
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

II Semestre 2018

Lecture 11: Verification

[Many Slides due to J. Deshmukh]

Open vs. Closed Systems

2

u A closed system is one with no inputs

For verification, we obtain a closed system by composing the system and
environment models

Formal Verification

3

u A requirement describes a desirable property of the system behaviors.

u A Model satisfies its requirements if all system executions satisfy all the
requirements.

u Two broad categories:

- safety requirement: “nothing bad ever happens”,

- liveness requirement: “something good eventually happens”

u Importance of this classification: these two classes of properties require
fundamentally different classes of model checking algorithms

Requirements/Property

5

u safety requirement:

“if something bad happens on an infinite run, then it happens already on some
finite prefix”

Counterexamples no reachable ERROR state

u liveness requirement:

“no matter what happens along a finite run, something good could still happen
later”

Infinite-length counterexamples, loop

Requirements/Property

6

u It cannot happen that both processes are in their critical sections simultaneously

u Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter.

u Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

u The elevator will arrive within 30 seconds of being called

u Patient’s blood glucose never drops below 80 mg/dL

7

Requirements example

u It cannot happen that both processes are in their critical sections simultaneously S

u Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter. S

u Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually. L

u The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all
computation steps until 30 seconds have passed, and decide the property, therefore safety)

u Patient’s blood glucose never drops below 80 mg/dL. S

8

Requirements example (Safety vs Liveness)

u A safety monitor classifies system behaviors into good and bad
u Safety verification can be done using inductive invariants or analyzing

reachable state space of the system
�A bug is an execution that drives the monitor into an error state

u Can we use a monitor to classify infinite behaviors into good or bad?
u Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi

in 1960

Monitors

9

u Reachability analysis is the process of computing the set of reachable states
for a system

u Model checking is an algorithmic method for determining if a system
satisfies a formal specification expressed in temporal logic

Model checking typically performs reachability analysis.

Reachability Analysis and Model Checking

10

u To verify a safe requirements p on a system M, one simply needs to
enumerate all the reachable states and check that they all satisfy p.

u A safety requirement for a system classifies its states into safe and unsafe
and asserts that an unsafe state is never encountered during an execution of
the system.

u Safety requirements can be formalized using transition systems

Safety Requirements

12

u Transition System is a tuple < S, I, A, 𝑇 , AP, L >
� 𝑆: Set of State
� 𝐼 ⊆ 𝑆: set of initial state
� A: finite set of actions
� 𝑇 : is a set of transition relation s →! s’
� AP: set of atomic proposition on S
� L: 𝑆 → 2"# is a labeling function

(Label) Transition System

13

� A path is an (infinite) sequence of states in the TS
e.g. σ = 𝑆$ 𝑆%𝑆&𝑆&𝑆&…

� A trace is the corresponding sequence of labels
e.g. 𝑝 𝑝, 𝑞 𝑞𝑞𝑞

� A word is a sequence of actions
e.g. 𝑎𝑏𝑏𝑏𝑏

Transition System

14

u All kinds of components (synchronous, asynchronous, timed, hybrid, continuous
components have an underlying transition system)

u State in the transition system underlying a component captures any given runtime
configuration of the component

u If a component has finite input/output types and a finite number of “states” in its ESM,
then it has a finite-state transition system

u Continuous components, Timed Processes, Hybrid Processes in general, have infinite
number of states

Transition Systems and state

15

u S = on, off ×int
u I = { off, x = 0 }
u 𝑇 has an infinite number of transitions:

𝑠 → 𝑠′

u E.g. 𝑜𝑓𝑓, 0 → 𝑜𝑛, 0 𝑜𝑛 0 →
𝑜𝑛, 1

Example of a TS

16

off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

17

off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42) (on,42)

u Transitions indicated as dotted lines can’t really happen in the component

u But, the TS will describe then, as the states of the TS are over 𝑜𝑛, 𝑜𝑓𝑓 ×int!

