Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
Il Semestre 2018

Lecture 11: Verification

[Many Slides due to J. Deshmukh]

Open vs. Closed Systems

A closed system is one with no inputs

in out out
So p— S¢

(a) Open system (b) Closed system

For verification, we obtain a closed system by composing the system and
environment models

Formal Verification

Property

Compose . Verify I

Environment

E

YES
[proof]

counterexample

Requirements/Property

A requirement describes a desirable property of the system behaviors.

A Model satisfies its requirements if all system executions satisfy all the
requirements.

Two broad categories:

- safety requirement: “nothing bad ever happens”,

- liveness requirement: “something good eventually happens”

Importance of this classification: these two classes of properties require
fundamentally different classes of model checking algorithms

Requirements/Property

safety requirement:

“if something bad happens on an infinite run, then it happens already on some
finite prefix”

Counterexamples no reachable ERROR state

liveness requirement:

I”no matter what happens along a finite run, something good could still happen
ater”

Infinite-length counterexamples, loop

Requirements example

It cannot happen that both processes are in their critical sections simultaneously

Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter.

Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

The elevator will arrive within 30 seconds of being called

Patient’s blood glucose never drops below 80 mg/dL

Requirements example (Safety vs Liveness)

It cannot happen that both processes are in their critical sections simultaneously S

Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter. S

Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually. L

The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all
computation steps until 30 seconds have passed, and decide the property, therefore safety)

Patient’s blood glucose never drops below 80 mg/dL. S

Monitors

A safety monitor classifies system behaviors into good and bad

Safety verification can be done using inductive invariants or analyzing
reachable state space of the system

A bug is an execution that drives the monitor into an error state

Can we use a monitor to classify infinite behaviors into good or bad?

Yes, using theoretical model of Blichi automata proposed by J. Richard Buchi
in 1960

Reachability Analysis and Model Checking

Reachability analysis is the process of computing the set of reachable states
for a system

Model checking is an algorithmic method for determining if a system
satisfies a formal specification expressed in temporal logic

Model checking typically performs reachability analysis.

Safety Requirements

To verify a safe requirements p on a system M, one simply needs to
enumerate all the reachable states and check that they all satisfy p.

A safety requirement for a system classifies its states into safe and unsafe
and asserts that an unsafe state is never encountered during an execution of
the system.

Safety requirements can be formalized using transition systems

(Label) Transition System

Transition System is a tuple < S, I, A,[T], AP, L >
S: Set of State
I € S: set of initial state
A: finite set of actions
[T]: is a set of transition relations —»% s
AP: set of atomic propositionon S
L:S — 24P isalabeling function

I

Transition System

A path is an (infinite) sequence of states in the TS
€.g.0= SO 51525252

A trace is the corresponding sequence of labels
e.g. pip, q3qqq

A word is a sequence of actions
e.g. abbbb

Transition Systems and state

All kinds of componentsésync_hronous, asynchronous, timed, hybrid, continuous
components have an underlying transition system)

State in the transition system underlying a component captures any given runtime
configuration of the component

If a component has finite input/output types and a finite number of “states” in its ESM,
then it has a finite-state transition system

Continuous components, Timed Processes, Hybrid Processes in general, have infinite
number of states

Example of a TS

intx:=0

(press==1) or (x= 2) ?
- X =0

(press==0) & (x<2) ?
- X =x+1

S = {on, off} Xint
| ={off, x=0}
[T] has an infinite number of transitions:

s — s’

E.g. (off,0) - (on,0) (on0) —
(on,1)

TS describes all possible transitions

intx:=0

(press==0)?

(press==1) or (x=2) ?
—»x:=0

(press==0) & (x<2) ?
->x =x+1

’,

Transitions indicated as dotted lines can’t really happen in the component

But, the TS will describe then, as the states of the TS are over {on, of f } Xint!

Reachable states of a modified switch TS

(on,0)

(press==1) or (x=2) ?
->x =0
(press==0) & (x<2) ? Reachable states
—>x:=x+1 and transitions

’,

A state s of a transition system is reachable if there is an execution starting in some initial state
that ends in s.

Desirable behaviors of a TS

Desirable behavior of a TS: defined in terms of acceptable (finite or infinite) sequences of
states

Safety property can be specified by partitioning the states S into a safe/unsafe set
Safe € S, Unsafe € S, Safe N Unsafe = @

Any finite sequence that ends in a state g € Unsafe is a witness to undesirable
behavior,

or if all (infinite) sequences starting from an initial state never include a state from
Unsafe, then the TS is safe.

