Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
Il Semestre 2019

Lecture 12: Examples

[Many Slides due to J. Deshmukh]

Pacemaker Modeling as a Timed Process

Most material that follows is from this paper:

Z. Jiang, M. Pajic, S. Moarref, R. Alur, R. Mangharam, Modeling and
Verification of a Dual Chamber Implantable Pacemaker, In Proceedings

of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2012.

The textbook has detailed descriptions of some other pacemaker
components

How does a healthy heart work?

Sinoatrial (
node

Atrioventricular
(AV) node Ventricle

Electrical Conduction System of the Heart

SA node (controlled by nervous system)
periodically generates an electric pulse

This pulse causes both atria to contract
pushing blood into the ventricles

Conduction is delayed at the AV node
allowing ventricles to fill

Finally the His-Pukinje system spreads
electric activation through ventricles
causing them both to contract, pumping
blood out of the heart

What do pacemakers do?

Aging and/or diseases cause conduction
properties of heart tissue to change leading to
changes in heart rhythm

Tachycardia: faster than desirable heart rate
impairing hemo-dynamics (blood flow
dynamics)

Bradycardia: slower heart rate leading to
insufficient blood supply

Pacemakers can be used to treat bradycardia by
providing pulses when heart rate is low

How dual-chamber pacemakers work

Two fixed leads on wall of right atrium and ventricle respectively

Activation of local tissue sensed by the leads (giving rise to events Atrial
Sense (AS) and Ventricular Sense (VS))

Atrial Pacing (AP) or Ventricular Pacing (VP) are delivered if no sensed
events occur within deadlines

AS

\ A 4

VS
Heart AP Pacemaker

VP

Implantable Pacemaker modeling

N N\ N N
AS Vv [AR] AS AS Atrium
AP |
Pacemaker : ' —
pulse generatz M V ! V N Ventricle
» 1
: 1
VP vs VP VP
1
1 (3)
Lead in - oJ" 2] J' - ¥ extension
right atrium AVI AVI Jnsensed | AV AVI
PVARP | § PVARP | PVARP PVARP
VRP § VRP VRP VRP
AEI | LRI LRI
Lead i LRI LRI
right ventricle ORI 5 ORI
URI URI

reset

The LRI mode of operation explained

LRI (Low Rate Interval) component
keeps heart rate above minimum
VS? - ¢:=0 level

One of the pacemaker modes of
VP? o it operation that models the basic
ASed . R VP? > =0 timing cycle

c<K
Measures the longest interval
between ventricular events

Clock reset when VS or VP received

K=850ms No AS received = LRI outputs AP
after K (TLRI-TAVI) time units

AS?

VS? - ¢c:=0 c=> K- AP!; c:=0

Random Heart Model (RHM)

RHM is designed to cover open-loop heart behaviors. It non-
deterministically generates an intrinsic heart event Xget! within [Xminwait,
Xmaxwait] after each intrinsic heart event Xget or pacing XP.

Property

Monitor Pvv

? = . VS?
waitl V5? ~t=0 wait2
/)
VP?

VP? - t:=0

t:=0

CTLformula: AG (Pvv.wait2 = Pvv.c < TLRI)

Timed Automata

Useful tool to do timing analysis and explore properties of timed processes

Finite-state timed automaton: a machine where all state variables other
than clock variables have finite types (e.g. Boolean, enums)

State-space of timed automata is infinite (clocks can become arbitrarily
large!)

But some questions about timed automata behavior can still be answered
exactly

Artificial Pancreas

Type 1 diabetes occurs when the s

Glucose Sensor

pancreas produces little or none of the
iInsulin needed to regulate blood glucose

They rely on external ad- ministration of
insulin to manage their blood glucose levels.

