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u Most material that follows is from this paper:
Z. Jiang, M. Pajic, S. Moarref, R. Alur, R. Mangharam, Modeling and 
Verification of a Dual Chamber Implantable Pacemaker, In Proceedings 
of Tools and Algorithms for the Construction and Analysis of Systems 
(TACAS), 2012.  
u The textbook has detailed descriptions of some other pacemaker 

components

Pacemaker Modeling as a Timed Process
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u SA node (controlled by nervous system) 
periodically generates an electric pulse

u This pulse causes both atria to contract 
pushing blood into the ventricles

u Conduction is delayed at the AV node 
allowing ventricles to fill

u Finally the His-Pukinje system spreads 
electric activation through ventricles 
causing them both to contract, pumping 
blood out of the heart

How does a healthy heart work?

3

Electrical Conduction System of the Heart



u Aging and/or diseases cause conduction 
properties of heart tissue to change leading to 
changes in heart rhythm

u Tachycardia: faster than desirable heart rate 
impairing hemo-dynamics (blood flow 
dynamics)

u Bradycardia: slower heart rate leading to 
insufficient blood supply

u Pacemakers can be used to treat bradycardia by 
providing pulses when heart rate is low

What do pacemakers do?
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u Two fixed leads on wall of right atrium and ventricle respectively
u Activation of local tissue sensed by the leads (giving rise to events Atrial 

Sense (AS) and Ventricular Sense (VS))
u Atrial Pacing (AP) or Ventricular Pacing (VP) are delivered if no sensed 

events occur within deadlines

How dual-chamber pacemakers work

5

Heart Pacemaker

AS

VS

AP

VP



Implantable Pacemaker modeling
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The LRI mode of operation explained
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ASed
LRI

c ≤ K
VP? → c:=0

VS? → c:=0

AS?
VS? → c:=0

VP? → c:=0

c ≥ K → AP!; c:=0

K= 850ms

u LRI (Low Rate Interval) component 
keeps heart rate above minimum 
level

u One of the pacemaker modes of 
operation that models the basic 
timing cycle

u Measures the longest interval 
between ventricular events

u Clock reset when VS or VP received
u No AS received ⇒ LRI outputs AP 

after K (TLRI-TAVI) time units



u RHM is designed to cover open-loop heart behaviors. It non-
deterministically generates an intrinsic heart event Xget! within [Xminwait, 
Xmaxwait] after each intrinsic heart event Xget or pacing XP.

Random Heart Model (RHM)
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Property
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wait1 wait2 C

𝐴𝐺 (𝑃𝑣𝑣.wait2 ⇒ 𝑃𝑣𝑣. 𝑐 ≤ 𝑇𝐿𝑅𝐼)

VS? →t:=0

VP? → t:=0

VS? 

VP? 

t:=0

CTL formula :

Monitor 𝑷𝒗𝒗



u Useful tool to do timing analysis and explore properties of timed processes
u Finite-state timed automaton: a machine where all state variables other 

than clock variables have finite types (e.g. Boolean, enums)
u State-space of timed automata is infinite (clocks can become arbitrarily 

large!)
u But some questions about timed automata behavior can still be answered 

exactly

Timed Automata
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Artificial Pancreas

Type 1 diabetes occurs when the 
pancreas produces little or none of the 
insulin needed to regulate blood glucose

They rely on external ad- ministration of 
insulin to manage their blood glucose levels. 

Most material that follows is from these papers:
• Fedor Shmarov, Nicola Paoletti, Ezio Bartocci, Shan Lin, Scott A. Smolka, Paolo Zuliani: SMT-based Synthesis of Safe and 

Robust PID Controllers for Stochastic Hybrid Systems. Haifa Verification Conference 2017: 131-14
• Simone Silvetti, Laura Nenzi, Ezio Bartocci, Luca Bortolussi: Signal Convolution Logic. CoRR abs/1806.00238 (2018)

https://dblp.org/pers/hd/n/Nenzi:Laura
https://dblp.org/pers/hd/b/Bartocci:Ezio
https://dblp.org/pers/hd/b/Bortolussi:Luca
https://dblp.org/db/journals/corr/corr1806.html


