Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste Il Semestre 2019

Lecture 10: STL applications

Terminology

- Syntax: A set of syntactic rules that allow us to construct formulas from specific ground terms
- **Semantics**: A set of rules that assign meanings to well-formed formulas obtained by using above syntactic rules
- Model-checking/Verification: $M \models \phi \iff \forall \mathbf{x} \in trace(M) \ \beta(\varphi, \mathbf{x}, 0) = 1$
- Monitoring: computing β for a single trace $\mathbf{x} \in trace(M)$
- Statistical Model Checking: "doing statistics" on $\beta(\varphi, \mathbf{x}, 0)$ for a finite-subset of trace(M)

STL Monitor

An STL monitor is a transducer that transforms x into Boolean or a quantitative signal

The many uses of STL

- Requirement-based testing for closed-loop control models
- Falsification Analysis
- Parameter Synthesis
- Mining Specifications/Requirements from Models
- Online Monitoring

...

Closed-loop Models

- Closed-loop Models contain:
 - Dynamics describing Physical Processes (Plant)
 - Code describing Embedded Control, Sensing, Actuation
 - Models of connection between plant and controller (hard-wired vs. wired network vs. wireless communication)

Example

Inputs:

Throttle

Brake

Outputs:

RPM

Gear

Speed

Simulink model of a Car Automatic Gear Transmission Systems

Example

Black Box Assumption

Black Box Assumption

For simplicity, consider the composed plant model, controller and communication to be a model M that is excited by an input signal $\mathbf{u}(t)$ and produces some output signal $\mathbf{y}(t)$

Verification vs. Testing

- For simplicity, \mathbf{u} is a function from \mathbb{T} to \mathbb{R}^m ; let the set of all possible functions representing input signals be U
- Verification Problem:
 - Prove the following: $\forall \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \models \varphi(\mathbf{u}, \mathbf{y})$
- Falsification/Testing Problem:
 - Find a witness to the query: $\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \not\models \varphi(\mathbf{u}, \mathbf{y})$
- These formulations are quite general, as we can include the following "model uncertainties" as input signals: Initial states, tunable parameters in both plant and controller, time-varying parameter values, noise, etc.,

Challenges with real-world systems

- If plant model, software and communication is simple (e.g. linear models), then we can do formal analysis
- Most real-world examples have very complex plants, controllers and communication!
- Verification problem, in the most general case is undecidable
 - ▶ it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer to the problem

Falsification/Testing

Falsification by optimization

Use robustness as a cost function to minimize with Black-box/Global Optimizers

Falsification/Testing

- Falsification or testing attempts to find one or more \mathbf{u} signals such that $\neg \varphi(\mathbf{u}, M(\mathbf{u}))$ is true.
- In verification, the set \mathbb{T} (the time domain) could be unbounded, in falsification or testing, the time domain is necessarily bounded, i.e. $\mathbb{T} \subseteq [0,T]$, where T is some finite numeric constant
- In verification the co-domain of \mathbf{u} , could be an unbounded subset of \mathbb{R}^m , in falsification, we typically consider some compact subset of \mathbb{R}^m
- For the i^{th} input signal component, let D_i denote its compact co-domain. Then the input signal \mathbf{u} is a function from \mathbb{T} to $D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0,T]$ In simple words: input signals range over bounded intervals and over a bounded time horizon

Falsification re-framed

Given:

- Set of all such input signals : U
- ▶ Input signal \mathbf{u} : function from \mathbb{T} to $D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0, T]$
- Model M that maps ${\bf u}$ to some signal ${\bf y}$ with the same domain as ${\bf u}$, and codomain some subset of \mathbb{R}^n
- ightharpoonup Property φ that can be evaluated to true/false over given ${f u}$ and ${f y}$

Check:
$$\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \not\models \neg \varphi(\mathbf{u}, \mathbf{y})$$

Falsification CPS

Goal:

Find the inputs (1) which falsify the requirements (4)

Problems:

- Falsify with a low number of simulations
- Functional Input Space

Active Learning

Adaptive Parameterization

Adaptive Parameterization

Adaptive Parameterization

Problem

Finding the trajectories which falsify the requirements, finding $u \in B$

$$B = \{ \boldsymbol{u} \in U \mid \rho(M(\boldsymbol{u}), \phi) \in (-\infty, 0) \} \subseteq U$$

