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Variational Monte Carlo

A stochastic way of calculating expectation values of
observables in many-body (in general) systems using a
trial wavefunction which depends on PARAMETERS.

=> Which are the parameters that give
v/ the most reliable expectation value?

v the best trial wavefunction?

A method based on:
variational principle + Monte Carlo evaluation of integrals
using importance sampling based on the Metropolis algorithm
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Variational Monte Carlo

|) Start from a trial wavefunction (wfc)

2) Calculate the expectation value of the many-body hamiltonian /7 or in

general of other observables € on the wic, transforming the integral into a

form suitable for MC integration

3) Change parameters and recalculate the expectation value on the new wfc.
4) lterate to reach the best estimate of the expectation value

With VMC one can obtain exact properties only if the trial wavefunction is an

exact wavefunction of the system;it is a variational method to find the
ground state.
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Variational Monte Carlo

done in Lecture VIl for a single-particle
problem (harmomc osc:llator)

= = =

|) Start from a trial wavefunction (wfc)
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Culate the expectation vaiue on the New wic.

4) Iterate to reach the best estimate of the expectation value
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exact wavefunction of the system;it is a variational method to find the

ground state.



Quantum averages - |

(Ground) state average:

f w* (R) Ow (R) ClR R: compact notation for

< O >¢ — the whole set of variables

f |¢ (R) |2dR of the many-body wfc




Quantum averages - |

(Ground) state average:

Y(R)Y ™ (R)

J " (R)OY(R)dR
J [b(R)PdR

<O >y=



Quantum averages - |

(Ground) state average:

Y(R)Y ™ (R)

J " (R)OY(R)dR
J [b(R)PdR

[ 5] n= o

probability .~ \

(weighting
factor) “local” operator
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Quantum averages - |

integrals in many variables {R} =>
suitable for importance sampling - Monte Carlo
Integration:

< O >= /w(R)OL(R)dR ~ % ZOL(RZ')

provided that the configurations ¢ R | w(;)P
are distributed with the probability (wW(R;) = - |

Wlv)

error~ 1/vV M



VMC on one trial wfc - |

Details for the calculation of quantum averages:
2) Calculate the expectation value of the many-body hamiltonian /7 on the

wfc transforming the integral into a form suitable for MC integration

2a) Equilibration phase:

a walker consisting of an initially random set of particle positions {R} is
propagated according to the Metropolis algorithm, in order to equilibrate and
start sampling [ ({R})|°. If the problem is many-body, a new configuration can
be obtained by moving just one particle and the others are unchanged.

2b) Accumulation phase:
New configurations are generated and energies and other observables are
accumulated for statistical analysis.



VMC on one trial wfc - |l

I. Equilibration phase:
1. Generate initial configuration using random positions for the particles.
2. For every particle® in the configuration:
1. Propose a move from r to r’ < brute force sampling
2. Compute w = |U(r')/¥(r)|* = | ¥ /| ¥(r) |?
3. Accept or reject move accordingly to Metropolis probability min(1, w)
3. Repeat configuration moves until equilibrated
2. Accumulation phase:
1. For every particle in the configuration:
1. Propose a move from r to r’
2. Compute w = |U(r') /U (r)|?
3. Accept or reject move accordingly to Metropolis probability min(1, w)
4. Accumulate the contribution to the local energy and other observables at r (if
move is rejected) or r’ (if move is accepted)
2. Repeat configuration moves until sufficient data are accumulated

In this algorithm, a new configuration is considered when one particle is moved, individually.

(%) If the problem is many-body, r and r’ are single-particle coordinates and therefore

differ from R.
12



The variational principle - |

For the ground state:
if ¢(R) is a trial wavefunction and Ej is the exact
oround state eigenvalue, we have:

<E>¢ > Fy

and the 7=" holds if and only if the trial wavefunction
is the exact ground state wavefunction (¢ = 1)y).



The variational principle - Il

Basic idea for VMC:
calculate <@ > over different trial wavefunctions
and choose the best...



