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Open vs. Closed Systems
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u A closed system is one with no inputs

For verification, we obtain a closed system by composing the system and 
environment models



Formal Verification
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u A requirement describes a desirable property of the system behaviors.

u A Model satisfies its requirements if all system executions satisfy all the 
requirements.

u Two broad categories: 

- safety requirement: “nothing bad ever happens”, 

- liveness requirement: “something good eventually happens”

u Importance of this classification: these two classes of properties require 
fundamentally different classes of model checking algorithms 

Requirements/Property
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u safety requirement:

“if something bad happens on an infinite run,   then it happens already on some 
finite prefix”

Counterexamples no reachable ERROR state 

u liveness requirement:

“no matter what happens along a finite run, something good could still happen 
later”

Infinite-length counterexamples, loop

Requirements/Property
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u It cannot happen that both processes are in their critical sections simultaneously

u Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most 
once before process P1 gets to enter.

u Whenever process P1 wants to enter the critical section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually.

u The elevator will arrive within 30 seconds of being called

u Patient’s blood glucose never drops below 80 mg/dL
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Requirements example 



u It cannot happen that both processes are in their critical sections simultaneously   S

u Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most 
once before process P1 gets to enter. S

u Whenever process P1 wants to enter the critical section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually. L

u The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all 
computation steps until 30 seconds have passed, and decide the property, therefore safety )

u Patient’s blood glucose never drops below 80 mg/dL. S
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Requirements example (Safety vs Liveness)



u A safety monitor classifies system behaviors into good and bad
u Safety verification can be done using inductive invariants or analyzing 

reachable state space of the system
�A bug is an execution that drives the monitor into an error state

u Can we use a monitor to classify infinite behaviors into good or bad?
u Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi

in 1960

Monitors 
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u Reachability analysis is the process of computing the set of reachable states 
for a system

u Model checking is an algorithmic method for determining if a system 
satisfies a formal specification expressed in temporal logic

Model checking typically performs reachability analysis.

Reachability Analysis and Model Checking
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u To verify a safe requirements p on a system M, one simply needs to 
enumerate all the reachable states and check that they all satisfy p.

u A safety requirement for a system classifies its states into safe and unsafe 
and asserts that an unsafe state is never encountered during an execution of 
the system. 

u Safety requirements can be formalized using transition systems

Safety Requirements
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u Transition System is a tuple  < S, I, A, 𝑇 , AP, L >
� 𝑆: Set of State 
� 𝐼 ⊆ 𝑆: set of initial state
� A: finite set of actions
� 𝑇 : is a set of transition relation s →! s’
� AP: set of atomic proposition on S 
� L: 𝑆 → 2"# is a labeling function

(Label) Transition System
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� A path is an (infinite) sequence of states in the TS
e.g. σ = 𝑆$ 𝑆%𝑆&𝑆&𝑆&…

� A trace is the corresponding sequence of labels
e.g. 𝑝 𝑝, 𝑞 𝑞𝑞𝑞

� A word is a sequence of actions
e.g. 𝑎𝑏𝑏𝑏𝑏

Transition System
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u All kinds of components (synchronous, asynchronous, timed, hybrid, continuous 
components have an underlying transition system)

u State in the transition system underlying a component captures any given runtime 
configuration of the component

u If a component has finite input/output types and a finite number of “states” in its ESM, 
then it has a finite-state transition system

u Continuous components, Timed Processes, Hybrid Processes in general, have infinite 
number of states

Transition Systems and state
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u S = on, off ×int
u I = { off, x = 0 }
u 𝑇 has an infinite number of transitions:

𝑠 → 𝑠′

u E.g. 𝑜𝑓𝑓, 0 → 𝑜𝑛, 0 𝑜𝑛 0 →
𝑜𝑛, 1

Example of a TS
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42) (on,42)

u Transitions indicated as dotted lines can’t really happen in the component

u But, the TS will describe then, as the states of the TS are over 𝑜𝑛, 𝑜𝑓𝑓 ×int!

