
LESSON 18.

1. Finite morphisms and blow–ups.

In this section we will see the notion of finite morphism, and a fundamental example of

a morphism which is not finite: the blow-up of a variety at a point, or, more in general,

along a subvariety. The blow-up is the main ingredient in the resolution of singularities of

an algebraic variety. As usual we will assume that K is algebraically closed.

First of all we will give an interpretation in geometric terms of the notions of integral

elements and integral extensions introduced and studied in Lessons 5 and 9.

Let f : X → Y be a dominant morphism of affine varieties, i.e. we assume that f(X) is

dense in Y . Then the comorphism f ∗ : K[Y ]→ K[X] is injective (by Ex. 4, Lesson 13): we

will identify K[Y ] with its image f ∗K[Y ] ⊂ K[X].

Definition 1.1. f is a finite morphism if K[X] is an integral extension of K[Y ].

This means that, for any regular function ϕ on X, there is a relation of integral dependence

(1) ϕr + f ∗(g1)ϕr−1 + · · ·+ f ∗(gr) = 0

with g1, . . . , gr ∈ K[Y ]. Finite morphisms enjoy the following properties.

Proposition 1.2. (1) The composition of finite morphisms is a finite morphism.

(2) Let f : X → Y be a finite morphism of affine varieties. Then, for any y ∈ Y , f−1(y)

is a finite set.

(3) Finite morphisms are surjective, i.e. f−1(y) is non-empty for any y ∈ Y .

(4) Finite morphisms are closed maps.

Proof. (1) It follows from the transitivity of integral dependence, Lesson 5, Corollary 1.2.

(2) Let X be a closed subset of An, so K[X] is generated by the coordinate functions

t1, . . . , tn. Let y ∈ Y . We want to prove that any coordinate function ti takes

only a finite number of values on the set f−1(y). For the function ti there is a

relation of integral dependence of type (1): tri + f ∗(g1)tr−1
i + · · · + f ∗(gr) = 0 ∈

K[X] with g1, . . . , gr ∈ K[Y ]. We apply this relation to x ∈ f−1(y) and we get

tri (x) + g1(y)tr−1
i (x) + · · · + gr(y) = 0. This means that the i-th coordinate of any

point in f−1(y) has to satisfy an equation of degree r, so there are only finitely many

possibilities for this coordinate. This proves what we want.
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(3) This is a consequence of the property of Lying over - LO (Lesson 9, Theorem 1.3).

Let y = (y1, . . . , ym) ∈ Y ⊂ Am, let u1, . . . , um be the coordinate functions on Y . A

point x ∈ X belongs to f−1(y) if and only if ui(f(x)) = f ∗(ui)(x) = yi for any i,

or equivalently if and only if the function f ∗(ui) − yi vanishes on x. In view of the

relative version of the Nullstellensatz, the condition f−1(y) = ∅ is therefore equivalent

to the fact that the ideal generated by f ∗(u1) − y1, . . . , f
∗(um) − ym in K[X] is the

entire ring K[X]. Consider now the maximal ideal IY (y) of regular functions on Y

vanishing in y, it is generated by u1 − y1, . . . , um − ym. From the Lying over applied

to the integral extension f ∗K[Y ] ⊂ K[X], it follows that there is a prime ideal P
of K[X] over f ∗(IY (y)), which is generated by f ∗(u1) − y1, . . . , f

∗(um) − ym. This

implies that f−1(y) 6= ∅.
(4) Let f : X → Y be a finite morphism and Z ⊂ X an irreducible closed subset. We

consider the restriction of f to Z, i.e. f̄ : Z → f(Z). We observe that, via the

comorphism f̄ ∗ : K[f(Z)] → K[Z], K[Z] ' K[X]/IX(Z) is an integral extension of

K[f(Z)], because it is enough to reduce modulo IX(Z) the integral equations of the

elements of X. So, using (3), we conclude that f̄ is surjective, i.e. f(Z) = f(Z).

�

An example of non-finite morphism is the projection V (xy − 1) → A1. Instead the pro-

jection p2 : V (y − x2)→ A1 is finite.

Theorem 1.3 (Geometric interpretation of the Normalisation Lemma). Let X ⊂ An be an

affine irreducible variety of dimension d. Then there exists a finite morphism X → Ad.

Moreover the morphism can be taken to be a projection.

Proof. The coordinate ring of X is an integral K-algebra, finitely generated by the coor-

dinate functions, whose quotient field has transcendence degree d over K. The Normal-

ization Lemma (Theorem 1.3, Lesson 5) then asserts that there exist elements z1, . . . , zd
algebraically independent over K, such that K[X] is an integral extension of the K-algebra

B = K[z1, . . . , zd]. But B is the coordinate ring of Ad and the inclusion B ↪→ K[X] can

be seen as the comorphism of a finite morphism f : X → Ad. The proof of Normalization

Lemma shows that z1, . . . , zd can be chosen linear combinations of the generators of K[X].