Artificial Pancreas



Stochastic Hybrid Systems Of Glucose
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𝑑
𝑑𝑡
𝒙(𝑡) = 𝐹(𝒙(𝑡); 𝑢(𝑡); Θ);

Infusion rate of bolus insulin
the control parameters 

𝐷!!; 𝐷!"; 𝐷!# ∈ 𝑁 40; 10 ;𝑁 90; 10 ;𝑁 60; 10 are the three daily meals

Θ = (𝐷!!; 𝐷!"; 𝐷!#; 𝑇"; 𝑇#) are the control parameter

𝑇"; 𝑇# ∈ ∼ N (300, 10) and T2 ∼ N (300, 10) are the inter-times between each of them

glucose concentration

𝑦(𝑡) = 𝑥56(𝑡)

Instead of the BG mass Q1(t), in the discussion of the results we will mainly evalu-
ate the BG concentration G(t) = Q1(t)/VG, where VG is the BG distribution volume.

The error function of the PID controller is defined as e(t) = sp�Q1(t) with the
constant set point sp corresponding to a BG concentration of 110 mg/dL. Multiple
meals can be modeled through a stochastic parametric hybrid system with one mode
for each meal. In particular, we consider a one-day scenario consisting of three random
meals (breakfast, lunch and dinner), resulting in the SPHS of Figure 2.

Meal 1 Meal 2 Meal 3
DG := DG1

t = T1

(DG := DG2 )^ (t := 0)

t = T2

(DG := DG3 )^ (t := 0)

Fig. 2. Stochastic parametric hybrid system modelling a scenario of 3 meals over 24 hours. Above
each edge, we report the corresponding jump conditions, below, the resets.

The model features five random, normally-distributed parameters: the amount of
carbohydrates of each meal, DG1 ⇠N (40,10), DG2 ⇠N (90,10) and DG3 ⇠N (60,10),
and the waiting times between meals, T1 ⇠ N (300,10) and T2 ⇠ N (300,10).

A meal containing DG1 grams of carbohydrates is consumed at time 0. When the
time in the first mode reaches T1 minutes the system makes a transition to the next
mode Meal 2 where the value of the variable DG is set to DG2 and the time is reset to
0. Similarly, the system transitions from mode Meal 2 to Meal 3, resetting variables
DG and t to DG3 and 0, respectively. All remaining variables are not reset at discrete
transitions.

Basal insulin and initial state: The total insulin infusion rate is given by u(t)+ub where
u(t) is the dose computed by the PID controller, and ub is the basal insulin. As typically
done, the value of ub is chosen in order to guarantee a steady-state BG value of Q1 = sp,
and the steady state thus obtained is used as the initial state of the system.

We denote with C0 the basal controller that switches off the PID controller and
applies only ub (i.e., Kp, Ki and Kd are equal to 0).

5.2 Experiments

We apply the formal and statistical techniques of ProbReach to synthesize the con-
troller parameters Kp, Kd and Ki (Problem 1) and the maximum safe disturbance DG
(Problem 2), considering the probabilistic reachability property of Section 4. All exper-
iments in this section were conducted on a 32-core (Intel Xeon 2.90GHz) Ubuntu 16.04
machine, and the obtained results for the synthesized controllers are summarized in Ta-
ble 1. We also validate and assess performance of the controllers over multiple random
instantiations of the meals, which is reported in Figure 3.

PID controller synthesis Typical healthy glucose levels vary between 4 and 10 mmol/L.
Since avoiding hypoglycemia (G(t)< 4 mmol/L) is the main safety requirement of the
artificial pancreas, while (temporary) hyperglycemia can be tolerated and is inescapable



PID Control 

𝑢(𝑡) = 𝐾$𝑒(𝑡) + 𝐾𝑖 =
%

&
𝑒(𝜏) 𝑑𝜏 + 𝐾𝑒˙(𝑡) , 𝑒(𝑡) = 𝑟 (𝑡) − 𝑦(𝑡)



Artificial Pancreas
�Hyperglycemia

� “during the day the level of glucose 
goes above 180mg/dl” 

�Hypoglycemia
� “during the day the level of glucose 

goes below 70mg/dl” 

