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Terminology
• Syntax: A set of syntactic rules that allow us to construct formulas from 

specific ground terms 

• Semantics: A set of rules that assign meanings to well-formed formulas 
obtained by using above syntactic rules 

• Model-checking/Verification: 𝑀 ⊨ 𝜙 ⟺ ∀𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀 𝛽 𝜑, 𝐱, 0 = 1

• Monitoring: computing 𝛽 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

• Statistical Model Checking: “doing statistics” on 𝛽 𝜑, 𝐱, 0 for a finite-
subset of 𝑡𝑟𝑎𝑐𝑒 𝑀



STL Monitor
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An STL monitor is a transducer that transforms x into Boolean or a quantitative signal



u Requirement-based testing for closed-loop control models

u Falsification Analysis

u Parameter Synthesis

u Mining Specifications/Requirements from Models

u Online Monitoring

u …

The many uses of STL
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u Closed-loop Models contain:
� Dynamics describing Physical Processes (Plant)

� Code describing Embedded Control, Sensing, Actuation

� Models of connection between plant and controller (hard-wired vs. wired network vs. 
wireless communication)

Closed-loop Models
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Example

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

Simulink model of a Car Automatic Gear Transmission Systems 
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Example



Black Box Assumption

Throttle

Brake

Gear

Speed

RPM



u For simplicity, consider the composed plant model, controller and communication to be a 
model 𝑀 that is excited by an input signal 𝐮(𝑡) and produces some output signal 𝐲 𝑡
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Black Box Assumption



u For simplicity, 𝐮 is a function from 𝕋 to ℝ!; let the set of all possible 
functions representing input signals be 𝑈

u Verification Problem: 
Prove the following: ∀𝐮 ∈ 𝑈: 𝐲 = 𝑀 𝐮 ⊨ 𝜑(𝐮, 𝐲)

u Falsification/Testing Problem: 
Find a witness to the query: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊭ 𝜑 𝐮, 𝐲

u These formulations are quite general, as we can include the following 
“model uncertainties” as input signals: Initial states, tunable parameters in 
both plant and controller, time-varying parameter values, noise, etc., 

Verification vs. Testing
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u If plant model, software and communication is simple (e.g. linear models), 
then we can do formal analysis

u Most real-world examples have very complex plants, controllers and 
communication!

u Verification problem, in the most general case is undecidable
� it is proved to be impossible to construct an algorithm that always leads to 

a correct yes-or-no answer to the problem

Challenges with real-world systems
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Falsification/Testing
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Falsification by optimization
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Use robustness as a cost function to minimize with Black-box/Global Optimizers 



u Falsification or testing attempts to find one or more 𝐮 signals such that 
¬𝜑(𝐮,𝑀(𝐮)) is true.

u In verification, the set 𝕋 (the time domain) could be unbounded, in falsification or 
testing, the time domain is necessarily bounded, i.e. 𝕋 ⊆ [0, 𝑇], where 𝑇 is some 
finite numeric constant

u In verification the co-domain of 𝐮, could be an unbounded subset of ℝ!, in 
falsification, we typically consider some compact subset of ℝ!

u For the 𝑖"# input signal component, let 𝐷$ denote its compact co-domain. Then 
the input signal 𝐮 is a function from 𝕋 to 𝐷%×⋯×𝐷!, where 𝕋 ⊆ 0, 𝑇
In simple words: input signals range over bounded intervals and over a bounded 
time horizon

Falsification/Testing
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Given:
u Set of all such input signals : 𝑈
u Input signal 𝐮 :  function from 𝕋 to 𝐷"×⋯×𝐷! , where 𝕋 ⊆ 0, 𝑇
u Model 𝑀 that maps 𝐮 to some signal 𝐲 with the same domain as 𝐮, and co-

domain some subset of ℝ#

u Property 𝜑 that can be evaluated to true/false over given 𝐮 and 𝐲

Check: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊭ ¬𝜑 𝐮, 𝐲

Falsification re-framed
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Falsification CPS

Goal:  
Find the inputs (1) which falsify the requirements (4)