In this case, f results to be a projection. �

One can prove that being a finite morphism is a local property, in the following sense: let

f : X → Y be a morphism of affine varieties. Then f is finite if and only if any y ∈ Y has an

affine open neighbourhood V , such that U := f−1(V ) is affine, and the restriction f |: U → V

is a finite morphism. This property allows to give the definition of finite morphism between
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arbitrary varieties, as a morphism which is finite when restricted to the open subsets of an

affine open covering. See [Šafarevič] for more details and consequences.

For instance one can obtain the following non-trivial facts, that I quote here only for

information.

Example 1.4. 1. Let X ⊂ Pn be a closed algebraic set, let Λ ⊂ Pn be a linear subspace of

dimension d such that X ∩ Λ = ∅. Then the restriction of the projection πΛ : X → Pn−d−1

defines a finite morphism from X to πΛ(X).

2. Let X ⊂ Pn be a closed algebraic set and F0, . . . , Fr be homogeneous polynomials of the

same degree d without any common zero on X. Then ϕ : X → Pr defined by the polynomials

F0, . . . , Fr is a finite morphism to the image.

For a proof of the first property, see [Šafarevič]. To prove the second one, we observe

that ϕ is the composition of the Veronese morphism vn,d with a projection. The conclusion

follows from part 1., remembering that vn,d is an isomorphism.

We will define now the blow-up (or blowing-up) of an affine space at the origin O(0, . . . , 0).

It is a variety X with a morphism σ : X → An which results to be birational and not finite.

The idea is that X is obtained from An by replacing the point O with a Pn−1, which can be

interpreted as P(TO,An), the set of the tangent directions to An at O.

To construct X we first consider the product An×Pn−1, which is a quasi-projective variety

via the Segre map. Let x1, . . . , xn be the coordinates of An, and y1, . . . , yn the homogeneous

coordinates of Pn−1. We recall that the closed subsets of An×Pn−1 are zeros of polynomials

in the two series of variables, which are homogeneous in y1, . . . , yn.

Definition 1.5. Let X be the closed subset of An×Pn−1 defined by the system of equations

(2)
{
xiyj = xjyi, i, j = 1, . . . , n.

The blow-up of An at O is the variety X together with the map σ : X → An defined by

restricting the first projection of An × Pn−1. O is also called the centre of the blow-up.

The equations (2) express that y1, . . . , yn are proportional to x1, . . . , xn. Let us see what

this means. Let P ∈ An be a point, we consider σ−1(P ). We distinguish two cases:

1) If P 6= O, then σ−1(P ) consists of a single point and precisely, if P = (a1, . . . , an),

σ−1(P ) is the pair ((a1, . . . , an), [a1, . . . , an]).

2) If P = O, then σ−1(O) = {O} × Pn−1 ' Pn−1, because if x1 = · · · = xn = 0 there are

no restrictions on y1 . . . , yn. It is a standard notation to denote σ−1(O) by E. It is called

the exceptional divisor of the blow-up.

It is easy to check that σ gives an isomorphism between X \σ−1(O) and An \{O}. Indeed

both σ and σ−1 so restricted are regular.
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The points of σ−1(O) are in bijection with the set of lines through O in An. Indeed if L is

a line through O, it can be parametrized by {xi = ait, t ∈ K, with (a1, . . . , an) 6= (0, . . . , 0).

Then σ−1(L \O) is parametrized by

(3)

xi = ait

yi = ait, t 6= 0,

or, which is the same, by

(4)

xi = ait

yi = ai, t 6= 0.

If we add also t = 0, we find the closure L′ = σ−1(L \O), it is a line meeting σ−1(O) at the

point O × [a1, . . . , an]: L′ can be interpreted as the line L “lifted at the level [a1, . . . , an]”.

So we have a bijection associating to the line L passing through O the point σ−1(L \O) ∩
σ−1(O) = L′ ∩ E.

Figure 1

Finally we note that X is irreducible: indeed X = (X \ E) ∪ E; X \ E is isomorphic to

An \ O, so it is irreducible; moreover every point of E belongs to a line L′, the closure of

σ−1(L \O) ⊂ X \ E. Hence X \ E is dense in X, which implies that X is irreducible.
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Therefore X is birational to An: they are both irreducible and contain the isomorphic

open subsets X \ σ−1(O) and An \O. In particular dimX = n, and σ−1(O) = E ' Pn−1 has

codimension 1 in X. The tangent space TO,An coincides with An = Kn, and the set of the

lines through O can be interpreted as the projective space P(TO,An). So there is a bijection

between the exceptional divisor E and P(TO,An).

Figure 1, taken from the book of Šafarevič, illustrates the case of the plane.

If we consider the second projection p2 : X → Pn−1, for any [a] = [a1, . . . , an] ∈ Pn−1,

p−1
2 [a] is the line L′ of (4). X with the map p2 is an example of non-trivial line bundle, called

the universal bundle over Pn−1.

