained in S, this defines the rational inverse of f̄ . Therefore S is birational to

P1 × P1, that is birational to P2. By transitivity we conclude that S is rational. �

Figure 2. The Clebsch cubic surface
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Possible equations for the Clebsch cubic surface, for different choices of coordinates, are

x2y + y2z + z2w + w2x = 0

or

x0 + x1 + x2 + x3 + x4 = x30 + x31 + x32 + x33 + x34 = 0.

The following equation represents the Cayley cubic surface with 4 singular points of mul-

tiplicity 2, containing 9 lines

xyz + yzw + zwx+ wxy = 0.

Figure 3. The Cayley cubic surface

A list of all possible types of singularities of cubic surfaces, with figures, can be found in

the following web page: https://singsurf.org/parade/Cubics.php