Most material that follows is from these papers:

* Fedor Shmarov, Nicola Paoletti, Ezio Bartocci, Shan Lin, Scott A. Smolka, Paolo Zuliani: SMT-based Synthesis of Safe and
Robust PID Controllers for Stochastic Hybrid Systems. Haifa Verification Conference 2017: 131-14

* Simone Silvetti, Laura Nenzi, Ezio Bartocci, Luca Bortolussi: Signal Convolution Logic. CoRR abs/1806.00238 (2018)

https://dblp.org/pers/hd/n/Nenzi:Laura
https://dblp.org/pers/hd/b/Bartocci:Ezio
https://dblp.org/pers/hd/b/Bortolussi:Luca
https://dblp.org/db/journals/corr/corr1806.html

Artificial Pancreas

SIMULATED
INSULIN .
PUMP seeeds INSULIN
TREATMENT DECISION
* CONTROLLER INJECTIONS o.::ooo ALGORITH M/CONTROLLER

An Artificial Pancreas System

Stochastic Hybrid Systems Of Glucose

d
—x(t) = F(x(t); u(t); 0); y(t) = x1(t)

\ \ glucose concentration

_ _ _ the control parameters
Infusion rate of bolus insulin

O = (Dg,;Dg,; Dg,; Tq; T;) are the control parameter
(D¢,; Dg,; Dg,) € (N(40; 10); N(90; 10); N(60; 10)) are the three daily meals

(Ty; T,) € ~ N (300, 10) and T2 ~ N (300, 10) are the inter-times between each of them

200 1

150 -
t=T t=1,
> Meal 1 > Meal 2 >
D¢ := DGl (DG = DGZ)/\(Z‘ = 0) (DG = DG3)/\(f = 0) 100

13

BG (mmol/L)

0 200 400 600 800 1000 1200 1400

PID Control

r(t) e(t)

Plant /
Process

u(t) = Kpe(t) + Ki j

0

t

e(t)dr + Ke'(t),

e(t) =7 () —y(t)

Artificial Pancreas

» Hyperglycemia
» “during the day the level of glucose
goes above 180mg/dl”

Fo,24r)(BG(t) > 180)

» Hypoglycemia
» “during the day the level of glucose
goes below 70mg/dl”

Flo,24n)(BG(t) < 70)

200 -

&
=

5
=}

BG (mmol/L)

()

o..

0 200 400 600 800 1000 1200 1400
Time (min)

Falsification

The most simple way to do falsification with respect a property ¢ is minimizing

the robustness over N iterations considering random samples on control
parameters, i.e:

minSTL = ‘inf’
Fori=1,..,N:
® =sampling (Dg,,Dg,, D¢, T1, T2)
t,y =simulation(®)
stl= computeRobustness(y, ¢)
if (stl < minSTL):
minSTL = stl
vSTL = [Dg,, Dg,, Dg,, T1, T2]

For fixed control parameter spaces you can consider to sample with respect on
grids over it.

Noise Robustness

» To consider noisy sensor we can add a Gaussian noise to the generated
glucose trajectory, i.e. GB(t) + y with y € N(0; 5)

g & B

BG (mmol/L)

[

(=]

0 200 400 600 800 1000 1200 1400
Time (min)

Automatic Transmission

[Continuous Dynamics

| Outputs
I 4 Imyellerforque
> Ti = T ——
| Throttle EfgineRPM
/)
" T
p

Inputs |

Most material that follows is from this paper:

»Bardh Hoxha, Houssam Abbas, Georgios E. Fainekos: Benchmarks for Temporal
Logic Requirements for Automotive Systems. ARCH@CPSWeek 2014: 25-30

18

Automatic Transmission

» Inputs: the throttle and break 100 | PP simm
- /\/
3 2
%I 50
» Outputs: the speed of the engine w (RPM), g
the speed of the vehicle v (mph) and the 0 ' x ' : ' ,
gea r 0 10 20 30 40 50 60 70
4000 +
-8 3000
» Initially, the vehicle is at rest at time O, i.e. 2 2000 -
the speed v =0 and engine speed w =0 ® o
2 0 1K0 2;0 3i0 4K0 5’0 6K0 7!0
» Therefore, the output trajectories depend ar
only on the input signals ut and ub which Al
model the throttle and break inputs. g
2 —
» The throttle and break, at each point in time, "o 10 20 30 | 40 50 o0 0
can take any value between O (fully closed) to ime

100 (fully open).
19

70

70

70

70

60

50

40

30

20

10

time

60

50

40

30

20

10

time

60

50

40

30

20

10

time

60

50

40

30

20

10

time

8

Q
w

(amoayy ndu

40
30—

S 10—

8

(wd. u) peads aujbua) IndinQ

Q
w

Q

o

o

8

<
(ydw u

3000 —

paads

@ 2000 }—

Q

8

21yen) inding

(=]

o

70

60

50

40

30

20

10

time

Automatic Transmission

» The model contains 69 blocks among which there are 2 integrators (i.e., 2 continuous
state variables), and a Stateflow chart. The Stateflow chart contains two concurrently
executing Finite State Machines with 4 and 3 states, respectively.

