Cyber-Physical Systems #### Laura Nenzi Università degli Studi di Trieste Il Semestre 2019 Lecture 10: STL applications ### Terminology - Syntax: A set of syntactic rules that allow us to construct formulas from specific ground terms - **Semantics**: A set of rules that assign meanings to well-formed formulas obtained by using above syntactic rules - Model-checking/Verification: $M \models \phi \iff \forall \mathbf{x} \in trace(M) \ \beta(\varphi, \mathbf{x}, 0) = 1$ - Monitoring: computing β for a single trace $\mathbf{x} \in trace(M)$ - Statistical Model Checking: "doing statistics" on $\beta(\varphi, \mathbf{x}, 0)$ for a finite-subset of trace(M) #### STL Monitor An STL monitor is a transducer that transforms x into Boolean or a quantitative signal ## The many uses of STL - Requirement-based testing for closed-loop control models - Falsification Analysis - Parameter Synthesis - Mining Specifications/Requirements from Models - Online Monitoring ... #### Closed-loop Models - Closed-loop Models contain: - Dynamics describing Physical Processes (Plant) - Code describing Embedded Control, Sensing, Actuation - Models of connection between plant and controller (hard-wired vs. wired network vs. wireless communication) ### Example Inputs: Throttle Brake Outputs: **RPM** Gear Speed Simulink model of a Car Automatic Gear Transmission Systems ## Example ## Black Box Assumption ### Black Box Assumption For simplicity, consider the composed plant model, controller and communication to be a model M that is excited by an input signal $\mathbf{u}(t)$ and produces some output signal $\mathbf{y}(t)$ #### Verification vs. Testing - For simplicity, \mathbf{u} is a function from \mathbb{T} to \mathbb{R}^m ; let the set of all possible functions representing input signals be U - Verification Problem: - Prove the following: $\forall \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \models \varphi(\mathbf{u}, \mathbf{y})$ - Falsification/Testing Problem: - Find a witness to the query: $\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \not\models \varphi(\mathbf{u}, \mathbf{y})$ - These formulations are quite general, as we can include the following "model uncertainties" as input signals: Initial states, tunable parameters in both plant and controller, time-varying parameter values, noise, etc., #### Challenges with real-world systems - If plant model, software and communication is simple (e.g. linear models), then we can do formal analysis - Most real-world examples have very complex plants, controllers and communication! - Verification problem, in the most general case is undecidable - ▶ it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer to the problem ## Falsification/Testing ## Falsification by optimization Use robustness as a cost function to minimize with Black-box/Global Optimizers ## Falsification/Testing - Falsification or testing attempts to find one or more \mathbf{u} signals such that $\neg \varphi(\mathbf{u}, M(\mathbf{u}))$ is true. - In verification, the set \mathbb{T} (the time domain) could be unbounded, in falsification or testing, the time domain is necessarily bounded, i.e. $\mathbb{T} \subseteq [0,T]$, where T is some finite numeric constant - In verification the co-domain of \mathbf{u} , could be an unbounded subset of \mathbb{R}^m , in falsification, we typically consider some compact subset of \mathbb{R}^m - For the i^{th} input signal component, let D_i denote its compact co-domain. Then the input signal \mathbf{u} is a function from \mathbb{T} to $D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0,T]$ In simple words: input signals range over bounded intervals and over a bounded time horizon #### Falsification re-framed #### Given: - Set of all such input signals : U - ▶ Input signal \mathbf{u} : function from \mathbb{T} to $D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0, T]$ - Model M that maps ${\bf u}$ to some signal ${\bf y}$ with the same domain as ${\bf u}$, and codomain some subset of \mathbb{R}^n - ightharpoonup Property φ that can be evaluated to true/false over given ${f u}$ and ${f y}$ Check: $$\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \not\models \neg \varphi(\mathbf{u}, \mathbf{y})$$ #### Falsification CPS #### Goal: Find the inputs (1) which falsify the requirements (4) #### **Problems:** - Falsify with a low number of simulations - Functional Input Space Active Learning Adaptive Parameterization ### Adaptive Parameterization ### Adaptive Parameterization #### Problem Finding the trajectories which falsify the requirements, finding $u \in B$ $$B = \{ \boldsymbol{u} \in U \mid \rho(M(\boldsymbol{u}), \phi) \in (-\infty, 0) \} \subseteq U$$ - \succ Training Set: $K = \{u_i, \rho(M(u_i), \phi)\}_{i \le n}$ (the partial knowledge after n iterations) - > Gaussian Process: $\rho_K(\boldsymbol{u}) \sim GP(m_K(\boldsymbol{u}), \sigma_K(\boldsymbol{u}))$ (the partial model) $$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$ Idea: implementing an iterative sample strategy in order to increase the probability to sample a point in B, as the number of iterations increases. u_2 $$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$ #### Tests Case & Results - $\phi_1(\bar{v},\bar{\omega}) = \mathbf{G}_{[0,30]}(v \leq \bar{v} \wedge \omega \leq \bar{\omega})$ (in the next 30 seconds the engine and vehicle speed never reach $\bar{\omega}$ rpm and \bar{v} km/h, respectively) - $\phi_2(\bar{v},\bar{\omega}) = \mathbf{G}_{[0,30]}(\omega \leq \bar{\omega}) \to \mathbf{G}_{[0,10]}(v \leq \bar{v})$ (if the engine speed is always less than $\bar{\omega}$ rpm, then the vehicle speed can not exceed \bar{v} km/h in less than 10 sec) - $\phi_3(\bar{v},\bar{\omega}) = \mathbf{F}_{[0,10]}(v \geq \bar{v}) \to \mathbf{G}_{[0,30]}(\omega \leq \bar{\omega})$ (the vehicle speed is above \bar{v} km/h than from that point on the engine speed is always less than $\bar{\omega}$ rpm) | | Adaptive DEA | | Adaptive GP-UCB | | S-TaLiRo | | | |------------|-----------------|------------------|------------------|-----------------|-------------------|-----------------|-----| | Req | nval | times | nval | times | nval | times | Alg | | ϕ_1 | 4.42 ± 0.53 | 2.16 ± 0.61 | 4.16 ± 2.40 | 0.55 ± 0.30 | 5.16 ± 4.32 | 0.57 ± 0.48 | UR | | ϕ_1 | 6.90 ± 2.22 | 5.78 ± 3.88 | 8.7 ± 1.78 | 1.52 ± 0.40 | 39.64 ± 44.49 | 4.46 ± 4.99 | SA | | ϕ_{2} | 3.24 ± 1.98 | 1.57 ± 1.91 | 7.94 ± 3.90 | 1.55 ± 1.23 | 12.78 ± 11.27 | 1.46 ± 1.28 | CE | | ϕ_{2} | 10.14 ± 2.95 | 12.39 ± 6.96 | 23.9 ± 7.39 | 9.86 ± 4.54 | 59 ± 42 | 6.83 ± 4.93 | SA | | ϕ_{2} | 8.52 ± 2.90 | 9.13 ± 5.90 | 13.6 ± 3.48 | 4.12 ± 1.67 | 43.1 ± 39.23 | 4.89 ± 4.43 | SA | | ϕ_{3} | 5.02 ± 0.97 | 2.91 ± 1.20 | 5.44 ± 3.14 | 0.91 ± 0.67 | 10.04 ± 7.30 | 1.15 ± 0.84 | CE | | ϕ_3 | 7.70 ± 2.36 | 7.07 ± 3.87 | 10.52 ± 1.76 | 2.43 ± 0.92 | 11 ± 9.10 | 1.25 ± 1.03 | UR | ## Parameter Synthesis #### Parameter Synthesis #### Problem Given a model, depending on a set of parameters $\theta \in \Theta$, and a specification ϕ (STL formula), find the parameter combination θ s.t. the system satisfies φ as more as possible #### Solution Strategy - rephrase it as a optimisation problem (maximizing ρ) - evaluate the function to optimise - solve the optimisation problem #### Parameter Synthesis via Robustness Maximisation #### **Robustness Distribution** $$\mathbb{P}\left(R_{\varphi}(\mathbf{X})\in[a,b]\right)=\mathbb{P}\left(\mathbf{X}\in\{\mathbf{x}\in\mathcal{D}\mid\rho(\varphi,\mathbf{x},0)\in[a,b]\}\right)$$ #### **Indicators** $$\mathbb{E}(R_{arphi})$$ $\mathbb{E}(R_{\varphi} \mid R_{\varphi} > 0)$ and $\mathbb{E}(R_{\varphi} \mid R_{\varphi} < 0)$ (the average