Invariants

A property @ is called an invariant of TS if every reachable state of TS
satisfies @

Examples: intx:=0
(mode = Off) ?
(X - 2) (press==0)-
= — [\H—'
(mode Off) = (x O)J ‘\\JQZ\A (press==1) or (x=2) ?
(X < 50) -»x =0

(press==0) & (x<2) ?
-»x =x+1

Safety invariants

An invariant @ is a safety invariant if
@ NUnsafe =0

intx:=0

Suppose, Safe = {x|0 < x < 3}, and
Unsafe = Safe (press==0)?

(press==1) or (x=2) ?
- x =0

Then, we can verifythat 0 < x < 2isa
sdfety invariant for modified switch (press==0) & (x<2) ?

->xX =x+1

Inductive Invariant

A property @ is an inductive invariant of a transition system TS if
Every initial state satisfies ¢
If any state s satisfies ¢, and (s,s’) € [T], then s’ satisfies ¢

By definition, if ¢ is an inductive invariant, then all reachable states of TS
satisfy @, and hence it is also an invariant

Inductive Safety Proof

Given TS and a property @, prove that all reachable states of TS satisfy @
Base case: Show that all initial states satisfy @

Inductive case: assume state s satisfies ¢, then show that if (s,s") € [T], then s’ must also satisfy ¢

Proving inductive invariants: Example 1

Consider transition system TS given by
Init:x - 0
T:if (x<m)thenx:=x+4 1 (else x remains unchanged)

Is : (0 < x < m) an inductive invariant?

Example 1:1s ¢:(0<x<m) an inductive invariant?

Init:x— 0

. . .- . oo TZif(X<m)thenxz:X_|_1
Base case: X is zero, so @ is trivially satisfied

Inductive case:
Pick an arbitrary state (i.e. arbitrary value for state variable x), say x = k
Now assume k satisfies @, i.,e. 0 < k<m
Consider the transition, there are two cases:
If k < m, then x = k + 1 after the transition, and x < m
If K = m, then x = k (because guard is not true), which is x = m.
In either case, after the update 0 < x<m
So @ is an inductive invariant, and the proof is complete

How do we prove safety invariants?

To establish that ¢ is an invariant of TS:

Find another property 1 such that
Y = @ (i.e. every state satisfying Y must satisfy @)
Y is an inductive invariant
Show initial states satisfy Y

Assume an arbitrary state s satisfies 1, consider any state g’ such that
(s,s") € [T], then prove that s’ satisfies 1

Soundness and Completeness

Formal system: a set of axioms, a grammar for specifying well-formed formulas,
and a set of inference rules for deriving new true formulas from axioms

Sound: Starting from the axioms and using inference rules of the formal system,
we cannot arrive at a formula that is equivalent in meaning to false.

Complete: Proof system is complete with respect to a property if every formula
having that property can be derived using the inference rules
Proof rule for proving invariants is sound and complete:

Sound: It is a correct proof technique

Complete: If @ is an invariant, there is some stronger inductive invariant Y
satisfying inductive conditions that we can find

Safety Proof for Switch

@:{x|0 < x < 2}
Let’s try the inductive invariant: y: ((mode =off) > (x= O)) A ((mode =on)=>(0<x< 2))

Init:x - 0,mode - of f

intx:=0
Base case: (off,0) trivially satisfies 1
Inductive hypothesis: assume that a state g satisfies Y Off (press==1)?
==0)?
Inductive step: prove that any q' s.t. (q,q") € [T] satisfies i (press==0)
Casel: q = (of f,0)
q' = (of f,0) [trivial] (press==1) or (x=2) ? on
q' = (on, 0) [satisfies second conjunct in Y] -»x:=0
Case ll: g = (on,n) (press==0) & (x<2) ?
q' = (on,n+ 1) if n < 2, this implies that n + 1 < 2, so q’ satisfies ¥ -»>x:=x+1

q' = (of f,0) otherwise, this again implies that q' satisfies ¢
So ¥ is an inductive invariant
Further, Y = @ (note that every state satisfying ¥ will satisfy @)

So @ is an invariant of the TS!

Reachability

A state g of a transition system is reachable if there is an execution starting in some
initial state that ends in q.