TS describes all possible transitions



Reachable states of a modified switch TS
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42) (on,42)

Reachable states 
and transitions

A state 𝑠 of a transition system is reachable if there is an execution starting in some initial state 
that ends in 𝑠.



u Desirable behavior of a TS: defined in terms of acceptable (finite or infinite) sequences of 
states

u Safety property can be specified by partitioning the states 𝑆 into a safe/unsafe set
� 𝑆𝑎𝑓𝑒 ⊆ 𝑆, 𝑈𝑛𝑠𝑎𝑓𝑒 ⊆ 𝑆, 𝑆𝑎𝑓𝑒 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅
� Any finite sequence that ends in a state 𝑞 ∈ 𝑈𝑛𝑠𝑎𝑓𝑒 is a witness to undesirable 

behavior, 
or if all (infinite) sequences starting from an initial state never include a state from 
𝑈𝑛𝑠𝑎𝑓𝑒, then the TS is safe.

Desirable behaviors of a TS
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u A property 𝜑 is called an invariant of TS if every reachable state of TS 
satisfies 𝜑

Invariants 
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

Examples:
� 𝑚𝑜𝑑𝑒 = 𝑜𝑓𝑓
� x < 2
� 𝑚𝑜𝑑𝑒 = 𝑜𝑓𝑓 ⇒ (x = 0)
� (x ≤ 50)



u An invariant 𝜑 is a safety invariant if 
𝜑 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅

u Suppose, 𝑆𝑎𝑓𝑒 = |x 0 ≤ x ≤ 3 , and 
𝑈𝑛𝑠𝑎𝑓𝑒 = 𝑆𝑎𝑓𝑒

u Then, we can verify that 0 ≤ x ≤ 2 is a 
safety invariant for modified switch

Safety invariants 
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0



u A property 𝜑 is an inductive invariant of a transition system TS if 
�Every initial state satisfies 𝜑
� If any state 𝑠 satisfies 𝜑, and 𝑠, 𝑠! ∈ 𝑇 , then 𝑠! satisfies 𝜑

u By definition, if 𝜑 is an inductive invariant, then all reachable states of TS 
satisfy 𝜑, and hence it is also an invariant 

Inductive Invariant
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u Given TS and a property 𝜑, prove that all reachable states of TS satisfy 𝜑
u Base case: Show that all initial states satisfy 𝜑
u Inductive case: assume state 𝑠 satisfies 𝜑, then show that if 𝑠, 𝑠! ∈ 𝑇 , then s′ must also satisfy 𝜑

Inductive Safety Proof



u Consider transition system TS given by
�𝐼𝑛𝑖𝑡: x ↦ 0
�𝑇: if (x < m) then x ≔ x + 1 (else x remains unchanged)

u Is 𝜑: (0 ≤ x ≤ 𝑚) an inductive invariant?

Proving inductive invariants: Example 1
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u Base case: x is zero, so 𝜑 is trivially satisfied
u Inductive case: 

�Pick an arbitrary state (i.e. arbitrary value for state variable x), say x ↦ k
�Now assume 𝑘 satisfies 𝜑, i.e. 0 ≤ k ≤ 𝑚
�Consider the transition, there are two cases:

�If k < 𝑚, then x = k + 1 after the transition, and 𝑥 ≤ 𝑚
�If k = 𝑚, then x = k (because guard is not true), which is x = 𝑚.

� In either case, after the update 0 ≤ x ≤ 𝑚
�So 𝜑 is an inductive invariant, and the proof is complete

Example 1: Is 𝜑:(0≤x≤𝑚) an inductive invariant?
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𝐼𝑛𝑖𝑡: x ↦ 0
𝑇: if (x < m) then x ≔ x + 1



To establish that 𝜑 is an invariant of TS:
u Find another property 𝜓 such that

�𝜓 ⇒ 𝜑 (i.e. every state satisfying 𝜓 must satisfy 𝜑)
�𝜓 is an inductive invariant