robustness degree) (the conditional averages) #### Parameter Synthesis #### **Problem** Find the parameter configuration that maximizes $E[R_{\phi}](\theta)$, of which we have few costly and noisy evaluations. #### Methodology - 1. Sample $\{(\theta_{(i)}, y_{(i)}), i = 1,...,n\}$ - 2. Emulate (**GP Regression**): $E[R_{\downarrow}] \sim GP(\mu,k)$ - 3. Optimize the emulation via GP-UCB algorithm, new $\theta_{\mbox{\tiny (n+1)}}$ #### (1) Sample Collection of the training set $\{(\theta_0, y_0), i = 1,...,m\}$ for parameters values θ . ## (2) The GP Regression We have noisy observations y of the function value distributed around an unknown true value $f(\theta)$ with spherical Gaussian noise ## (2) The GP Regression We have noisy observations y of the function value distributed around an unknown true value $f(\theta)$ with spherical Gaussian noise Balance Exploration and Exploitation: we maximise the 95% upper Balance Exploration and Exploitation: we maximise the **95% upper** Balance Exploration and Exploitation: we maximise the **95% upper** Balance Exploration and Exploitation: we maximise the 95% upper Balance Exploration and Exploitation: we maximise the 95% upper Balance Exploration and Exploitation: we maximise the 95% upper # Specification Mining - What is the maximum speed that the vehicle can reach? - What is the minimum d well time in a given gear? # Parametric Signal Temporal Logic ### Definition (PSTL syntax) $$\phi \coloneqq (\mathbf{x}_i \bowtie \boldsymbol{\pi}) \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \, \mathcal{U}_{[\tau_1, \tau_2]} \, \varphi_2$$ with $\bowtie \in \{>, \leq\}$ - π is **threshold** parameter - $ightharpoonup au_1$, au_2 are **temporal** parameters - $\mathbb{K} = (\mathcal{T} \times \mathcal{C})$ be the **parameter space** - ▶ $\theta \in \mathbb{K}$ is a parameter configuration e.g., $$\phi = \mathcal{F}_{[a,b]}(x_i > k), \theta = (0,2,3.5)$$ then $\phi_{\theta} = \mathcal{F}_{[0,2]}(x_i > 3.5)$. # Specification Mining Specification Mining: Try to find values of parameters of a PSTL formula from a given model - ► Why? - Good to know "as-is" properties of the model - Finds worst-case behaviors of the model - Discriminates between regular and anomalous behaviours # Specification Templates using PSTL ## Parameter inference for PSTL - Given: - ▶ PSTL formula $\varphi(\mathbf{p})$, $[\mathbf{p} = (p_1, p_2, ..., p_m)]$ - ightharpoonup Traces x_1, \dots, x_n - Find: - ▶ Valuation $\nu(\mathbf{p})$ such that: $\forall i : x_i \models \varphi(\nu(\mathbf{p}))$ δ -tight valuation - and $\exists i: x_i \not\models \varphi(\nu(\mathbf{p}) \pm \delta):$ i.e. small perturbation in $\nu(\mathbf{p})$ makes some trace not satisfy formula formula sat for given valuation ⇒ ∀ greater (or lesser) valuations sat Binary search on parameter space Specification Mining # Learning STL classifiers **Goal**: Given sets of good and bad trajectories (or generative models), learn STL properties that can separate the two behaviours (a STL classifier) Idea: for a fixed template formula, learn optimally separating parameters by Bayesian Optimisation. $$\varphi = ((x_2 > 22.46) U_{[49,287]} (x_1 \le 31.65))$$ Maritime surveillance $$\phi = \mathcal{F}_{[31,130]}((flow \ge -670) \lor (flow' \le -94))$$ Light entrainment of biological oscillator Idea: explore formula structure by genetic programming on syntactic trees ## Problem Formulation ### A supervised two-class classification problem Given a training set of $D_p(good)$ and $D_n(bad)$ find the best φ that better separates the two sets. ### Discrimination Function $$G(\phi) = \frac{\mathbb{E}(R_{\phi}|\vec{X}_{p}) - \mathbb{E}(R_{\phi}|\vec{X}_{n})}{\sigma(R_{\phi}|\vec{X}_{p}) + \sigma(R_{\phi}|\vec{X}_{n})}.