TS describes all possible transitions

Reachable states of a modified switch TS

18

off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42) (on,42)

Reachable states
and transitions

A state 𝑠 of a transition system is reachable if there is an execution starting in some initial state
that ends in 𝑠.

u Desirable behavior of a TS: defined in terms of acceptable (finite or infinite) sequences of
states

u Safety property can be specified by partitioning the states 𝑆 into a safe/unsafe set
� 𝑆𝑎𝑓𝑒 ⊆ 𝑆, 𝑈𝑛𝑠𝑎𝑓𝑒 ⊆ 𝑆, 𝑆𝑎𝑓𝑒 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅
� Any finite sequence that ends in a state 𝑞 ∈ 𝑈𝑛𝑠𝑎𝑓𝑒 is a witness to undesirable

behavior,
or if all (infinite) sequences starting from an initial state never include a state from
𝑈𝑛𝑠𝑎𝑓𝑒, then the TS is safe.

Desirable behaviors of a TS

19

u A property 𝜑 is called an invariant of TS if every reachable state of TS
satisfies 𝜑

Invariants

20

off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

Examples:
� 𝑚𝑜𝑑𝑒 = 𝑜𝑓𝑓
� x < 2
� 𝑚𝑜𝑑𝑒 = 𝑜𝑓𝑓 ⇒ (x = 0)
� (x ≤ 50)

u An invariant 𝜑 is a safety invariant if
𝜑 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅

u Suppose, 𝑆𝑎𝑓𝑒 = |x 0 ≤ x ≤ 3 , and
𝑈𝑛𝑠𝑎𝑓𝑒 = 𝑆𝑎𝑓𝑒

u Then, we can verify that 0 ≤ x ≤ 2 is a
safety invariant for modified switch

Safety invariants

21

off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

u A property 𝜑 is an inductive invariant of a transition system TS if
�Every initial state satisfies 𝜑
� If any state 𝑠 satisfies 𝜑, and 𝑠, 𝑠! ∈ 𝑇 , then 𝑠! satisfies 𝜑

u By definition, if 𝜑 is an inductive invariant, then all reachable states of TS
satisfy 𝜑, and hence it is also an invariant

Inductive Invariant

22

u Given TS and a property 𝜑, prove that all reachable states of TS satisfy 𝜑
u Base case: Show that all initial states satisfy 𝜑
u Inductive case: assume state 𝑠 satisfies 𝜑, then show that if 𝑠, 𝑠! ∈ 𝑇 , then s′ must also satisfy 𝜑

Inductive Safety Proof

u Consider transition system TS given by
�𝐼𝑛𝑖𝑡: x ↦ 0
�𝑇: if (x < m) then x ≔ x + 1 (else x remains unchanged)

u Is 𝜑: (0 ≤ x ≤ 𝑚) an inductive invariant?

Proving inductive invariants: Example 1

23

u Base case: x is zero, so 𝜑 is trivially satisfied
u Inductive case:

�Pick an arbitrary state (i.e. arbitrary value for state variable x), say x ↦ k
�Now assume 𝑘 satisfies 𝜑, i.e. 0 ≤ k ≤ 𝑚
�Consider the transition, there are two cases:

�If k < 𝑚, then x = k + 1 after the transition, and 𝑥 ≤ 𝑚
�If k = 𝑚, then x = k (because guard is not true), which is x = 𝑚.

� In either case, after the update 0 ≤ x ≤ 𝑚
�So 𝜑 is an inductive invariant, and the proof is complete

Example 1: Is 𝜑:(0≤x≤𝑚) an inductive invariant?

24

𝐼𝑛𝑖𝑡: x ↦ 0
𝑇: if (x < m) then x ≔ x + 1

To establish that 𝜑 is an invariant of TS:
u Find another property 𝜓 such that

�𝜓 ⇒ 𝜑 (i.e. every state satisfying 𝜓 must satisfy 𝜑)
�𝜓 is an inductive invariant

�Show initial states satisfy 𝜓
�Assume an arbitrary state 𝑠 satisfies 𝜓, consider any state 𝑞′ such that
𝑠, 𝑠! ∈ 𝑇 , then prove that 𝑠! satisfies 𝜓

How do we prove safety invariants?