�Show initial states satisfy 𝜓
�Assume an arbitrary state 𝑠 satisfies 𝜓, consider any state 𝑞′ such that 
𝑠, 𝑠! ∈ 𝑇 , then prove that 𝑠! satisfies 𝜓

How do we prove safety invariants?
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u Formal system: a set of axioms, a grammar for specifying well-formed formulas, 
and a set of inference rules for deriving new true formulas from axioms

u Sound: Starting from the axioms and using inference rules of the formal system, 
we cannot arrive at a formula that is equivalent  in meaning to false.

u Complete: Proof system is complete with respect to a property if every formula 
having that property can be derived using the inference rules

u Proof rule for proving invariants is sound and complete: 
� Sound: It is a correct proof technique
�Complete: If 𝜑 is an invariant, there is some stronger inductive invariant 𝜓

satisfying inductive conditions that we can find

Soundness and Completeness
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u 𝜑: |x 0 ≤ x ≤ 2

u Let’s try the inductive invariant: 𝜓: 𝑚𝑜𝑑𝑒 = 𝑜𝑓𝑓 ⇒ x = 0 ∧ 𝑚𝑜𝑑𝑒 = 𝑜𝑛 ⇒ (0 ≤ x ≤ 2)

Safety Proof for Switch
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

u 𝐼𝑛𝑖𝑡: x ↦ 0,𝑚𝑜𝑑𝑒 ↦ 𝑜𝑓𝑓
u Base case: (𝑜𝑓𝑓, 0) trivially satisfies 𝜓

u Inductive hypothesis: assume that a state 𝑞 satisfies 𝜓

u Inductive step: prove that any 𝑞′ s.t. 𝑞, 𝑞& ∈ 𝑇 satisfies 𝜓
� Case I: 𝑞 = (𝑜𝑓𝑓, 0)

� 𝑞′ = (𝑜𝑓𝑓, 0) [trivial]
� 𝑞′ = (𝑜𝑛, 0) [satisfies second conjunct in 𝜓]

� Case II: 𝑞 = (𝑜𝑛, 𝑛)
� 𝑞& = (𝑜𝑛, 𝑛 + 1) if 𝑛 < 2, this implies that 𝑛 + 1 ≤ 2, so 𝑞& satisfies 𝜓
� 𝑞& = (𝑜𝑓𝑓, 0) otherwise, this again implies that 𝑞& satisfies 𝜓

u So 𝜓 is an inductive invariant

u Further, 𝜓 ⇒ 𝜑 (note that every state satisfying 𝜓 will satisfy 𝜑)

u So 𝜑 is an invariant of the TS!



u A state 𝑞 of a transition system is reachable if there is an execution starting in some 
initial state that ends in 𝑞.

u Algorithm to compute reachable states from a given set of initial states (just Breadth First 
Search, BFS):

Reachability
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Procedure ComputeReach(TS) 
𝑌": = 𝐼𝑛𝑖𝑡 , k:=1;
While 𝑌# ≠ 𝑌#$%

Temp := ∅
ForEach 𝑞 ∈ 𝑌#$%

If ( 𝑞, 𝑞! ∈ 𝑇 )  Temp :=  Temp ∪ 𝑞!
EndForEach
𝑌# ≔𝑌#$% ∪ Temp, 𝑘 ∶= 𝑘 + 1

EndWhile
Return 𝑌#

EndProcedure



u Given TS and a property 𝜑, prove that all reachable states of TS satisfy 𝜑
u ComputeReach(TS), it actually gives an inductive definition of reachable states

� All states specified by 𝐼 (initial state) are reachable using 0 transitions
� If a state 𝑠 is reachable using 𝑚 transitions, and 𝑠, 𝑠1 is a transition in 𝑇 , then s′ is 

reachable using m+1 transitions
� Reachable = Reachable using 𝑛 transitions for some 𝑛

Proving that something is an invariant via reachability
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If partitioning the states 𝑆 into a safe/unsafe set. 
To get a proof of safety, do reachability computation, and if 
ComputeReach(TS) ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅, then the TS is safe