- \succ Training Set: $K = \{u_i, \rho(M(u_i), \phi)\}_{i \le n}$ (the partial knowledge after n iterations)
- > Gaussian Process: $\rho_K(\boldsymbol{u}) \sim GP(m_K(\boldsymbol{u}), \sigma_K(\boldsymbol{u}))$ (the partial model)

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

Idea: implementing an iterative sample strategy in order to increase the probability to sample a point in B, as the number of iterations increases.

 u_2

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

 u_2

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

 u_2

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

 u_2

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

 u_2

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

 u_2

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

 u_2

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

 u_2

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

 u_2

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

Tests Case & Results

- $\phi_1(\bar{v},\bar{\omega}) = \mathbf{G}_{[0,30]}(v \leq \bar{v} \wedge \omega \leq \bar{\omega})$ (in the next 30 seconds the engine and vehicle speed never reach $\bar{\omega}$ rpm and \bar{v} km/h, respectively)
- $\phi_2(\bar{v},\bar{\omega}) = \mathbf{G}_{[0,30]}(\omega \leq \bar{\omega}) \to \mathbf{G}_{[0,10]}(v \leq \bar{v})$ (if the engine speed is always less than $\bar{\omega}$ rpm, then the vehicle speed can not exceed \bar{v} km/h in less than 10 sec)
- $\phi_3(\bar{v},\bar{\omega}) = \mathbf{F}_{[0,10]}(v \geq \bar{v}) \to \mathbf{G}_{[0,30]}(\omega \leq \bar{\omega})$ (the vehicle speed is above \bar{v} km/h than from that point on the engine speed is always less than $\bar{\omega}$ rpm)

	Adaptive DEA		Adaptive GP-UCB		S-TaLiRo		
Req	nval	times	nval	times	nval	times	Alg
ϕ_1	4.42 ± 0.53	2.16 ± 0.61	4.16 ± 2.40	0.55 ± 0.30	5.16 ± 4.32	0.57 ± 0.48	UR
ϕ_1	6.90 ± 2.22	5.78 ± 3.88	8.7 ± 1.78	1.52 ± 0.40	39.64 ± 44.49	4.46 ± 4.99	SA
ϕ_{2}	3.24 ± 1.98	1.57 ± 1.91	7.94 ± 3.90	1.55 ± 1.23	12.78 ± 11.27	1.46 ± 1.28	CE
ϕ_{2}	10.14 ± 2.95	12.39 ± 6.96	23.9 ± 7.39	9.86 ± 4.54	59 ± 42	6.83 ± 4.93	SA
ϕ_{2}	8.52 ± 2.90	9.13 ± 5.90	13.6 ± 3.48	4.12 ± 1.67	43.1 ± 39.23	4.89 ± 4.43	SA
ϕ_{3}	5.02 ± 0.97	2.91 ± 1.20	5.44 ± 3.14	0.91 ± 0.67	10.04 ± 7.30	1.15 ± 0.84	CE
ϕ_3	7.70 ± 2.36	7.07 ± 3.87	10.52 ± 1.76	2.43 ± 0.92	11 ± 9.10	1.25 ± 1.03	UR

Parameter Synthesis

Parameter Synthesis

Problem

Given a model, depending on a set of parameters $\theta \in \Theta$, and a specification ϕ (STL formula), find the parameter combination θ s.t. the system satisfies φ as more as possible

Solution Strategy

- rephrase it as a optimisation problem (maximizing ρ)
- evaluate the function to optimise
- solve the optimisation problem

Parameter Synthesis via Robustness Maximisation

Robustness Distribution

$$\mathbb{P}\left(R_{\varphi}(\mathbf{X})\in[a,b]\right)=\mathbb{P}\left(\mathbf{X}\in\{\mathbf{x}\in\mathcal{D}\mid\rho(\varphi,\mathbf{x},0)\in[a,b]\}\right)$$

Indicators

$$\mathbb{E}(R_{arphi})$$

 $\mathbb{E}(R_{\varphi} \mid R_{\varphi} > 0)$ and $\mathbb{E}(R_{\varphi} \mid R_{\varphi} < 0)$

(the average robustness degree) (the conditional averages)

Parameter Synthesis

Problem

Find the parameter configuration that maximizes $E[R_{\phi}](\theta)$, of which we have few costly and noisy evaluations.