VMC - standard procedure - |

|) Start from a trial wavefunction with a set of parameters o

2) Calculate the expectation value of the operator @, W|th a MC integration:

_ S oy (R)POL(R)AR _ y (o))
Oben = T (BRAR = [ wemOsmaR ~ ZO (£,

3) Change the set of parameters & and recalculate from scratch the
expectation value on the new wfc:

J [$a(R)POL(R)dR w. (e
(OL)a = T low(R) 2R _/ (R)OL(R)dR ~ — ZOLR

( @L(R) changes (contains the new parameters) but also the m(R) and hence

the set of points {Ri} change)

4) Iterate to reach the best estimate of the expectation value

I5



VMC - standard procedure - |

Two problems:
|) time consuming
2) stochastic errors can be comparable to

differences between expectation values for different
sets of parameters

solution?
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“reweighting”’ technique

A better idea: use the same sampling for similar trial wfc, ¥, Vg, .

o(R)]?
Start from «g. Define: r.(R)= ol
’ o) = )P
2
Remembering that :  wq(R) = f ‘LZ%( )\LdR and similar for w,,, we have:
(Or) [ ¥a(R)]?OL(R)dR _ [ 7a(R) ey (R)*OL(R)AR )
: [ [Ya(R)PdR [ 7a(R)|ay (R)?dR

Jra(R wao (R)OL(R)AR _ 3, 7a(Ri)OL(R:)
[ r0(R)wa, (R)AR > Ta(R;)

where the set {Ri} of M points is generated according to wq, (1)

2
(Check that: A(w, ag) = (% ro;(g))) ~ M ;if not, generate other points)
i Ta\ 4l
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““zero-variance’” property

(when applicable, very useful!)
if a trial wavefunction is the exact one,

the variance of the numerical estimate of <> (< /(- )

IS zero:

0 =< Y|(H— < H >)?|¢ >=0

the criterion to find the best parameter set
is precisely defined!
(remark: applicable also to excited states if
the exact excited state wfc is contained in the trial wfc set)
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possible problems/remarks

® nodes of the trial wfc: not a real problem,
provided the trial moves are large enough to
overcome nodes

e H(R)Y(R) must be defined everywhere

e Y(R) must have the proper symmetry
(bosons or fermions) and proper boundary
conditions



Trial wavefunction

The reliability of the VMC estimates
are crucially dependent
on the quality of the trial wfc
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Trial wavefunctions
for many-body systems

The choice of trial wavefunction is critical in VMC calculations. All observables are evaluated with

respect to the probability distribution U7 (R) | The trial wavefunction, Pr(R) , must well

approximate an exact eigenstate for all R in order that accurate results are obtained. Improved trial

wavefunctions also improve the importance sampling, reducing the cost of obtaining a certain
statistical accuracy.

Typical form chosen for the many-body trial wfc:
N

.1.5";:/{.-5:-:[1 z -1 {Tl;r' }} det Hk (Tia O-’L)]
|+

Jastrow or two—bodgf correlation function Slater determinant on

single-particle spin-orbitals

21



Programs & scripts:

on moodle2

metropolis_gaussian.f90

metropolis_parabola.f90
metropolis_parabola_vs_a.f90

job_gaussian
job_parabola
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Exercises

|) Harmonic oscillator solved with VMC :  (a particutarly simple

example, where everything could be done also analytically, used to test the numerical algorithm)

1 1 1. m =
H:Ekin—l_Epot _ _p2_|_ —5132 (h =1, 1)

| .a) Trial wfc.: 2 2

— B2 2 2 1
W(x) = Ae " or Ae=" /U7 with: g =

4o

Epinth(z) _ —345d(x) _




Determining the ground state

1 1 d{(Eior.1.(0)) 1 1

E 19 — —’ E ’L?’L = — ! — — -, 0 —_— —

Epor,n) = 550 (Ehinr) = 50 75 0= 8= 3, Bor = 5
(@ =4/2/2)

But also, looking at the variance:

UE — <Etot L> - <Etot,L>2 —

2 2
(-3

1 1
3282

For the exact ground state: (3 = 5 = o =0
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<E>
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0.7

0.6

0.5

0.4

Notice the zero-variance property for this problem:

Variational Monte Carlo for Harmonic Oscillator Variational Monte Carlo for Harmonic Oscillator
T T T T T T T 3 T T T T T T R T
energy —+— + Variance —+—
L 1 . |
‘ 25 | -
. ] 2| |
- 1 ¢ x
\ A 15 | 1
x N “‘
L \ i Y
4 |
. y o) 1
- +/ - - V
g —
A A
EN ¥ \ G
i L T 05 N — .
P +
+ —
* A+ * +
L + | . A
- N A+
K — S o —
o T 0 -
L e 4
1 1 1 1 1 1 1 _05 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
beta beta

300 walkers and MCSteps = 10,000

(*) In this simple case, even a single walker is enough.