Proving safety via reachability



u Can we use a monitor to classify infinite behaviors into good or bad?
u Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi

in 1960

35

Büchi automaton



u Theoretical result: Every LTL formula 𝜑 can be converted to a Büchi monitor/automaton 𝐴&

Büchi automaton
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u Extension of finite state automata to accept infinite strings

u A Büchi automaton is tuple B =< 𝑆, 𝐼, Σ, 𝛿, 𝐹 >
• S  finite set of states (like a TS) –
• I is a set of initial states (like a TS) –
• Σ is a finite alphabet (like a TS) –
• 𝛿 is a transition relation (like a TS) 
• F  is a set of accepting states 

u An infinite sequence of states (a path/trace 𝜌 ) is accepted iff it contains 
accepting states (from F) infinitely often

𝑞" 𝑞'

𝐴%
𝑥 = 0

𝑥 = 1

𝑥 = 0

𝑥 = 1

Example: What is the language of 𝐴!?

LTL formula 𝐆𝐅(𝑥 = 1)



Büchi automaton Example 
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𝑞Q 𝑞R

𝐴!𝑥 = 0|1

𝑥 = 0|1

𝑥 = 1

u 𝑆: 𝑞$, 𝑞: ,Σ: 0,1 , 𝐹: {𝑞:}
u Transitions: (as shown)

u Note that this is a nondeterministic 
Büchi automaton

u 𝐴S accepts 𝜌 if there exists a path 
along which a state in 𝐹 appears 
infinitely often

u What is the language of 𝐴S? 
�LTL formula 𝐅𝐆(𝑥 = 1)

Fun fact: there is no deterministic Büchi automaton that accepts this language



u What is the language of 𝐴T?
�LTL formula: 

𝐆 𝑥 = 1 ⇒ 𝐅(𝑦 = 1)
� I.e. always when 𝑥 = 1 , in some 

future step, (𝑦 = 1)
� In other words, (𝑥 = 1) must be 

followed by (𝑦 = 1)

Büchi automaton Example 3
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𝑞U

𝐴"𝑥 = 0 |
𝑦 = 1

𝑥 = 1 & 𝑦 = 0

𝑦 = 0

𝑦 = 1

u 𝑆: 𝑞$, 𝑞% ,Σ: 0,1 , 𝐹: {𝑞$}
u Transitions: (as shown)

𝑞Q



LTL Model Checking
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LTL Model Checking
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LTL Model Checking

44



CTL

45



u LTL was a linear-time logic where we reason about traces
u CTL is a logic where we reason over the tree of executions generated by a 

program, also known as the computation tree
u We care about CTL because:

� There are some properties that cannot be expressed in LTL, but can be 
expressed in CTL: From every system state, there is a system execution that 
takes it back to the initial state (also known as the reset property)

�Can express interesting properties for multi-agent systems

Computation Tree Logic

46



u We saw computation 
trees when 
understanding 
semantics of 
asynchronous 
processes

u Basically a tree that 
considers “all 
possibilities” in a 
reactive program

Computation Tree
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nat x := 0; bool y:= 0

A: x := (x + 1) mod 2
B: even(x) → y: = 1-y

(0,0)

(1,0)

(0,1)

(1,1)

Process

Finite State machine

(0,0)

(0,1)(1,0)

(0,0) (1,1)(0,0)



CTL Syntax
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Syntax of CTL

𝜑 ∷= 𝑝 ¬𝜑 𝜑 ∧ 𝜑 | Prop. in 𝐴𝑃, negation, conjunction

𝐄𝐗𝜑 | Exists NeXt Step

𝐄𝐅𝜑 | Exists a Future Step

𝐄𝐆𝜑 | Exists an execution where  Globally in all steps

𝐄 𝜑 𝐔 𝜑 | Exists an execution where in all steps Until in some step

𝐀𝐗𝜑 | In All NeXt Steps

𝐀𝐅𝜑 | In All possible future paths, there is a future step

𝐀𝐆𝜑 | In All possible future paths, Globally in all steps

𝐀 𝜑 𝐔 𝜑 | In All possible future executions, in all steps Until in some step



u Path properties: properties of any given path or execution in the program
u Quantification over runs: Checking if a property holds over all paths or over 

some path
u Example CTL operator:

𝐀 𝐅 𝑝

CTL semantics
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For All executions Eventually/In Some Future step



CTL Semantics through examples
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𝑞#

𝑞$ 𝑞!𝑝 𝑝

𝐀𝐗 𝑝

𝑞#

𝑞$ 𝑞!𝑝

𝐄𝐗 𝑝

𝑞#

𝑞$ 𝑞!𝑝

𝐀𝐗 𝑝 ∧ 𝐄𝐗 𝑞

𝑝
𝑞



CTL semantics through examples
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𝐀𝐅 𝑝: Along all
Paths, There is 
some future step 
where 𝑝 holds

𝑞#

𝑝

𝑝
𝑝 𝑝

𝑞#

𝑝
𝐄𝐅 𝑝: Along some
path, there is 
some future step 
where 𝑝 holds



CTL semantics through examples
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𝐀𝐆 𝑝: Across all
paths, and for every 
successor in the 
path, 𝑝 holds

𝑞#

𝑝

𝑝

𝑝 𝑝

𝑞#

𝑝
𝐄𝐆 𝑝: Along 
some
path, 𝑝 always 
holds

𝑝

𝑝

𝑝

𝑝

𝑝



u 𝐀𝐆𝐄𝐅 𝑝
u 𝐀𝐆𝐀𝐅 𝑝
u 𝐄𝐆𝐀𝐅 𝑝
u 𝐀𝐆 (𝑝 ⇒ 𝐄𝐗 𝑞)

CTL Operator fun
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u Checking if a given state machine (program) satisfies a CTL formula can be 
done quite efficiently (linear in the size of the machine and the property)

u Native CTL cannot express fairness properties
�Extension Fair CTL can express fairness

u CTL* is a logic that combines CTL and LTL: You can have formulas like 𝐀𝐆𝐅 𝑝
u CTL: Less used than LTL, but an important logic in the history of temporal 

logic

CTL advantages and limitations
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PCTL

55



u LTL 
�Can be interpreted over individual executions 
�Can be interpreted over a state machine: do all paths satisfy property

u CTL
� Is interpreted over a computation tree

u PCTL
� Is interpreted over a discrete-time Markov chain
�Encodes uncertainties in computation due to environment etc.

Probabilistic CTL
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Probabilistic CTL
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Syntax of PCTL
𝜑 ∷= 𝑝 ¬𝜑 𝜑 ∧ 𝜑 | Prop. in 𝐴𝑃, negation, conjunction

(State) 𝑃∼X 𝜓 | ∼∈ {<,≤,>,≥}, 𝜆 ∈ [0,1] : Probability of 𝜓 being true 

𝜓 ∷= 𝐗𝜑 | NeXt Time

(Path) 𝜑 𝐔YZ𝜑 | Bounded Until (up to 𝑘 steps) 

𝜑 𝐔 𝜑 Until   (Recall 𝐅𝜑 = 𝑡𝑟𝑢𝑒 𝐔 𝜑, and 𝐆𝜑 = ¬𝐅¬𝜑
PCTL formulas are state formulas, path formulas used to define how to build a PCTL formula



u Semantics of path formulas is straightforward (similar to LTL/CTL)
u Semantics of state formula with Probabilistic operator:

�𝑃𝑟𝑜𝑏 𝑞, 𝐗𝜑 : ∑!"⊨$𝑃 𝑞, 𝑞"