[Continuous Dynamics]

RPM 7 Outputs

/’/ selection_state
}’ during: CALC_TH;

]-o

[speed < down_th]

T
‘&
L
§
L T=

up_th throttie TransmissionRPM

VehicleSpeed

Inputs I

after (TWAIT,tick) after (TWAIT,tick)
[speed <= down_th] [speed >= up_th]

§ downshifting
' {gear_state. DOWN} {gear_state.UP}

21

Properties

Automatic Transmission

Natural Language

MTL

i

The engine speed never reaches w.

O(w <)

AT
2

The engine and the vehicle speed
never reach w and v, resp.

O(w < @) A (v <))

AT
3

There should be no transition from
gear two to gear one and back to
gear two in less than 2.5 sec.

O((g92 A Xg1) — O(0,2.51792)

AT
4

After shifting into gear one, there
should be no shift from gear one to
any other gear within 2.5 sec.

O((—g1 A Xg1) — B0,2.591)

AT
5

When shifting into any gear, there
should be no shift from that gear to
any other gear within 2.5sec.

/\?:15(@9'& NXgi) — D(0,2.5191')

AT
6

If engine speed is always less than @,
then vehicle speed can not exceed v
in less than T sec.

=(Cro,(v > 0) AND(w <))

AT
7

Within T sec the vehicle speed is
above v and from that point on the
engine speed is always less than w.

Co, (v > 0) ANO(w < @))

AT
8

A gear increase from first to fourth
in under 10secs, ending in an RPM
above w within 2 seconds of that,
should result in a vehicle speed
above . 22

(g1 U g2 U g3 U ga) N <po,101(ga A
Cpgw >) = Cpa0lgs —

X (94 U1y (v 2 0)))

alw ((e_speed[t] <4000))

400 T T T T
Quant. sat
———— Bool.sat |- true
300 -]
200 - =1
100 -]
0O]
-| false
_100 1 1 1 1 1 1
0 10 20 30 40 50 60 70

time

A Deep Neural Network controller

Mojtaba Zarei, Yu Wang, Miroslav Pajic: Statistical verification of learning-based cyber-physical systems. HSCC 2020: 12:1-12:7

https://dblp.org/pers/hd/z/Zarei:Mojtaba
https://dblp.org/pers/hd/p/Pajic:Miroslav
https://dblp.org/db/conf/hybrid/hscc2020.html

Reinforcement Learning and Temporal Logic

Challenges:
Safe RL
Complex Tasks

Reward Hacking

Safe Reinforcement Learning

]- Hyperglycemia
Blood Glucose 140
(sugar) g 120}
£
&’ §1OO .
o
#‘» g &0
) O
‘L : '8 60
o
(a4]
40 .
Hypoglycemia
20 ‘ : :
0 500 1000 1500

Time (minutes since midnight)

z@

Eat Carbohydrates Release Insulin

Reward Hacking

A policy that achieves high returns but against the designer’s intentions

https://www.youtube.com/watch?v=92qDfT8pENs

https://www.youtube.com/watch%3Fv=92qDfT8pENs

Reward function is not enough

Description using a language can help..