Many independent walkers starting at different random points in the configuration space
could be necessary for a better sampling in more complicate systems (a single walker might
have trouble locating all of the peaks in the distribution; using a large number of randomly located
walkers improves the probability that the distribution will be correctly generated)
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Exercises

|) Harmonic oscillator solved with VMC:
1 1

H = Ekzn + Epot — §p2 + 5332

| .b) Trial wfc.:

(reasonable choice:
satisfies boundary conditions; correct symmetry; only one parameter)

W(z) = {5(&2 —2?), for |z| < a;

for |z| > a.

Bp(z) = @) _ ( L 19:2)

a? —x2 2

Normalization: [ B?(a? —2?)?dz =1 = B? = 1(1525

(in this case the problem can be analytically solved:)

(Etot.1) = /_a héi‘?}; Ep(z)dr = / (a® — 2? (a2 i . + %xz) dx

B? 2 5 a?
= / (a® — 2? da:—|—7 _aa:Q(aQ—a:Q)dw:4a2—|—14
d{Eior 1 (@ 35
( t;;f( ) =0 = a’= 5 Eioit = 0.6




Notice: the zero-variance property does not hold for this class of trial wfc's!
and the energy minimum does not correspond to the variance minimum

2 T T T T T T R T
T psi(x)=(a*2-x"2), potential: x"2/2 +—+—

1.8 -

1.6 | -1

1.4 -

12 | T ) -

<Etot> and error
-t
]
L

0.6 — T + + _

0.4 F | -

0.2 | ) 1 | .

0 1 1 1 1 (min) -l.

1 1.2 14 1.6 1.8 zT 2.2 24 2.6
param eter a
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V(x), W(x), <E>

0.8

ot
[}

=
'S

0.2

V(xJ=x""2/2
f_exact(x)=exp(-x""2/2)*0.7p112554
E Jexact=.5
f_trial(x)=0.1618"(#.18-x""2)
E_trial=.6




Exercises

2) Anharmonic oscillator solved with VMC:

12 1 2 14
H:Ekzn+Epot:§p —|—§CB _l_éx

Trial wfc.: s
Y(z) = Ae™™

(also in this case the problem can be analytically solved:)

1 3

(Bror.L) = (% - 2ﬂ2> 5 IR

d<Etot,L>
g

3
=0 = [B4p*-1)= s = B~ 0.63, Fi~ 05725

(better than |st order perturbation theory)

29



V(x), W(x), <E>

0.8

o
o

o
F'S

0.2

V1(x)=K

NO(xf=x""2/2 ——
2P 4+x""4/8
0(0)=.5

10(0)(x)=.75"exp(-x"*2/2)

pert. t#.
VMC:

pert. th: ,fp(j.)‘(ﬂayszm-0.09375'(2'x"2-§;)'

0f

EJ(1)=.5937
D(-X"*2/2)) =imie
C)=.5725 e

s i \INIES0(VMC) (x)=.7958"e)fp(-.63"X"2)

-1.5

-0.5 0 0.5 1

. anarm. conx™"4: cfr. soluz.:(0), perturb.(1), variaz.

30
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managing input/output

job_parabola Note:it must be executable!

make it with: ($prompt)> chmod u+x job_parabola
run with: ($prompt)> ./job_parabola

for sigmain 0.5 0.6 0.7 0.8 0.9 |.;do
cat > input << EOF

1000

$sigma

0.

5.

EOF

Ja.out < input >> dati (>> means “append” )

31



3) Hydrogen atom solved with VMC:

H:_h_QVQ_ﬁ
2m r

A 3D problem which can be reduced to |D, using the
radial part of the laplacian operator in polar coordinates:

H:_h2 d? 2d e
2m |dr?2 = rdr r

Use atomic units (h — 1, m = 1, ez — 1 = E in Hartree )
Consider a s-type trial wfc with a radial part: ¥,(r) =e ™™

Hy(r) 1[2 205] 1
g2 - =

r r



3) Hydrogen atom solved with VMC:

_Hyn 1, 2af 1

B = T2 [a f’] r
s 2 y © g 1"2 2 7

> (E,) :J V) b =J TV i
0 <l//a | l//a> 0 <l//a | Wa)

NOTES: using spherical coordinates and |D integral, pay
attention to:

- Generation of new position: must be r=0

= Probability of being btw r and r+dr: is « 4T11r2

33



3) Hydrogen atom solved with VMC:

The harmonic oscillator program
metropolis_gaussian.f90 or what you have done

can be adapted to this problem by changing the form
of the trial wave function and local energy:

H 1
Accumulate E;(r) = Vl1) = — — [oﬂ
We(1) 2

200 1

r r

generating points and accepting or rejecting them
according to the ratio

B (r’)2 w(r’)
W — —
r w(r)

34
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3) Hydrogen atom solved with VMC:

Hints:
- use nmcs = 100.000
- Max variation of r = 4 Bohr; adapt it to keep the
acceptance ratio of the order of 50%
=> use also the zero variance property!