Algorithm to compute reachable states from a given set of initial states (just Breadth First
Search, BFS):

Procedure ComputeReach(TS)
Yy: = [Init], k:=1;
While (Y, # Yi_1)
Temp:=0Q
ForEach g € Y),_4
If ((q,q") € [T]) Temp := Temp U {q'}
EndForEach
Y =Y,_1UTemp, k := k+1
EndWhile
Return Y},
EndProcedure

Proving safety via reachability

If partitioning the states S into a safe/unsafe set.
To get a proof of safety, do reachability computation, and if
ComputeReach(TS) N Unsafe = 0, then the TS is safe

Proving that something is an invariant via reachability

Given TS and a property ¢, prove that all reachable states of TS satisfy ¢

ComputeReach(TS), it actually gives an inductive definition of reachable states
All states specified by I (initial state) are reachable using O transitions

If a state s is reachable using m transitions, and (s, s’) is a transition in [T], then s’ is
reachable using m+1 transitions

Reachable = Reachable using n transitions for some n

BUchi automaton

Can we use a monitor to classify infinite behaviors into good or bad?

Yes, using theoretical model of Blichi automata proposed by J. Richard Buchi
in 1960

BUchi automaton

Theoretical result: Every LTL formula ¢ can be converted to a Blichi monitor/automaton 4,

Extension of finite state automata to accept infinite strings

A Bichi automaton is tuple B =< S,1,%,6,F >
S finite set of states (like a TS) —
| is a set of initial states (like a TS) —
Y is a finite alphabet (like a TS) —
0 is a transition relation (like a TS)
F is a set of accepting states

An infinite sequence of states (a path/trace p) is accepted iff it contains
accepting states (from F) infinitely often

Example: What is the language of 4,7

|
o

LTL formula GF(x = 1) do X

BUchi automaton Example

A
x = 0|1 ° x=1 Note that this is a nondeterministic
Blchi automaton
x = 0|1 A, accepts p if there exists a path
do dr along which a state in F appears
infinitely often
What is the language of 4,7
S: , 210,14, F:
{qo. qf} (0.1}, F: {ay} LTL formula FG(x = 1)
Transitions: (as shown)

Fun fact: there is no deterministic Blchi automaton that accepts this language

BUchi automaton Example 3

What is the language of A;?

LTL formula:
G((x=1)=>F@y=1))

l.e. always when (x = 1), in some

future step, (y = 1)

In other words, (x = 1) must be
followed by (y = 1)

y=0

5:190,q1},2: 10,1}, F: {qo}
Transitions: (as shown)

LTL Model Checking

TS M: input set A= {a,b,c} and AP={p,q}
e Formula@=GFp

* Traces of M = infinite label sequences (e.qg.
c,=({a}.{p}.{p.q})” and c>={q}")

LTL Model Checking

* B, accepts exactly those traces that
satisfy ¢

* B., accepts exactly those traces that
falsify ¢
* ~¢ = ~(GFp)=F~(Fp)=F(G~p)

true

B“‘(P

LTL Model Checking

 |f TS generates a trace that is accepted by
B, , this means, by construction, that the
trace violates @, and so that the TS is
incorrect (relative to @)

\O Accepting trace = cycle

that contains an accepting
state
O

CTL

Computation Tree Logic

LTL was a linear-time logic where we reason about traces

CTL is a logic where we reason over the tree of executions generated by a
program, also known as the computation tree

We care about CTL because:

There are some properties that cannot be expressed in LTL, but can be
expressed in CTL: From every system state, there is a system execution that
takes it back to the initial state (also known as the reset property)

Can express interesting properties for multi-agent systems

Computation Tree

A: x:=(x+1) mod?2
B: even(x) = y: =1-y

Process

Ny—&T
(0,0) —>((0,1)

|

(1,0) (1,1)

Finite State machine

(0,0)
/ N\
(1,0) (0,1)
/
(0,0) (0,0)

AN

\

(1,1)

\

We saw computation
trees when
understanding
semantics of
asynchronous
processes

Basically a tree that
considers “all
possibilities” in a
reactive program

CTL Syntax

Syntax of CTL

pl-olonge
EX@

EFg

EGop
EpUogp
AXp

AFgp

AGop
ApUop

<
|

Prop. in AP, negation, conjunction

Exists NeXt Step

Exists a Future Step

Exists an execution where Globally in all steps

Exists an execution where in all steps Until in some step
In All NeXt Steps

In All possible future paths, there is a future step

In All possible future paths, Globally in all steps

In All possible future executions, in all steps Until in some step

CTL semantics

Path properties: properties of any given path or execution in the program

Quantification over runs: Checking if a property holds over all paths or over
some path