To define task better
To learn more efficiently and precisely

To transfer learning between tasks

To be “safe”

Several Works with different motivations

LTL constrained, Reward function remained the same
Reward shaping using probability of average robusntess satisfaction

multi-task-RL

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

Safe Reinforcement Learning via Shielding

Mohammed Alshiekh,' Roderick Bloem,’> Riidiger Ehlers,’

Bettina Konighofer,” Scott Niekum,' Ufuk Topcu '
1University of Texas at Austin, 210 East 24th Street, Austin, Texas 78712, USA
2Graz University of Technology, Rechbauerstrafe 12, 8010 Graz, Austria
3University of Bremen and DFKI GmbH, Bibliothekstralle 1, 28359 Bremen, Deutschland
{malshiekh, sniekum, utopcu } @utexas.edu, {roderick.bloem, bettina.koenighofer } @iaik.tugraz.at, rehlers @uni-bremen.de

Abstract

Reinforcement learning algorithms discover policies that
maximize reward, but do not necessarily guarantee safety dur-
ing learning or execution phases. We introduce a new ap-
proach to learn optimal policies while enforcing properties
expressed in temporal logic. To this end, given the temporal
logic specification that is to be obeyed by the learning system,
we propose to synthesize a reactive system called a shield.
The shield monitors the actions from the learner and corrects
them only if the chosen action causes a violation of the spec-
ification. We discuss which requirements a shield must meet
to preserve the convergence guarantees of the learner. Finally,
we demonstrate the versatility of our approach on several
challenging reinforcement learning scenarios.

Y reward ¢ \
[Environment 3| Learning Agent |«
—~ “| observation - J
! actions
4 ™\
> Shield
safe action \ [J

Figure 1: Shielded reinforcement learning

its operation whenever absolutely needed in order to ensure
safety?”

In this paper, we introduce shielded learning, a frame-
work that allows applving machine learning to control sys-

Safe RL via Shield

How can we let a learning agent do whatever it is doing, and also monitor and interfere with
its operation whenever absolutely needed in order to ensure safety?

The shield is computed upfront from the safety part of the given system specification
and an abstraction of the agent’s environment dynamics

Minimum interference: monitors the actions selected by the learning agent and
corrects them if and only if the chosen action is unsafe.

Boundary helps to separate the concerns, e.g., safety and correctness on one side and
convergence and optimality on the other

Compatible with mechanisms such as function approximation, employed by learning
algorithms in order to improve their scalability

Safe RL via Shield

Safety fragment of LTL
(something bad should never happen, e.g. no safety G(r - Fg), every request is eventually
granted)

A faithful, yet precise enough, abstraction of the physical environment is required
Independent of the state space components of the system to be controlled

The shield is the product between specification automaton and the MDP abstraction

Safe RL via Shield

If the property is violated there are two approaches:

Assign a punishment : negative reward

Assign the reward: positive reward

Then the shield selects an action in a “rank” that is safe

Grid world Example

With tabular Q-learning with an e-greedy explorer

g

a1

a3

a2

Figure 6: 9x9 grid world.

0.20
ge;
3
5 0.10
a7
=3
b2
= 0.00
=
= :
8 .
O —0.10f F |- No shielding
< .4 — No shielding w/ Large penalty
0.20 " |=— |rank;| = 3 w/ penalty

0 20 40 60 80 100
Episodes

Figure 7: The accumulated reward per episode for the 9x9
grid world example.

The PacMan Example

Approximate Q-learning agent

L1000 | st trvs s n s o Figure 12: The 5x18 grid world of the pacman example.

0

o

e

<

=

)

< 1. I

b5+ A

2 S D SR
= R A L
= eams L menEet Lo n SRS
= —1,000 Ttk T LI P S S P
= Tioigw SRR A S S
= i EECHEE I 3
3 K I

<

------ No shielding

—2,000
— |rank;| = 1 w/o penalty

0 50 100 150
Episodes

Figure 13: The accumulated reward per episode for the pac-
man example.