Problems:
• Falsify with a low number of simulations                     Active Learning
• Functional Input Space                                                    Adaptive Parameterization



Adaptive Parameterization
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N Control points

N variable



Adaptive Parameterization
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N Control points

2N variable



Problem

Finding the trajectories  which falsify the requirements, finding 𝒖 ∈ 𝐵

B= {𝒖 ∈ U | 𝜌 𝑀 𝒖 ,𝜙 }∈ (−∞, 0) ⊆ 𝑈

Ø Training Set:  K= {𝒖!, }𝜌(𝑀 𝒖" , 𝜙)) "#$ (the partial knowledge after n iterations)

Ø Gaussian Process: 𝜌% 𝒖 ~ 𝐺𝑃(𝑚% 𝒖 , 𝜎%(𝒖)) (the partial model)

𝑃 𝜌% 𝒖 < 0 = 𝐶𝐷𝐹(
0 −𝑚%(𝒖)
𝜎%(𝒖)

)

Idea: implementing an iterative sample strategy in order to increase the probability to 
sample a point in B, as the number of iterations increases. 



Domain Estimation Algorithm (DEA)

𝑢!

𝑢"

B= {𝒖 ∈ U | 𝜌 𝑀 𝒖 , 𝜙 }< 0



Domain Estimation Algorithm (DEA)

Training Set

𝑢!

𝑢"
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Tests Case & Results
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Parameter Synthesis
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Parameter Synthesis



Problem
Given a model, depending on a set of parameters 𝜃 ∈ Θ, and a specification 𝜙

(STL formula), find the parameter combination θ s.t. the system satisfies φ as 
more as possible

Solution Strategy
• rephrase it as a optimisation problem (maximizing 𝜌) 
• evaluate the function to optimise
• solve the optimisation problem 

Parameter Synthesis
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Parameter Synthesis via Robustness Maximisation

Robustness Distribution                                                                            

Indicators 
• (the average robustness degree)
• and                                    (the conditional averages) 35



Problem
Find the parameter configuration that maximizes E[Rφ](θ), of which we 

have few costly and noisy evaluations. 

Methodology

1. Sample {(θ(i),y(i)), i = 1,...,n}

2. Emulate (GP Regression): E[Rφ] ∼ GP(μ,k)

3. Optimize the emulation via GP-UCB algorithm, new θ(n+1) 

Parameter Synthesis



(1) Sample
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Collection of the training set {(θ(i),y(i)), i = 1,...,m} for parameters values θ. 



(2) The GP Regression
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We have noisy observations y of the function value distributed around 
an unknown true value f (θ) with spherical Gaussian noise 



Simone Silvetti - PhD Thesis Outline

(2) The GP Regression
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We have noisy observations y of the function value distributed around 
an unknown true value f (θ) with spherical Gaussian noise 



Simone Silvetti - PhD Thesis Outline

(3) The GP-UCB Algorithm
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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Balance Exploration and Exploitation: we maximise the 95% upper 
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(3) The GP-UCB Algorithm
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:



Specification Mining
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• What is the maximum speed that the vehicle can reach ? 
• What is the minimum d well time in a given gear ? 



Parametric Signal Temporal Logic
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u Specification Mining: Try to find values of parameters of a PSTL formula from 
a given model

u Why?
�Good to know “as-is” properties of the model
�Finds worst-case behaviors of the model
�Discriminates between regular and anomalous behaviours

Specification Mining
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Specification Templates using PSTL
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time

Overshoot:
alw =,𝑻 step 𝑥?@A ⇒ alw =,𝝉 𝑥(𝑡) − 𝑥?@A(𝑡) < 𝒄

Step:
step 𝑦 ≔ 𝑦 𝑡 + 𝛿 − 𝑦 𝑡 > 𝑎

𝜹 𝒂

𝒙𝐫𝐞𝐟
𝒙

𝝉

𝒄

𝑻

In previous lecture, 𝑎, 𝑐, 𝑇, 𝜏, 𝛿 were some 
fixed values, here they represent parameters



Parameter inference for PSTL
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u Given: 
� PSTL formula 𝜑 𝐩 ,  [𝐩 = 𝑝C, 𝑝D, … , 𝑝E ] 
� Traces 𝑥C, … , 𝑥$

u Find:
� Valuation 𝜈(𝐩) such that: ∀𝑖 ∶ 𝑥" ⊨ 𝜑 𝜈 𝐩

c= 1000

c = 1.5

time

𝑥

Problem: Could find very 
conservative valuations!!