29

u Formal system: a set of axioms, a grammar for specifying well-formed formulas,
and a set of inference rules for deriving new true formulas from axioms

u Sound: Starting from the axioms and using inference rules of the formal system,
we cannot arrive at a formula that is equivalent in meaning to false.

u Complete: Proof system is complete with respect to a property if every formula
having that property can be derived using the inference rules

u Proof rule for proving invariants is sound and complete:
� Sound: It is a correct proof technique
�Complete: If 𝜑 is an invariant, there is some stronger inductive invariant 𝜓

satisfying inductive conditions that we can find

Soundness and Completeness

30

u 𝜑: |x 0 ≤ x ≤ 2

u Let’s try the inductive invariant: 𝜓: 𝑚𝑜𝑑𝑒 = 𝑜𝑓𝑓 ⇒ x = 0 ∧ 𝑚𝑜𝑑𝑒 = 𝑜𝑛 ⇒ (0 ≤ x ≤ 2)

Safety Proof for Switch

31

off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

u 𝐼𝑛𝑖𝑡: x ↦ 0,𝑚𝑜𝑑𝑒 ↦ 𝑜𝑓𝑓
u Base case: (𝑜𝑓𝑓, 0) trivially satisfies 𝜓

u Inductive hypothesis: assume that a state 𝑞 satisfies 𝜓

u Inductive step: prove that any 𝑞′ s.t. 𝑞, 𝑞& ∈ 𝑇 satisfies 𝜓
� Case I: 𝑞 = (𝑜𝑓𝑓, 0)

� 𝑞′ = (𝑜𝑓𝑓, 0) [trivial]
� 𝑞′ = (𝑜𝑛, 0) [satisfies second conjunct in 𝜓]

� Case II: 𝑞 = (𝑜𝑛, 𝑛)
� 𝑞& = (𝑜𝑛, 𝑛 + 1) if 𝑛 < 2, this implies that 𝑛 + 1 ≤ 2, so 𝑞& satisfies 𝜓
� 𝑞& = (𝑜𝑓𝑓, 0) otherwise, this again implies that 𝑞& satisfies 𝜓

u So 𝜓 is an inductive invariant

u Further, 𝜓 ⇒ 𝜑 (note that every state satisfying 𝜓 will satisfy 𝜑)

u So 𝜑 is an invariant of the TS!

u A state 𝑞 of a transition system is reachable if there is an execution starting in some
initial state that ends in 𝑞.

u Algorithm to compute reachable states from a given set of initial states (just Breadth First
Search, BFS):

Reachability

32

Procedure ComputeReach(TS)
𝑌": = 𝐼𝑛𝑖𝑡 , k:=1;
While 𝑌# ≠ 𝑌#$%

Temp := ∅
ForEach 𝑞 ∈ 𝑌#$%

If (𝑞, 𝑞! ∈ 𝑇) Temp := Temp ∪ 𝑞!
EndForEach
𝑌# ≔𝑌#$% ∪ Temp, 𝑘 ∶= 𝑘 + 1

EndWhile
Return 𝑌#

EndProcedure

u Given TS and a property 𝜑, prove that all reachable states of TS satisfy 𝜑
u ComputeReach(TS), it actually gives an inductive definition of reachable states

� All states specified by 𝐼 (initial state) are reachable using 0 transitions
� If a state 𝑠 is reachable using 𝑚 transitions, and 𝑠, 𝑠1 is a transition in 𝑇 , then s′ is

reachable using m+1 transitions
� Reachable = Reachable using 𝑛 transitions for some 𝑛

Proving that something is an invariant via reachability

33

If partitioning the states 𝑆 into a safe/unsafe set.
To get a proof of safety, do reachability computation, and if
ComputeReach(TS) ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅, then the TS is safe