𝐹 E,FGH (𝐵𝐺 𝑡 > 180)

𝐹 E,FGH (𝐵𝐺 𝑡 < 70)



Falsification
The most simple way to do falsification with respect a property 𝜙 is minimizing 
the robustness over N iterations considering random samples on control 
parameters, i.e:

minSTL =	‘inf’
For i = 1, . . , N:

Θ = sampling	(D'! , D'" , D'# , T", T#)
t	,y	=simulation(Θ)
stl=	computeRobustness(y,	ϕ)	
if	(stl <	minSTL):

minSTL =	stl
vSTL =	[D'! , D'" , D'# , T", T#]

For fixed control parameter spaces you can consider to sample with respect on 
grids over it.



Noise Robustness
� To consider noisy sensor we can add a Gaussian noise to the generated 

glucose trajectory, i.e. 𝐺𝐵 𝑡 + 𝛾 with  𝛾 ∈ 𝑁(0; 5)



Automatic Transmission

Most material that follows is from this paper:
�Bardh Hoxha, Houssam Abbas, Georgios E. Fainekos: Benchmarks for Temporal 

Logic Requirements for Automotive Systems. ARCH@CPSWeek 2014: 25-30
18



Automatic Transmission
� Inputs: the throttle and break 

� Outputs: the speed of the engine ω (RPM), 
the speed of the vehicle v (mph) and the 
gear. 

� Initially, the vehicle is at rest at time 0, i.e. 
the speed v = 0 and engine speed ω = 0 

� Therefore, the output trajectories depend 
only on the input signals ut and ub which 
model the throttle and break inputs. 

� The throttle and break, at each point in time, 
can take any value between 0 (fully closed) to 
100 (fully open). 
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Automatic Transmission
�The model contains 69 blocks among which there are 2 integrators (i.e., 2 continuous 

state variables), and a Stateflow chart. The Stateflow chart contains two concurrently 
executing Finite State Machines with 4 and 3 states, respectively. 
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gear_state 1
fourth
entry:
gear = 4;

third
entry:
gear = 3;

second
entry:
gear = 2;

first
entry:
gear = 1;

selection_state
during: CALC_TH ;

2

steady_state

upshiftingdownshifting

UP
1

UP UP
1

DOWN
2

DOWNDOWN

2

[speed > up_th]
1

[speed < down_th]
2

[speed > down_th]

2

after(TWAIT,tick)
[speed <= down_th]
{gear_state.DOWN }

1
after(TWAIT,tick)
[speed >= up_th]
{gear_state.UP }

1

[speed < up_th]

2

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

5000
RPM

0 5 10 15 20 25 30
0

100

200
Speed

Figure 1: Left: The switching logic for the automatic drivetrain; Right: An input
signal (top) and the corresponding output signals that falsify the specification.

(also known as a counter example). In [4], the authors utilize the model to
illustrate a method for mining requirements from closed-loop models.

Fault-Tolerant Fuel Control System Fault-Tolerant Fuel Control System
is a modified version of the model provided by Mathworks as a Simulink demo
[6]. The model detects system failures and as a result modifies its control law to
sustain system performance. The arrival of faults is modeled by Poisson stochas-
tic processes with di↵erent arrival rates. This benchmark was first considered
in [9], where the authors use Bayesian statistical model checking techniques to,
among others, estimate the probability of satisfying the specification, and to
estimate a corresponding confidence interval.

2 Brief description

Automatic Transmission There are two inputs to the system: the throttle
and break. The break input enables the user to model variable load to the
engine, e.g., going uphill or downhill. The physical system has two continuous-
time state variables which are also its outputs: the speed of the engine ! (RPM)
and the speed of the vehicle v (mph). Initially, the vehicle is at rest at time 0,
i.e. the speed v = 0 and engine speed ! = 0. Therefore, the output trajectories
depend only on the input signals ut and ub which model the throttle and break
inputs. The throttle and break, at each point in time, can take any value
between 0 (fully closed) to 100 (fully open). The range for the break depends
on the engine load that we would like to model. The system is deterministic,
i.e., under the same input u, it will always produce the same output y.