Several Works with different motivations

LTL constrained, Reward function remained the same
Reward shaping using probability of average robusntess satisfaction

multi-task-RL

General |dea

Reward Shaping problem:

Design R(s,a) s.t. lcan find ™ s.t.V x, m* (x) the "satisfaction” of x is
maximised

Why important?
Poorly design -> poorly convergence
Learning unsafe or unrealistic action

LTL constrained to discrete state and action

Probably Approximately Correct MDP Learning
and Control With Temporal Logic Constraints

Jie Fu and Ufuk Topcu

Department of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, Pennsylvania 19104
Email: jief, utopcu@seas.upenn.edu

Abstract—We consider synthesis of controllers that maximize
the probability of satisfying given temporal logic specifications
in unknown, stochastic environments. We model the interaction
between the system and its environment as a Markov decision
process (MDP) with initially unknown transition probabilities.
The solution we develop builds on the so-called model-based
probably approximately correct Markov decision process (PAC-
MDP) method. The algorithm attains an z-approximately optimal
policy with probability 1 —4§ using samples (i.e. observations), time
and space that grow polynomially with the size of the MDP, the
size of the automaton expressing the temporal logic specification,
L, 4 and a finite time horizon. In this approach, the system
maintains a model of the initially unknown MDP, and constructs
a product MDP based on its learned model and the specification
automaton that expresses the temporal logic constraints. During
execution, the policy is iteratively updated using observation of
the transitions taken by the system. The iteration terminates in
finitely many execution steps. With high probability, the resulting
policy is such that, for any state, the difference between the
probability of satisfying the specification under this policy and
the optimal one is within a predefined bound.

arrived positions differ
of different grounds.
terrain can be modele
probabilities are unkno
observations of robot’
number of samples.
may not be affordable
amount of samples, we
MDP and reason abot
respect to the underl!
policies synthesized us
We develop an alg
updates the controller
for an unknown MDP,
method [4, 5] to maxin
temporal logic specific
tion probabilities. In th
a model of the MDP

A Learning Based Approach to Control Synthesis of Markov Decision
Processes for Linear Temporal Logic Specifications

Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, Sanjit A. Seshia

Abstract—We propose to synthesize a control policy for a
Markov decision process (MDP) such that the resulting traces
of the MDP satisfy a linear temporal logic (LTL) property.
We construct a product MDP that incorporates a deterministic
Rabin automaton generated from the desired LTL property.
The reward function of the product MDP is defined from the
acceptance condition of the Rabin automaton. This construction
allows us to apply techniques from learning theory to the
problem of synthesis for LTL specifications even when the
transition probabilities are not known a priori. We prove that
our method is guaranteed to find a controller that satisfies the
LTL property with probability one if such a policy exists, and
we suggest empirically that our method produces reasonable
control strategies even when the LTL property cannot be
satisfied with probability one.

practical contexts where we start from a partial model with
unspecified probabilities.

Our approach is based on finding a policy that maximizes
the expected utility of an auxiliary MDP constructed from
the original MDP and a desired LTL specification. As in
the above mentioned existing work, we convert the LTL
specification to a deterministic Rabin automaton (DRA) [11],
[12], and construct a product MDP such that the states of the
product MDP are pairs representing states of the original
MDP in addition to states of the DRA that encodes the
desired LTL specification. The novelty of our approach is
that we then define a state based reward function on this
product MDP based on the Rabin acceptance condition of

LTL constrained to discrete state and action

For MDPs with unknown transition probability
LTL -> Deterministic Rabin Automata (DRA)
Translation breakes the history- dependence

select the reward function on the product MDP so it corresponds to the
Rabin acceptance condition of the LTL specification.

LTL constrained to discrete state and action

select the reward function on the product MDP so it corresponds to the Rabin
acceptance condition of the LTL specification.

Sp = (s,q) < Sp (we if sp € G
Wp(sp) = qwp if sp € B;)
0 ifspeS\(GUB)

where wg > 0 is a positive reward, wg < 0 is a
negative reward.

Prove convergence if policy exist s.t. it satisfies property with probability 1

1) Learn the transition probabilities and 2) Optimize the expected utility.
E.g. with a modified active temporal difference learning algorithm