Proving safety via reachability

u Can we use a monitor to classify infinite behaviors into good or bad?
u Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi

in 1960

35

Büchi automaton

u Theoretical result: Every LTL formula 𝜑 can be converted to a Büchi monitor/automaton 𝐴&

Büchi automaton

36

u Extension of finite state automata to accept infinite strings

u A Büchi automaton is tuple B =< 𝑆, 𝐼, Σ, 𝛿, 𝐹 >
• S finite set of states (like a TS) –
• I is a set of initial states (like a TS) –
• Σ is a finite alphabet (like a TS) –
• 𝛿 is a transition relation (like a TS)
• F is a set of accepting states

u An infinite sequence of states (a path/trace 𝜌) is accepted iff it contains
accepting states (from F) infinitely often

𝑞" 𝑞'

𝐴%
𝑥 = 0

𝑥 = 1

𝑥 = 0

𝑥 = 1

Example: What is the language of 𝐴!?

LTL formula 𝐆𝐅(𝑥 = 1)

Büchi automaton Example

37

𝑞Q 𝑞R

𝐴!𝑥 = 0|1

𝑥 = 0|1

𝑥 = 1

u 𝑆: 𝑞$, 𝑞: ,Σ: 0,1 , 𝐹: {𝑞:}
u Transitions: (as shown)

u Note that this is a nondeterministic
Büchi automaton

u 𝐴S accepts 𝜌 if there exists a path
along which a state in 𝐹 appears
infinitely often

u What is the language of 𝐴S?
�LTL formula 𝐅𝐆(𝑥 = 1)

Fun fact: there is no deterministic Büchi automaton that accepts this language

u What is the language of 𝐴T?
�LTL formula:

𝐆 𝑥 = 1 ⇒ 𝐅(𝑦 = 1)
� I.e. always when 𝑥 = 1 , in some

future step, (𝑦 = 1)
� In other words, (𝑥 = 1) must be

followed by (𝑦 = 1)

Büchi automaton Example 3

38

𝑞U

𝐴"𝑥 = 0 |
𝑦 = 1

𝑥 = 1 & 𝑦 = 0

𝑦 = 0

𝑦 = 1

u 𝑆: 𝑞$, 𝑞% ,Σ: 0,1 , 𝐹: {𝑞$}
u Transitions: (as shown)

𝑞Q

LTL Model Checking

42

LTL Model Checking

43

LTL Model Checking

44

CTL

45

u LTL was a linear-time logic where we reason about traces
u CTL is a logic where we reason over the tree of executions generated by a

program, also known as the computation tree
u We care about CTL because:

� There are some properties that cannot be expressed in LTL, but can be
expressed in CTL: From every system state, there is a system execution that
takes it back to the initial state (also known as the reset property)

�Can express interesting properties for multi-agent systems

Computation Tree Logic

46

u We saw computation
trees when
understanding
semantics of
asynchronous
processes

u Basically a tree that
considers “all
possibilities” in a
reactive program

Computation Tree

47

nat x := 0; bool y:= 0

A: x := (x + 1) mod 2
B: even(x) → y: = 1-y

(0,0)

(1,0)

(0,1)

(1,1)

Process

Finite State machine

(0,0)

(0,1)(1,0)

(0,0) (1,1)(0,0)

CTL Syntax

48

Syntax of CTL

𝜑 ∷= 𝑝 ¬𝜑 𝜑 ∧ 𝜑 | Prop. in 𝐴𝑃, negation, conjunction

𝐄𝐗𝜑 | Exists NeXt Step

𝐄𝐅𝜑 | Exists a Future Step

𝐄𝐆𝜑 | Exists an execution where Globally in all steps

𝐄 𝜑 𝐔 𝜑 | Exists an execution where in all steps Until in some step

𝐀𝐗𝜑 | In All NeXt Steps

𝐀𝐅𝜑 | In All possible future paths, there is a future step

𝐀𝐆𝜑 | In All possible future paths, Globally in all steps

𝐀 𝜑 𝐔 𝜑 | In All possible future executions, in all steps Until in some step

u Path properties: properties of any given path or execution in the program
u Quantification over runs: Checking if a property holds over all paths or over

some path
u Example CTL operator:

𝐀 𝐅 𝑝

CTL semantics

49

For All executions Eventually/In Some Future step

CTL Semantics through examples

50

𝑞#

𝑞$ 𝑞!𝑝 𝑝

𝐀𝐗 𝑝

𝑞#

𝑞$ 𝑞!𝑝

𝐄𝐗 𝑝

𝑞#

𝑞$ 𝑞!𝑝

𝐀𝐗 𝑝 ∧ 𝐄𝐗 𝑞

𝑝
𝑞

CTL semantics through examples

51

𝐀𝐅 𝑝: Along all
Paths, There is
some future step
where 𝑝 holds

𝑞#

𝑝

𝑝
𝑝 𝑝

𝑞#

𝑝
𝐄𝐅 𝑝: Along some
path, there is
some future step
where 𝑝 holds

CTL semantics through examples

52

𝐀𝐆 𝑝: Across all
paths, and for every
successor in the
path, 𝑝 holds

𝑞#

𝑝

𝑝

𝑝 𝑝

𝑞#

𝑝
𝐄𝐆 𝑝: Along
some
path, 𝑝 always
holds

𝑝

𝑝

𝑝

𝑝

𝑝

u 𝐀𝐆𝐄𝐅 𝑝
u 𝐀𝐆𝐀𝐅 𝑝
u 𝐄𝐆𝐀𝐅 𝑝
u 𝐀𝐆 (𝑝 ⇒ 𝐄𝐗 𝑞)

CTL Operator fun

53

u Checking if a given state machine (program) satisfies a CTL formula can be
done quite efficiently (linear in the size of the machine and the property)

u Native CTL cannot express fairness properties
�Extension Fair CTL can express fairness

u CTL* is a logic that combines CTL and LTL: You can have formulas like 𝐀𝐆𝐅 𝑝
u CTL: Less used than LTL, but an important logic in the history of temporal

logic

CTL advantages and limitations

54

PCTL

55

u LTL
�Can be interpreted over individual executions
�Can be interpreted over a state machine: do all paths satisfy property

u CTL
� Is interpreted over a computation tree

u PCTL
� Is interpreted over a discrete-time Markov chain
�Encodes uncertainties in computation due to environment etc.

Probabilistic CTL

56

Probabilistic CTL

57

Syntax of PCTL
𝜑 ∷= 𝑝 ¬𝜑 𝜑 ∧ 𝜑 | Prop. in 𝐴𝑃, negation, conjunction

(State) 𝑃∼X 𝜓 | ∼∈ {<,≤,>,≥}, 𝜆 ∈ [0,1] : Probability of 𝜓 being true

𝜓 ∷= 𝐗𝜑 | NeXt Time

(Path) 𝜑 𝐔YZ𝜑 | Bounded Until (up to 𝑘 steps)

𝜑 𝐔 𝜑 Until (Recall 𝐅𝜑 = 𝑡𝑟𝑢𝑒 𝐔 𝜑, and 𝐆𝜑 = ¬𝐅¬𝜑
PCTL formulas are state formulas, path formulas used to define how to build a PCTL formula

u Semantics of path formulas is straightforward (similar to LTL/CTL)
u Semantics of state formula with Probabilistic operator:

�𝑃𝑟𝑜𝑏 𝑞, 𝐗𝜑 : ∑!"⊨$𝑃 𝑞, 𝑞"