The model contains 69 blocks among which there are 2 integrators (i.e., 2
continuous state variables), 3 look-up tables, 3 2D look-up tables and a Stateflow
chart. The Stateflow chart (see Fig. 1 for a schematic) contains two concurrently
executing Finite State Machines with 4 and 3 states, respectively.

Table 1 presents a number of requirements that should be verified on the
automatic transmission model. As an example, consider formula �AT

2 in Table
1: this is a simple invariant. The goal of the verification is either to prove the
invariant or produce counter examples that demonstrate that the invariant is not
true. The verification of the model is challenging for the following reasons. First,
the engine and the vehicle components contain nonlinear equations and lookup
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Properties
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Table 1: Various specifications expressed in natural language and MTL.

Automatic Transmission
Natural Language MTL

�AT
1 The engine speed never reaches !̄. 2(! < !̄)

�AT
2

The engine and the vehicle speed
never reach !̄ and v̄, resp.

2((! < !̄) ^ (v < v̄))

�AT
3

There should be no transition from
gear two to gear one and back to
gear two in less than 2.5 sec.

2((g2 ^Xg1) ! 2(0,2.5]¬g2)

�AT
4

After shifting into gear one, there
should be no shift from gear one to
any other gear within 2.5 sec.

2((¬g1 ^Xg1) ! 2(0,2.5]g1)

�AT
5

When shifting into any gear, there
should be no shift from that gear to
any other gear within 2.5sec.

^4
i=12((¬gi ^Xgi) ! 2(0,2.5]gi)

�AT
6

If engine speed is always less than !̄,
then vehicle speed can not exceed v̄
in less than T sec.

¬(3[0,T ](v > v̄) ^2(! < !̄))

�AT
7

Within T sec the vehicle speed is
above v̄ and from that point on the
engine speed is always less than !̄.

3[0,T ]((v � v̄) ^2(! < !̄))

�AT
8

A gear increase from first to fourth
in under 10secs, ending in an RPM
above !̄ within 2 seconds of that,
should result in a vehicle speed
above v̄.

((g1 U g2 U g3 U g4) ^ 3[0,10](g4 ^
3[0,2](! � !̄))) ! 3[0,10](g4 !
X(g4 U[0,1] (v � v̄)))

Fault-Tolerant Fuel Control System
Natural Language MTL

�FCS
1

The fuel flow rate should not be 0
for more than 1 sec within the next
100 sec period.

¬3[0,100]2[0,1](FuelF lowRate = 0)

�FCS
2

Always, if the air-to-fuel ratio out-
put goes out of bounds, then within
1 sec it should settle inside the
bounds and stay there for a sec.

2((� out of bounds) !
3[0,1]2[0,1]¬(� out of bounds))

!: Engine rotation speed, v: vehicle velocity, gi : gear i, � : air-to-fuel ratio.
Recommended values: !̄ : 4500, 5000, 5200, 5500 RPM; v̄ : 120, 160, 170, 200
mph; T : 4, 8, 10, 20 sec; � bounds: 0.9 - 1.1.
2: Always, ⇧: Eventually, U : Until
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A Deep Neural Network controller 

Mojtaba Zarei, Yu Wang, Miroslav Pajic: Statistical verification of learning-based cyber-physical systems. HSCC 2020: 12:1-12:7

𝑆 = 𝑃||𝐶

https://dblp.org/pers/hd/z/Zarei:Mojtaba
https://dblp.org/pers/hd/p/Pajic:Miroslav
https://dblp.org/db/conf/hybrid/hscc2020.html


Challenges:
u Safe RL
u Complex Tasks
u Reward Hacking

Reinforcement Learning and Temporal Logic
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Safe Reinforcement Learning
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Reward Hacking
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A policy that achieves high returns but against the designer’s intentions 

https://www.youtube.com/watch?v=92qDfT8pENs

https://www.youtube.com/watch%3Fv=92qDfT8pENs


Reward function is not enough
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u To define task better 

u To learn more efficiently and precisely

u To transfer learning between tasks

u To be “safe” 

Description using a language can help..
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Several Works with different motivations
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u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u multi-task-RL
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Safe RL via Shield
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u The shield is computed upfront from the safety part of the given system specification 
and an abstraction of the agent’s environment dynamics 

u Minimum interference: monitors the actions selected by the learning agent and 
corrects them if and only if the chosen action is unsafe.

u Boundary helps to separate the concerns, e.g., safety and correctness on one side and 
convergence and optimality on the other 

u Compatible with mechanisms such as function approximation, employed by learning 
algorithms in order to improve their scalability 

How can we let a learning agent do whatever it is doing, and also monitor and interfere with 
its operation whenever absolutely needed in order to ensure safety? 