STL and discrete space

Q-Learning for Robust Satisfaction of Signal Temporal Logic
Specifications

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta

Abstract— In this paper, we address the problem of learning
optimal policies for satisfying signal temporal logic (STL)
specifications by agents with unknown stochastic dynamics.
The system is modeled as a Markov decision process, in
which the states represent partitions of a continuous space
and the transition probabilities are unknown. We formulate
two synthesis problems where the desired STL specification is
enforced by maximizing 1) the probability of satisfaction, and 2)
the expected robustness degree, i.e., a measure quantifying the
quality of satisfaction. We discuss that Q-learning is not directly
applicable to these problems because, based on the quantitative
semantics of STL, the probability of satisfaction and expected
robustness degree are not in the standard objective form of Q-
learning (i.e., the sum of instantaneous rewards). To resolve
this issue, we propose an approximation of STL synthesis
problems that can be solved via Q-learning, and we derive
some performance bounds for the policies obtained by the
approximate approach. Finally, we present simulation results
to demonstrate the performance of the proposed method.

to describe tasks involving bounds on physical parameters
and time intervals [8]. An example STL specification is
“Within r; seconds, a region in which y is less than p)
is reached, and regions in which y is larger than p, are
avoided for 1, seconds.” STL is also endowed with a metric
called robustness degree that quantifies how strongly a given
trajectory satisfies an STL formula as a real number rather
than just providing a yes or no answer [10], [8]. This measure
enables the use of continuous optimization methods to solve
inference (e.g., [14], [15], [18]) or formal synthesis problems
(e.g., [22]) involving STL.

In this paper, we formulate two problems that enforce a
desired STL specification by maximizing 1) the probability
of satisfaction and 2) the expected robustness degree. One
of the difficulties in solving these problems is the history-
dependence of the satisfaction. For instance, if the specifi-

PR " o

STL and discrete space

Partition of a Continuous Space

YA
| | |

3AYf-----r----- S
| | |

Uknown stochastic dynamics

| | |
20y F----- :,,,,77'r*77*7'r*
. I

| | |
A'I/———?——I e
O'.)I |

(a)

Fig. 2. (a) Discretized state-space, |

Problem: history- dependence of the satisfaction

Fragment of STL such that the progress towards satisfaction is checked with
a sufficient number of (i.e.,) state measurements.

¢ = f(s) <d|=o|oNQ|oV O|F,50|G,n®,

7, = argmax Pr”[so.7
U

D)

my, = argmax E"[r(so.7,D)]
T

Problem: history- dependence of the satisfaction

h

T —MDP where 7 = rzsp) + 1 for Fro W, Gro,r ¥
Each state corresponds to a :;;,A-f_i ﬁﬁﬁﬁﬁ 10,

7-length trajectory R
QA!/——————E——————:r—————:r— 0301

g3 0'4: '
°l° . H I :_____:r_____:r_ 0101
Probability remains Markovian A 01?4.@ o (f
ﬂ l I . 090

0 A 2Ax 3Ax
(a) (b)

Fig. 2. (a) Discretized state-space, (b) Representation of o] over 2 —MDP.

Problem: robustness shape

max E*| max (r(s
max E”*[r(so.7,DP)] = 4 _r—lg.zgr
& max E™| min _(r(s
& T 1<t<T

T
4

™

)

)

0
0

).
)

)

)

lf (I) — F[O,T]¢
if &= G0

log-sum-exp approximation to adapt the Robustness of Q-learning

1
p

n
max(Xxy,...,X,) ~ —Ingeﬁxia
i=1

Finally...

~ T .
argmjng’r Y ePris ,¢)] : if &= Fy70
Ty = =T T
aremaxE* | — Y e Prls ’4’)] , 1t ®=Gp7¢
n - =11 |

The immediate reward is :

(PG50 if Problem 1A with @ = Fg 719
. —e PIUE9) 1 if Problem 1A with @ = Gig 710
Prisi9). if Problem 2A with ® = Fjg 71¢

\ _e_ﬂr(sf=‘7’), if Problem 2A with ® = Gy 1)¢

Experiments

4

Dy =G, 12 (F[O.z](region A) A Fjg) (region B))

|- N7 - |S|=19 and |S*| =676

> 2

the robustness degree gives “partial credit”
0 for trajectories that are close to satisfaction

For the prop satisfaction, instead, Q-
learning algorithm is essentially performing
a random search

(b) (c)

Fig. 5. (a) The initial state and the desired regions in case study 2 for
which a sample trajectory by (b) 7, and (c) m),.