�Does 𝑃%&.(𝐗 𝑝 hold in state q&?
�No, because 𝑃 𝑞&, 𝐗 𝑝 = 0.1 + 0.2 = 0.3

u Semantics of state formula with Until 𝑃𝑟𝑜𝑏 𝑞, 𝛼𝐔)𝒌𝛽 :
�1 if 𝑞 ⊨ 𝛽
�0 if 𝑞 ⊭ α or 𝑞 ⊭𝛽 and 𝑘 = 0
�∑𝑃 𝑞, 𝑞" . 𝑃𝑟𝑜𝑏(𝑞", 𝛼 𝑈+,-𝛽) for 𝑘 > 0, otherwise

Semantics

58

𝑞Q

𝑞S
𝑞U

𝑞T

0.4

0.10.2𝑝

𝑝

¬𝑝

PCTL

59

0.2 1

Accelerate Constant
Speed

Idling Brake

0.2
0.5

0.3

0.8

0.05

0.05

0.5

0.4
0.5

0.4ß¬𝑝,
¬𝑟

𝑝, 𝑟

𝑝, 𝑟

¬𝑝, 𝑟

0

0.1

u Does this formula 𝑃AB.D 𝐗𝑝 hold in
state Brake?
� Yes

u Value of 𝜖? 𝑃AE 𝐅FG𝑟 in state Accel
� Compute 𝑃𝑟𝑜𝑏(𝑞, 𝐅FG𝑟) for all 𝑞,

pick smallest
� 𝑃 𝐴, 𝐵 + 𝑃 𝐴, 𝐶 + 𝑃 𝐴, 𝐴, 𝐵 +
𝑃 𝐴, 𝐴, 𝐶
= 0.5 + 0.2 + 0.3*0.5 + 0.3*0.2
= 0.91

� 𝜖 = 0.91
u I.e. with probability ≥ 0.91, driver

checks cell phone within 2 steps

0 0

𝑟: Checking cellphone
𝑝: Feeling sleepy

u Toss a coin repeatedly until “tails” is thrown
u Is “tails” eventually thrown along all paths?

�CTL: AF tails
�Result: false
�Why? 𝑞Q𝑞U𝑞Q𝑞U…

u Is the probability of eventually thrown “tails”
equal to 1?
�PCTL: 𝑃[U(𝐅 𝑡𝑎𝑖𝑙𝑠)
�Result: true
�Probability of path 𝑞Q𝑞U𝑞Q𝑞U… is zero!

Quantitative in PCTL vs. Qualitative in CTL

60

𝑞Q

𝑞U

𝑞S

0.5

0.5 1

1 ℎ𝑒𝑎𝑑𝑠

𝑡𝑎𝑖𝑙𝑠

u You want to develop a new CPS/IoT system with autonomy
u Analyze its environment: model it as a dynamical system or a stochastic

system (e.g. PoMDPs)
u Analyze what models to use for the control algorithms

�Choices are: Traditional control schemes (PID/MPC), state-machines
(synchronous vs. asynchronous based on communication type),
AI/planning algorithms, hybrid control algorithms, or combinations of
these

How does everything fit together?

64

u Try to specify the closed-loop system as something you can simulate and see its
behaviors
� Integrative modeling environment such as Simulink (plant models + software

models)
� Specify requirements of how you expect the system to behave (STL, LTL, or your

favorite spec. formalism)
�This step is a DO NOT MISS. It will provide documentation of your intent, and

also a machine-checkable artifact
u Test the system a lot, and then test some more
u Apply formal reasoning wherever you can. Proofs are great if you can get them
u Safety doesn’t end at modeling stage; continue reasoning about safety after

deployment (through monitoring etc.)

Safety is the key!!

65

u Basics of Control
� PID, MPC, Nonlinear control, Observer design (Kalman

filter)
u Basics of Planning

� Path planning, Reinforcement learning

u Models of computation
� Asynchronous, Synchronous, Timed, Hybrid Processes,

Dynamical Systems, MDP
MODELING

AUTONOMY

u Specification Languages
(LTL, CTL, STL)

u Falsification and Testing,
Parameter Synthesis

u Safety Invariants
Reachability, Model
Checking

SAFETY