$$ **Observation**: only statistical and noisy evaluations of $G(\phi)$ **Goal**: maximize $G(\phi)$ ## ROGE – RObustness GEnetic Algorithm It is a bi-level optimization algorithm. A GEnetic algorithm to learn the structure and a Bayesian optimization algorithm to learn the parameters. ``` Require: \mathcal{D}_p, \mathcal{D}_n, \mathbb{K}, Ne, Ng, \alpha, s 1: gen \leftarrow GENERATEINITIALFORMULAE(Ne, s) 2: gen_{\Theta} \leftarrow LEARNINGPARAMETERS(gen, G, \mathbb{K}) 3: for i = 1 ... Ng do subg_{\Theta} \leftarrow SAMPLE(gen_{\Theta}, F) newg \leftarrow EVOLVE(subg_{\Theta}, \alpha) newg_{\Theta} \leftarrow LEARNINGPARAMETERS(newg, G, \mathbb{K}) gen_{\Theta} \leftarrow SAMPLE(newg_{\Theta} \cup gen_{\Theta}, F) 8: end for 9: return gen⊖ ``` $$\phi_{best} = \operatorname{argmax}_{\phi_{\theta} \in gen_{\Theta}}(G(\phi_{\theta}))$$ ## Learning the Parameters ### **Problem** Given a PSTL formula ϕ , a parameter space \mathbb{K} , find Θ that maximises the discrimination function $G(\phi_{\circ})$. ### Methodology - 1. Sample $\{(\theta_{(i)}, y_{(i)}), i = 1,...,n\}$ - 2. Emulate (**GP Regression**): $G[R_{\bullet}] \sim GP(\mu,k)$ - 3. Optimize the emulation via **GP-UCB algorithm**, new $\theta_{\text{\tiny (n+1)}}$ $$\exists \delta \text{ s.t. } \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_p) > \delta \text{ and } \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_n) \leq \delta$$ **Translation**. $(\vec{x} - \delta) \Rightarrow \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_p) > 0 \text{ and } \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_n) \leq 0$ # Learning the Structure ### **Problem** Given a set of PSTL formulas *gen*, find the best ϕ such that ϕ maximises the discrimination function $G(\phi)$. ### **Methodology** - 1. GENERATEINITIALFORMULAE: gen= $\{\phi_1, \dots, \phi_{N_e}\}$ - **2.** Sample(gen_{Θ}, F)=subg_{Θ}, N_e/2 formulae, F(φ)=G(φ)-S(φ) - **3.** EVOLVE(subg_o, α) = newg_o, based on two genetic operators, a recombination and a mutation operator. ### Regularization Formula size penalty $S(\phi)$ and complexity of initial population. ## Maritime Surveillance Synthetic dataset of naval surveillance of 2-dimensional coordinates traces of vessels behaviours. $$\phi_{ROGE} = ((x_2 > 22.46) \mathcal{U}_{[49,287]} (x_1 \le 31.65))$$ # Ineffective Inspiratory Effort (IIE) The dataset consists of 2-dim traces of flow and its derivative, flow'. # Control Synthesis with STL The idea is to use the dynamical model of the process to predict its future evolution and optimize consequently the control input signal # Bibliography #### **Falsification:** - Silvetti S., Policriti A., Bortolussi L. (2017) An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems. IFM 2017. LNCS, vol 10510. Springer, Cham. - Several excellent papers on the first development of falsification technology can be found on the web-site of S-TaLiRo : https://sites.google.com/a/asu.edu/s-taliro/references - Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems through Bayesian Optimization. *ACM Trans. Embed. Comput. Syst.* 16, 5s, Article 170 (September 2017) - Deshmukh, Jyotirmoy, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic Local Search for Falsification of Hybrid Systems. In International Symposium on Automated Technology for Verification and Analysis, pp. 500-517. ### **Parameter Synthesis:** - Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587: 3-25 (2015) - Bortolussi L., Silvetti S. (2018) Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models. TACAS 2018. LNCS, vol 10806. Springer, Cham ### **Mining Requirements:** - Jin, Deshmukh et al. Mining Requirements from Closed-loop Control Models (HSCC '13, IEEE Trans. On Computer Aided Design '15) - Nenzi L., Silvetti S., Bartocci E., Bortolussi L. (2018) A Robust Genetic Algorithm for Learning Temporal Specifications from Data. QEST 2018. LNCS, vol 11024. Springer, Cham.