STL and continuous space

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

September 24-28, 2017, Vancouver, BC, Canada

Reinforcement Learning With Temporal Logic Rewards

Xiao Li, Cristian-Ioan Vasile and Calin Belta.

Abstract— Reinforcement learning (RL) depends critically on
the choice of reward functions used to capture the desired be-
havior and constraints of a robot. Usually, these are handcrafted
by a expert designer and represent heuristics for relatively
simple tasks. Real world applications typically involve more
complex tasks with rich temporal and logical structure. In this
paper we take advantage of the expressive power of temporal
logic (TL) to specify complex rules the robot should follow,
and incorporate domain knowledge into learning. We propose
Truncated Linear Temporal Logic (TLTL) as a specification
language,We propose Truncated Linear Temporal Logic (TLTL)
as a specification language,that is arguably well suited for the
robotics applications, We show in simulated trials that learning
is faster and policies obtained using the proposed approach
outperform the ones learned using heuristic rewards in terms
of the robustness degree, i.e., how well the tasks are satisfied.
Furthermore, we demonstrate the proposed RL approach in a
toast-placing task learned by a Baxter robot.

TOPC-U

to Q-leaming on 7-MDPs in discrete spaces. Author
and@has also taken advantage of automata-based 1
to synthesize control policies that satisfy LTL specif
for MDPs with unknown transition probability.Thes
ods are constrained to discrete state and action spac
a somewhat limited set of temporal operators. To f
of our knowledge, this paper is the first to apply
reinforcement learning on continuous state and action
and demonstrates its abilities in experimentation.
We compare the convergence properties and the
of learned policies of RL algorithms using tempor
(i.e., robustness degree) and heuristic reward funct
addition, we compare the results of a simple TL al
against a more elaborate RL algorithm with heur
wards. In both cases better quality policies were

Truncated Linear
Temporal Logic (TLTL)

Specifically for robots
Unbounded
Atomic propositions

Evaluated against finite time sequences

,O(St t+k>)
P(St:t4k, f(5¢) < ¢)
P(St t+k > ﬂ¢)
p(St:t+k, P = V)
P(St:t4k, P1 N P2)
P(St:t+k,P1V P2)
P(St t+k> O¢)
P(St t+ks D¢)
(
(

P\St:t+k > <>¢)
P\St:t+k oU ¢)

P(St:t-f—k-a d) T w)

Pmax

¢ — f(st),

— p(St:t—}—ka ¢)>

max(—p(Stt+k, @),

min(p(Se.¢ok, ¢1),

max (p(Ss. 4k, 1),

p(St+1:t+k,) (k> 0),

y er[Itlitr—}—k)(p(St,:t_*-k’ ?)),

tentlaﬁk)(p(st ks P));

terr%aﬁk)(mln(P(Strit4ks V),
(

min p(serar, @))),
t" et,t’)

a 1 /. .
y erﬁ 1t)ﬁfk)(mln(p(&s t+k> V),

max p(sgrr, 9))),
t" e[t,t’)

P(St:t—}-ka ¢))
P(St:t+k~a ¢2))7
P(St:t+k-, ¢2))7

STL and continuous space

Parametrized policy (s, a|f0)

0" = argmaxg E,mg)|R(7)],
where p™8 (1) is trajectory distribution from following policy it

Relative Entropy Policy Search (REPS) :
constrained optimization problem that can be solved by Lagrange multipliers
method

Tlinear-Gaussian policies and weighted maximum-likelihood estimation to
update the policy parameters

Experiments

(

5 d, <0.2
,riiisc'rete —{ -9 d

0 everywhere else

01,2 S r01,2

\

2
td
,rfo'n inuous __ _Cldg + ¢o E doi'

1=1

—— REPS TL Robustness
~— REPS Discrete Reward

—— REPS Continuous Reward
step-REPS Discrete Reward

—— step-REPS Continuous Reward

-1

-2

-

)
“w

Robustness Value

100
Iteration Number

Experiments T R

~— REPS Discrete Reward step-REPS Discrete Reward

)
~

|
-

[

|
-

Robustness Value

N

(5 goals visited in the right order
pdiserete _ —5 goals visited in the wrong |
—2 d01,2,3 < To1.2.3 -
L0 everywhere else N _ _ _ _ |