𝛿-tight valuation
• and ∃𝑖: 𝑥"⊭𝜑 𝜈 𝐩 ± 𝛿 : 

i.e. small perturbation in 𝜈(𝐩) makes 
some trace not satisfy formula

Finding 𝛿-tight valuations hard in general, 
but efficient for Monotonic PSTL

formula sat for given valuation ⇒
∀ greater (or lesser) valuations sat 

Binary search on parameter space

Alw(x < c)
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Parameter Inference:
Find “Tightest” 

Answers

Settling Time is ??
Overshoot is ??
Bounds on x are ??

Falsification:
∃ trace ⊭ Property?

Settling Time is 5 ms
Overshoot is 5 KPa
Upper Bound on x is 3.6

YES

1.

1.

m.
Counterexamples

Settling Time is 6 ms
Overshoot is 5.5 KPa
Upper Bound on x is 5

1.

n.
YES

NO
Settling Time is 6 ms
Overshoot is 5.5 KPa
Upper Bound on x is 5

Secret Sauce:
• Infer parameters for a given PSTL formula from traces 
• Falsify given STL formula

Specification 
Mining
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Learning STL classifiers
Goal: Given sets of good and bad trajectories (or generative models), learn STL 
properties that can separate the two behaviours (a STL classifier)

Light entrainment of biological oscillator

Idea: for a fixed template formula, learn 
optimally separating parameters by 
Bayesian Optimisation. 

Idea: explore formula structure by genetic 
programming on syntactic trees

Maritime surveillance 



Problem Formulation
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A supervised two-class classification problem 
Given a training set of Dp(good) and Dn(bad) find the best φ that 

better separates the two sets. 

Observation: only statistical and noisy evaluations of G(φ) 
Goal: maximize G(φ)



ROGE – RObustness GEnetic Algorithm 

It is a bi-level optimization algorithm. A GEnetic algorithm to learn the structure and a 
Bayesian optimization algorithm to learn the parameters. 

5
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Learning the Parameters 
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Problem
Given a PSTL formula φ, a parameter space K, find Θ∗that 

maximises the discrimination function G(φΘ). 

Methodology

1. Sample {(θ(i),y(i)), i = 1,...,n}

2. Emulate (GP Regression): G[Rφ] ∼ GP(μ,k)

3. Optimize the emulation via GP-UCB algorithm, new θ(n+1) 



Learning the Structure
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Problem
Given a set of PSTL formulas gen, find the best φ such that 

φΘ maximises the discrimination function G(φΘ). 

Methodology

1.GenerateInitialFormulae∶ gen={φ1,⋯,φNe}

2.Sample(genΘ,F)=subgΘ, Ne/2 formulae, F(φ)=G(φ)−S(φ)

3.Evolve(subgΘ, α) = newgΘ, based on two genetic operators, a 

recombination and a mutation operator. 

Regularization
Formula size penalty S(φ) and complexity of initial population.  



Maritime Surveillance 
Synthetic dataset of naval surveillance of 2-dimensional coordinates traces of vessels behaviours. 
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Ineffective Inspiratory Effort (IIE)
The dataset consists of 2-dim traces of flow and its derivative, flow’.
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Control Synthesis with STL

 !x = f x( )

Physical Process (Plant)

 !x = f x( )

Model-based Optimizer

input output

measurements

reference

		y(t)		u(t)		r(t)

The idea is to use the dynamical model of the process to predict 
its future evolution and optimize consequently the control input signal

		 Σ : 	 !xt = f xt ,ut ,wt( )
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