�Does 𝑃%&.( 𝐗 𝑝 hold in state q&?
�No, because 𝑃 𝑞&, 𝐗 𝑝 = 0.1 + 0.2 = 0.3

u Semantics of state formula with Until 𝑃𝑟𝑜𝑏 𝑞, 𝛼𝐔)𝒌𝛽 : 
�1 if 𝑞 ⊨ 𝛽
�0 if 𝑞 ⊭ α or 𝑞 ⊭𝛽 and 𝑘 = 0
�∑𝑃 𝑞, 𝑞" . 𝑃𝑟𝑜𝑏(𝑞", 𝛼 𝑈+,-𝛽) for 𝑘 > 0, otherwise

Semantics
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𝑞Q

𝑞S
𝑞U

𝑞T

0.4

0.10.2𝑝

𝑝

¬𝑝



PCTL
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0.2 1

Accelerate Constant 
Speed

Idling Brake

0.2
0.5

0.3

0.8

0.05

0.05

0.5

0.4
0.5

0.4ß¬𝑝,
¬𝑟

𝑝, 𝑟

𝑝, 𝑟

¬𝑝, 𝑟

0

0.1

u Does this formula 𝑃AB.D 𝐗𝑝 hold in 
state Brake?
� Yes

u Value of 𝜖? 𝑃AE 𝐅FG𝑟 in state Accel
� Compute 𝑃𝑟𝑜𝑏(𝑞, 𝐅FG𝑟) for all 𝑞, 

pick smallest
� 𝑃 𝐴, 𝐵 + 𝑃 𝐴, 𝐶 + 𝑃 𝐴, 𝐴, 𝐵 +
𝑃 𝐴, 𝐴, 𝐶
= 0.5 + 0.2 + 0.3*0.5 + 0.3*0.2
= 0.91

� 𝜖 = 0.91
u I.e. with probability ≥ 0.91, driver 

checks cell phone within 2 steps

0 0

𝑟: Checking cellphone
𝑝: Feeling sleepy 



u Toss a coin repeatedly until “tails” is thrown
u Is “tails” eventually thrown along all paths?

�CTL: AF tails
�Result: false
�Why? 𝑞Q𝑞U𝑞Q𝑞U…

u Is the probability of eventually thrown “tails” 
equal to 1?
�PCTL: 𝑃[U( 𝐅 𝑡𝑎𝑖𝑙𝑠 )
�Result: true
�Probability of path 𝑞Q𝑞U𝑞Q𝑞U… is zero!

Quantitative in PCTL vs. Qualitative in CTL
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𝑞Q

𝑞U

𝑞S

0.5

0.5 1

1 ℎ𝑒𝑎𝑑𝑠

𝑡𝑎𝑖𝑙𝑠



u You want to develop a new CPS/IoT system with autonomy
u Analyze its environment: model it as a dynamical system or a stochastic 

system (e.g. PoMDPs)
u Analyze what models to use for the control algorithms

�Choices are: Traditional control schemes (PID/MPC), state-machines 
(synchronous vs. asynchronous based on communication type), 
AI/planning algorithms, hybrid control algorithms, or combinations of 
these

How does everything fit together?

64



u Try to specify the closed-loop system as something you can simulate and see its 
behaviors
� Integrative modeling environment such as Simulink (plant models + software 

models)
� Specify requirements of how you expect the system to behave (STL, LTL, or your 

favorite spec. formalism)
�This step is a DO NOT MISS. It will provide documentation of your intent, and 

also a machine-checkable artifact
u Test the system a lot, and then test some more
u Apply formal reasoning wherever you can. Proofs are great if you can get them
u Safety doesn’t end at modeling stage; continue reasoning about safety after 

deployment (through monitoring etc.)

Safety is the key!!

65



u Basics of Control
� PID, MPC, Nonlinear control, Observer design (Kalman 

filter)
u Basics of Planning

� Path planning, Reinforcement learning

u Models of computation
� Asynchronous, Synchronous, Timed, Hybrid Processes, 

Dynamical Systems, MDP
MODELING

AUTONOMY

u Specification Languages 
(LTL, CTL, STL)

u Falsification and Testing,
Parameter Synthesis

u Safety Invariants 
Reachability, Model 
Checking

SAFETY