Iteration Number

3
Tgontinuous — _Cldgi + o (dgj s dgk) + 3 Z dOz‘ .

1=1

2018 Annual American Control Conference (ACC)
June 27-29, 2018. Wisconsin Center, Milwaukee, USA

Smooth Robustness and continuous space

A Policy Search Method For Temporal Logic Specified Reinforcement
Learning Tasks

Xiao Li, Yao Ma and Calin Belta

Abstract— Reward engineering is an important aspect of
reinforcement learning. Whether or not the users’ intentions
can be correctly encapsulated in the reward function can
significantly impact the learning outcome. Current methods
rely on manually crafted reward functions that often requires
parameter tuning to obtain the desired behavior. This operation
can be expensive when exploration requires systems to interact
with the physical world. In this paper, we explore the use of
temporal logic (TL) to specify tasks in reinforcement learning.
TL formula can be translated to a real-valued function that
measures its level of satisfaction against a trajectory. We take
advantage of this function and propose femporal logic policy
search (TLPS), a model-free learning technique that finds a
policy that satisfies the TL specification. A set of simulated
experiments are conducted to evaluate the proposed approach.

Temporal logics (TL) have been adopted as specification
languages for a wide variety of control tasks. Authors of [6]
use linear temporal logic (LTL) to specify a persistent

—surveillance-task-carried out by aerial robots. Similarly, [7]
and [8] applied LTL in traffic network control. Application of
TL in reinforcement learning has been less investigated. [9]
combined signal temporal logic (STL) with Q-learning while
also adopting the log-sum-exp approximation of robustness.
However, their focus is in the discrete state and action spaces,
and ensured satisfiability by expanding the state space to a
history dependent state space. This does not scale well with
large or continuous state-action spaces which is often the
case for control tasks.

Several Works with different motivations

LTL constrained, Reward function remained the same
Reward shaping using probability of average robusntess satisfaction

Multi-task-RL

Multi-task-RL

Teaching Multiple Tasks to an RL Agent using LTL

Rodrigo Toro Icarte
University of Toronto
Department of Computer Science & Vector Institute
rntoro@cs.toronto.edu

Richard Valenzano
Element Al
rick.valenzano@elementai.com

ABSTRACT

This paper examines the problem of how to teach multiple tasks
to a Reinforcement Learning (RL) agent. To this end, we use Linear
Temporal Logic (LTL) as a language for specifying multiple tasks in
a manner that supports the composition of learned skills. We also
propose a novel algorithm that exploits LTL progression and off-
policy RL to speed up learning without compromising convergence
guarantees, and show that our method outperforms the state-of-
the-art approach on randomly generated Minecraft-like grids.

Toryn Q. Klassen
University of Toronto
Department of Computer Science
toryn@cs.toronto.edu

Sheila A. Mcllraith

University of Toronto
Department of Computer Science
sheila@cs.toronto.edu

Linear Temporal Logic (LTL) and then defining reward functions
that provide positive reward for their successful completion. LTL
is a propositional, modal temporal logic first developed for the
verification of reactive systems [35]. It augments propositional logic
with modalities such as ¢ (eventually), O (always), and U (until) in
support of expressing statements such as “Always if clothes are on
the floor, put them in the hamper” or “Eventually make dinner.” Such
statements can be combined via logical connectives and nesting of
modal operators to provide task specifications. The syntax is natural
and compelling and. as a formal language. it has a well-defined

Decompose tasks into subtasks with LTL progression

LTL progression
Given an LTL formula ¢ and state s, we can progress ¢ using s:
m prog(s, p) = true if p € L(s), where p € P
m prog(s,p) = false if p & L(s), where p € P
m prog(s,) = —prog(s, ¢)
m prog(s, p1 A p2) = prog(s, 1) A prog(s, ¢2)
m prog(s, Op) =
m prog(s, O¢) = prog(s p) V O
m prog(s, p1 U @2) = prog(s, ¢2) V (prog(s, ¥1) A 1 U ¢2)

Task with finite-episode -> restriction to co-safe properties