Example CTL operator:
AF p

For All executions Eventually/In Some Future step

CTL Semantics through examples

@ @ @ @

CTL semantics through examples

AF p: Along all
Paths, There is
some future step

p ‘ ‘ where p holds

EF p: Along some
path, there is

‘ ‘ some future step
P p where p holds

CTL semantics through examples

AG p: Across all

paths, and for every
successor in the

path, p holds

EG p: Along
some

path, p always
p p holds

CTL Operator fun

AGEF p
AGAF p
EGAF p
AG (p = EXq)

CTL advantages and limitations

Checking if a given state machine (program) satisfies a CTL formula can be
done quite efficiently (linear in the size of the machine and the property)

Native CTL cannot express fairness properties
Extension Fair CTL can express fairness

CTL" is a logic that combines CTL and LTL: You can have formulas like AGF p

CTL: Less used than LTL, but an important logic in the history of temporal
logic

PCTL

Probabilistic CTL

LTL
Can be interpreted over individual executions
Can be interpreted over a state machine: do all paths satisfy property

CTL
Is interpreted over a computation tree

PCTL
Is interpreted over a discrete-time Markov chain
Encodes uncertainties in computation due to environment etc.

Probabilistic CTL

Syntax of PCTL
Q = pl—@|@A@ | |Prop.in AP, negation, conjunction
(State) P_,(¥) | |~e{< <,>2},12€]0,1]: Probability of i being true
Y = X | |NeXtTime
(Path) a, U5k<p | | Bounded Until (up to k steps)
o U@ Until (Recall Fp = true U ¢, and Gp = —F—¢

PCTL formulas are state formulas, path formulas used to define how to build a PCTL formula

Semantics

Semantics of path formulas is straightforward (similar to LTL/CTL)
Semantics of state formula with Probabilistic operator:

Prob(q,X@): Xqi=¢ P(q,q") qo) 04
Does P,y (X p) hold in state q,? q> 1 g,
No, because P(gq,,Xp) = 0.1+ 0.2 =10.3

Semantics of state formula with Until Prob(q, aUSk,B):

lifgEpf
Oifgtaorg¥fandk =0

> P(q,q").Prob(q’,a U*"1B) for k > 0, otherwise

q.) P

PCTL

Does this formula P-4 < (Xp) hold in
state Brake?

Yes

Value of €? P..(F=%r) in state Accel

Compute Prob(q, F=?r) for all g,
pick smallest

P(A,B) + P(A,C)+P(A4,A4,B) +
P(A,A,C)

=0.5+0.2+0.3*0.5 +0.3*0.2
=0.91

e =091

l.e. with probability = 0.91, driver
checks cell phone within 2 steps

r: Checking cellp
p: Feeling sleepy

hone

0 \ 0.3 0 \
fg—lp, 0.1 P
1 Accelerate 02 ngcsate
0 0.5
0.5
08 0.4
D, T « 0c Brake
/ —p,Tr

T
04
ant
I0.0S

Quantitative in PCTL vs. Qualitative in CTL

Toss a coin repeatedly until “tails” is thrown

Is “tails” eventually thrown along all paths?
CTL: AF tails
Result: false

Why? q0919091 ---

Is the probability of eventually thrown “tails”
equalto 1?

PCTL: P.1(F tails)
Result: true
Probability of path gy919094 ... is zero!

How does everything fit together?

You want to develop a new CPS/IoT system with autonomy

Analyze its environment: model it as a dynamical system or a stochastic
system (e.g. POMDPs)

Analyze what models to use for the control algorithms

Choices are: Traditional control schemes (PID/MPC), state-machines
(synchronous vs. asynchronous based on communication type),
Al/planning algorithms, hybrid control algorithms, or combinations of
these

Safety is the key!!

Try to specify the closed-loop system as something you can simulate and see its
behaviors

Inte rlat)lve modeling environment such as Simulink (plant models + software
models

Specify requirements of how you expect the system to behave (STL, LTL, or your
favorite spec. formalism)

This step is a DO NOT MISS. It will provide documentation of your intent, and
also a machine-checkable artifact

Test the system a lot, and then test some more
Apply formal reasoning wherever you can. Proofs are great if you can get them

Safety doesn’t end at modeling stage; continue reasoning about safety after
deployment (through monitoring etc.)

Models of computation

Asynchronous, Synchronous, Timed, Hybrid Processes,
Dynamical Systems, MDP

MODELING

Basics of Control

PID, MPC, Nonlinear control, Observer design (Kalman
filter)

Basics of Planning AUTONOMY

Path planning, Reinforcement learning

Specification Languages
(LTL, CTL, STL)

Falsification and Testing,
Parameter Synthesis

Safety Invariants
Reachability, Model

Checking