Alternative approach keeping the full 3D problem:
- consider cartesian (X,y,z) coordinates
- no need of limiting the walk; probability
automatically set correctly

35



He atom solved with VMC:

If we use atomic units with A = m. = e = 1, the Hamiltonian for the motion of the two electrons can be written

1 1 2 2 1
2 12 +

where 115 = |r1a| = |r; —ra|. The terms —2/r; represent the negative (attractive) potential energy between each
electron with charge —1 and the Helium nucleus with charge +2, and the term +1 /715 represents the positive (repulsize)

potential energy between the two electrons.

A simple choice of variational trial wave function

—_—

) If the repulsive term 1/r15 were not present, then the Hamiltonian would be that of two independent Hydrogen-like atoms.
It can be shown that the energy and ground state wave function of a Hydrogen-like atom whose nucleus has charge 7

(

are given by
Z? o
E0:—77 o ~ e o

The wave function of the combined atom with two non-interacting electrons would be the product of two such wave

functions:

—21"1 —27’2

P(ry,re) ~e e

This suggests a trial wave function of the form

. —Aary ,—arg
Yr,=c¢€ e ,

)

similar to what was done for the Hydrogen atom. If the electron-electron interaction is neglected, then the average energy
with this wave function can be calculated

1 1 2 2 2
<—§v%——v2————>:2x%—2xa,

H without e-e interaction, p without correlation

2 2 1 )

credits: 36



He atom solved with VMC:

which has a minimum at a = 1, which gives (F) = —1. The experimentally measured ground state energy is Fy = —2.904.

(2

N

In fact, the average energy can be evaluated exactly for this trial wave function even if the electron-electron interaction
is included: .
1 1 2 2 1 2
—Vi--Vi—-— -2+ —)=a*-"a,
2 2 T T2 12 8

which has a minimum at a = 27/16, which gives (E) = —2.8477. This shows that the repulsion between the electrons
is important and lowers the energy.

H with interaction,
W without correlation

Padé-Jastrow wave function

—~
(&)
~—"

The textbook suggest using a trial wave function

12
\Ij(rb r2) — e 2N 27203 (TTar2) ,

with « as a variational parameter. The local energy with this wave function can be calculated

o
e

© Q o Q

o Ei(ri,r0) =—4+ + +

_.GC_,J L( 1 2) (1 —|—Od?“12) (1 —|—Oé7“12)2 (1 +Oé7”12)3
= 1 rio - (r; — r:

= 12 - (ry 2)

T

4(1 4 aryg)? (1+ ari)?

W with correlation, extremely simple form

credits: 37



double elLocal(double xrElectronl, double xrElectron2) {

// value of trial wave function for walker n
double rl1 =0, r2 = 0, rl2 = 0;
for (int d = 9; d < 3; d++) {
rl += rElectronl[d] * rElectroni[dl];
r2 += rElectron2[d] * rElectron2[d];
r12 += (rElectronl[d] - rElectron2[d]) x*
(rElectroni[d] - rElectron2[d]l);
}
rl = sqrt(rl);
r2 = sqrt(r2);
r12 = sqrt(ril2);
double dotProd = 0;
for (int d = 0; d < 3; d++) {
dotProd += (rElectronl[d] - rElectron2[d]) / rl2 x
(rElectronli[d] / rl - rElectron2[d] / r2);
}
double denom = 1 / (1 + alpha *x rl12);
double denom2 = denom * denom;
double denom3 = denom2 * denom;
double denom4 = denom2 *x denom2;
double e = - 4 + alpha x (denom + denom2 + denom3)
— denom4 / 4 + dotProd *x denom2;
return e;

credits: 38



double Psi(double *xrElectronl, double *xrElectron2) {

// value of trial wave function for walker n
double rl1l = 0, r2 = 0, rl2 = 0;
for (int d = 0; d < 3; d++) {

rl += rElectronl[d] * rElectronlil[d];

r2 += rElectron2[d] *x rElectron2[(d];

rl12 += (rElectronl[d] - rElectron2[d])

* (rElectronl[d] - rElectron2[dl]);

}
rl = sqrt(rl);
r2 = sqrt(r2);
r12 = sqrt(rl2);
double Psi = — 2xrl1 - 2%r2 + r12 / (2 x (1 + alphaxril2));
return exp(Psi);

credits: 39