Safe RL via Shield
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u Safety fragment of LTL 
(something bad should never happen, e.g. no safety G(r → Fg), every request is eventually 
granted)

u A faithful, yet precise enough, abstraction of the physical environment is required

u Independent of the state space components of the system to be controlled 

u The shield is the product between specification automaton and the MDP abstraction 



Safe RL via Shield
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If the property is violated there are two approaches:

u Assign a punishment : negative reward
u Assign the reward: positive reward

Then the  shield selects an action in a “rank” that is safe



Grid world Example
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With tabular Q-learning with an ε-greedy explorer 



The PacMan Example
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Approximate Q-learning agent



Several Works with different motivations
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u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u multi-task-RL



General Idea 
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Reward Shaping problem: 
Design 𝑅 𝑠, 𝑎 s.t. I can find 𝜋∗ 𝑠. 𝑡. ∀ 𝑥, 𝜋∗ 𝑥 the ”satisfaction” of x is 
maximised

Why important?
u Poorly design -> poorly convergence
u Learning unsafe or unrealistic action



LTL constrained to discrete state and action
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LTL constrained to discrete state and action
u For MDPs with unknown transition probability

u LTL -> Deterministic Rabin Automata (DRA)

u Translation breakes the history- dependence

u select the reward function on the product MDP so it corresponds to the 
Rabin acceptance condition of the LTL specification. 
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LTL constrained to discrete state and action
u select the reward function on the product MDP so it corresponds to the Rabin 

acceptance condition of the LTL specification. 

u Prove convergence if policy exist s.t. it satisfies property with probability 1

u 1) Learn the transition probabilities and 2) Optimize the expected utility. 
E.g.  with a modified active temporal difference learning algorithm 



STL and discrete space
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STL and discrete space
u Partition of a Continuous Space

u Uknown stochastic dynamics
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Problem: history- dependence of the satisfaction 

u Fragment of STL such that the progress towards satisfaction is checked with 
a sufficient number of (i.e., τ) state measurements. 
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Problem: history- dependence of the satisfaction 

u 𝜏 −MDP   where 𝜏 = "#$ %
&'

+ 1 for     𝐹[),+]𝜓, 𝐺[),+]𝜓

u Each state corresponds to a 
𝜏-length  trajectory

u Probability remains Markovian
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Problem: robustness shape

u log-sum-exp approximation to adapt the Robustness of Q-learning
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Finally…

The immediate reward is :
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Experiments

|S|= 19 and |Sm| = 676

the robustness degree gives “partial credit” 
for trajectories that are close to satisfaction 

For the prop satisfaction,  instead, Q-
learning algorithm is essentially performing 
a random search 



STL and continuous space
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Truncated Linear 
Temporal Logic (TLTL)

• Specifically for robots

• Unbounded

• Atomic propositions

• Evaluated against finite time sequences 
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STL and continuous space
u Parametrized policy 𝜋(𝑠, 𝑎|𝜃)

u 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥- 𝐸.!"(0)[𝑅(𝜏)] , 
where 𝑝2"(𝜏) is trajectory distribution from following policy π 

u Relative Entropy Policy Search (REPS) : 
constrained optimization problem that can be solved by Lagrange multipliers
method

u Tlinear-Gaussian policies and weighted maximum-likelihood estimation to 
update the policy parameters
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Experiments
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Experiments
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Smooth Robustness and continuous space 



Several Works with different motivations
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u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u Multi-task-RL



Multi-task-RL
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Decompose tasks into subtasks with LTL progression

58Task with finite-episode -> restriction to co-safe properties