Methodology

- 1. Sample $\{(\theta_{(i)}, y_{(i)}), i = 1,...,n\}$
- 2. Emulate (**GP Regression**): $E[R_{\downarrow}] \sim GP(\mu,k)$
- 3. Optimize the emulation via GP-UCB algorithm, new $\theta_{\mbox{\tiny (n+1)}}$

(1) Sample

Collection of the training set $\{(\theta_0, y_0), i = 1,...,m\}$ for parameters values θ .

(2) The GP Regression

We have noisy observations y of the function value distributed around an unknown true value $f(\theta)$ with spherical Gaussian noise

(2) The GP Regression

We have noisy observations y of the function value distributed around an unknown true value $f(\theta)$ with spherical Gaussian noise

Balance Exploration and Exploitation: we maximise the 95% upper

Balance Exploration and Exploitation: we maximise the **95% upper**

Balance Exploration and Exploitation: we maximise the **95% upper**

Balance Exploration and Exploitation: we maximise the 95% upper

Balance Exploration and Exploitation: we maximise the 95% upper

Balance Exploration and Exploitation: we maximise the 95% upper

Specification Mining

- What is the maximum speed that the vehicle can reach?
- What is the minimum d well time in a given gear?

Parametric Signal Temporal Logic

Definition (PSTL syntax)

$$\phi \coloneqq (\mathbf{x}_i \bowtie \boldsymbol{\pi}) \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \, \mathcal{U}_{[\tau_1, \tau_2]} \, \varphi_2$$

with $\bowtie \in \{>, \leq\}$

- π is **threshold** parameter
- $ightharpoonup au_1$, au_2 are **temporal** parameters

- $\mathbb{K} = (\mathcal{T} \times \mathcal{C})$ be the **parameter space**
- ▶ $\theta \in \mathbb{K}$ is a parameter configuration

e.g.,
$$\phi = \mathcal{F}_{[a,b]}(x_i > k), \theta = (0,2,3.5)$$
 then $\phi_{\theta} = \mathcal{F}_{[0,2]}(x_i > 3.5)$.

Specification Mining

Specification Mining: Try to find values of parameters of a PSTL formula from a given model

- ► Why?
 - Good to know "as-is" properties of the model
 - Finds worst-case behaviors of the model
 - Discriminates between regular and anomalous behaviours

Specification Templates using PSTL

Parameter inference for PSTL

- Given:
 - ▶ PSTL formula $\varphi(\mathbf{p})$, $[\mathbf{p} = (p_1, p_2, ..., p_m)]$
 - ightharpoonup Traces x_1, \dots, x_n
- Find:
 - ▶ Valuation $\nu(\mathbf{p})$ such that: $\forall i : x_i \models \varphi(\nu(\mathbf{p}))$ δ -tight valuation
 - and $\exists i: x_i \not\models \varphi(\nu(\mathbf{p}) \pm \delta):$ i.e. small perturbation in $\nu(\mathbf{p})$ makes some trace not satisfy formula

formula sat for given valuation ⇒ ∀ greater (or lesser) valuations sat

Binary search on parameter space

Specification Mining

Learning STL classifiers

Goal: Given sets of good and bad trajectories (or generative models), learn STL properties that can separate the two behaviours (a STL classifier)

Idea: for a fixed template formula, learn optimally separating parameters by Bayesian Optimisation.

$$\varphi = ((x_2 > 22.46) U_{[49,287]} (x_1 \le 31.65))$$

Maritime surveillance

$$\phi = \mathcal{F}_{[31,130]}((flow \ge -670) \lor (flow' \le -94))$$

Light entrainment of biological oscillator

Idea: explore formula structure by genetic programming on syntactic trees

Problem Formulation

A supervised two-class classification problem

Given a training set of $D_p(good)$ and $D_n(bad)$ find the best φ that better separates the two sets.

Discrimination Function

$$G(\phi) = \frac{\mathbb{E}(R_{\phi}|\vec{X}_{p}) - \mathbb{E}(R_{\phi}|\vec{X}_{n})}{\sigma(R_{\phi}|\vec{X}_{p}) + \sigma(R_{\phi}|\vec{X}_{n})}.$$

Observation: only statistical and noisy evaluations of $G(\phi)$

Goal: maximize $G(\phi)$

ROGE – RObustness GEnetic Algorithm

It is a bi-level optimization algorithm. A GEnetic algorithm to learn the structure and a Bayesian optimization algorithm to learn the parameters.

```
Require: \mathcal{D}_p, \mathcal{D}_n, \mathbb{K}, Ne, Ng, \alpha, s
 1: gen \leftarrow GENERATEINITIALFORMULAE(Ne, s)
 2: gen_{\Theta} \leftarrow LEARNINGPARAMETERS(gen, G, \mathbb{K})
 3: for i = 1 ... Ng do
       subg_{\Theta} \leftarrow SAMPLE(gen_{\Theta}, F)
      newg \leftarrow EVOLVE(subg_{\Theta}, \alpha)
      newg_{\Theta} \leftarrow LEARNINGPARAMETERS(newg, G, \mathbb{K})
        gen_{\Theta} \leftarrow SAMPLE(newg_{\Theta} \cup gen_{\Theta}, F)
 8: end for
 9: return gen⊖
```

$$\phi_{best} = \operatorname{argmax}_{\phi_{\theta} \in gen_{\Theta}}(G(\phi_{\theta}))$$

Learning the Parameters

Problem

Given a PSTL formula ϕ , a parameter space \mathbb{K} , find Θ that maximises the discrimination function $G(\phi_{\circ})$.

Methodology

- 1. Sample $\{(\theta_{(i)}, y_{(i)}), i = 1,...,n\}$
- 2. Emulate (**GP Regression**): $G[R_{\bullet}] \sim GP(\mu,k)$
- 3. Optimize the emulation via **GP-UCB algorithm**, new $\theta_{\text{\tiny (n+1)}}$

$$\exists \delta \text{ s.t. } \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_p) > \delta \text{ and } \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_n) \leq \delta$$
Translation. $(\vec{x} - \delta) \Rightarrow \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_p) > 0 \text{ and } \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_n) \leq 0$

Learning the Structure

Problem

Given a set of PSTL formulas *gen*, find the best ϕ such that ϕ maximises the discrimination function $G(\phi)$.

Methodology

- 1. GENERATEINITIALFORMULAE: gen= $\{\phi_1, \dots, \phi_{N_e}\}$
- **2.** Sample(gen_{Θ}, F)=subg_{Θ}, N_e/2 formulae, F(φ)=G(φ)-S(φ)
- **3.** EVOLVE(subg_o, α) = newg_o, based on two genetic operators, a recombination and a mutation operator.

Regularization

Formula size penalty $S(\phi)$ and complexity of initial population.

Maritime Surveillance

Synthetic dataset of naval surveillance of 2-dimensional coordinates traces of vessels behaviours.

$$\phi_{ROGE} = ((x_2 > 22.46) \mathcal{U}_{[49,287]} (x_1 \le 31.65))$$

Ineffective Inspiratory Effort (IIE)

The dataset consists of 2-dim traces of flow and its derivative, flow'.

Control Synthesis with STL

The idea is to use the dynamical model of the process to predict its future evolution and optimize consequently the control input signal

Bibliography

Falsification:

- Silvetti S., Policriti A., Bortolussi L. (2017) An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems. IFM 2017. LNCS, vol 10510. Springer, Cham.
- Several excellent papers on the first development of falsification technology can be found on the web-site of S-TaLiRo : https://sites.google.com/a/asu.edu/s-taliro/references
- Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems through Bayesian Optimization. *ACM Trans. Embed. Comput. Syst.* 16, 5s, Article 170 (September 2017)
- Deshmukh, Jyotirmoy, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic Local Search for Falsification of Hybrid Systems. In International Symposium on Automated Technology for Verification and Analysis, pp. 500-517.

Parameter Synthesis:

- Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587: 3-25 (2015)
- Bortolussi L., Silvetti S. (2018) Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models. TACAS 2018. LNCS, vol 10806. Springer, Cham

Mining Requirements:

- Jin, Deshmukh et al. Mining Requirements from Closed-loop Control Models (HSCC '13, IEEE Trans. On Computer Aided Design '15)
- Nenzi L., Silvetti S., Bartocci E., Bortolussi L. (2018) A Robust Genetic Algorithm for Learning Temporal Specifications from Data. QEST 2018. LNCS, vol 11024. Springer, Cham.