If Y is a closed subvariety of An passing through O, it is clear that σ−1(Y ) contains the

exceptional divisor E = σ−1(O). It is called the total trasform of Y in the blow-up. We

define the strict transform of Y in the blow-up of An as the closure Ỹ := σ−1(Y \O). It

is interesting to consider the intersection Ỹ ∩ E, it depends on the behaviour of Y in a

neighborhood of O, and allows to analyse its singularities at O.

Example 1.6.

1. Let Y ⊂ A2 be the plane cubic curve of equation y2− x2 = x3. The origin is a singular

point of Y , with multiplicity 2, and the tangent cone TCO,Y is the union of the two lines of

equations x − y = 0, x + y = 0, respectively. We consider the blow-up X ⊂ A2 × P1 of A2

with centre O. Using coordinates t0, t1 in P1, X is defined by the unique equation xt1 = t0y.

Then σ−1(Y ) is defined by the systemy2 − x2 = x3

xt1 = t0y

As usual P1 is covered by the two open subsets U0 : t0 6= 0 and U1 : t1 6= 0, so A2 × P1 =

(A2 × U0) ∪ (A2 × U1), the union of two copies of A3, and we can study X considering its

intersection X0, X1 with each of them. If t0 6= 0, we use t = t1/t0 as affine coordinate;

if t1 6= 0 we use u = t0/t1. X0 has equation y = tx and X1 has equation x = uy. For

σ−1(Y )∩X0 we get the equations y2−x2−x3 = 0 and y = tx in A3 with coordinates x, y, t.

Substituting we get t2x2 − x2 − x3 = x2(t2 − 1− x) = 0. So there are two components: one

is defined by x = y = 0, which is E ∩ X0; the other is defined by

x = t2 − 1

y = t(t2 − 1)
, it is

Ỹ ∩X0. Note that it meets E at the two points P (0, 0, 1), Q(0, 0,−1). They correspond on

E to the two tangent lines to Y at O: y − x = 0 and x+ y = 0.
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If we work on the other open set A2×U1, σ−1(Y ) is defined by x = uy and y2−u2y2−u3y3 =

y2(1− u2 − u3y) = 0. So Ỹ ∩X1 is defined by

x = uy

1− u2 − u3y = 0
. We find the same two

points of intersection with E: (0, 0, 1), (0, 0,−1).

The restriction of the projection σ : Ỹ → Y is an isomorphism outside the points P,Q on

Ỹ and O on Y . The result is that the two branches of the singularity O have been separated,

and the singularity has been resolved.

2. Let Y ⊂ A2 be the cuspidal cubic curve of equation y2 − x3 = 0. The total transform

is defined by y2 − x3 = 0

xt1 = t0y.

On the first open subset it becomes y2 − x3 = 0 together with y = tx; replacing and

simplifying t, which corresponds to E, we get the equations for Ỹ :x = t2

y = t3
.

This is the affine skew cubic, that meets E at the unique point (0, 0, 0), corresponding to

the tangent line to Y at O: y = 0. By the way, we can check that E is the tangent line to

Ỹ at (0, 0, 0). On the second open subset, we have the equations y2 − x3 = 0 together with

x = uy; the strict transform is defined by 1 − u3y = 0 and x = uy. There is no point of

intersection with E in this affine chart. The map σ : Ỹ → Y is therefore regular, birational,

bijective, but not biregular; Y and Ỹ cannot be isomorphic, because one is smooth and the

other is not smooth.

3. Let Y = V (x2−x4−y4) ⊂ A2. O is a singular point of multiplicity 2 with tangent cone

the line x = 0 counted twice. Let Ỹ be the strict transform of Y in the blow-up of the plane

in the origin. Proceeding as in the previous example we find that Ỹ meets the exceptional

divisor E = O × P1 at the point O′ = ((0, 0), [0, 1]), which belongs only to the second open

subset A2 × U1. In coordinates x, y, u = t0/t1, Ỹ is defined by the equationsx = uy

u2 − u4y2 − y2 = 0
,

and O′ = (0, 0, 0). We compute the equation of the tangent space TO′,Ỹ , it is x = 0: it is a

2-plane in A3, so Ỹ is singular at O′. The tangent cone TCO′,Ỹ is x = 0, u2 − y2 = 0, the

union of two lines in the tangent plane.
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Let us consider a second blow-up σ′, of A3 in O′. It is contained in A3 × P2; using

coordinates z0, z1, z2 in P2, it is defined by

rk

(
x y u

z0 z1 z2

)
< 2.

We first work on the open subset A3 × U0 ' A5; we put z0 = 1 and we work with affine

coordinates x, y, u, z1, z2; the exceptional divisor E ′ is defined by x = y = u = 0, and the

total transform σ′−1(Ỹ ) of Ỹ by
x = uy

y = z1x

u = z2x

x2(z2
2 − z2

1 − u4z2
1) = 0

.

Replacing x = uy in the second and third equation we get the equivalent system
x = uy

y(1− z1u) = 0

u(1− z2y) = 0

x2(z2
2 − z2

1 − u4z2
1) = 0

.

Combining the factors of the four equations in all possible ways, we find that, on A3 × U0,

σ′−1(Ỹ ) is union of E ′ and of the strict transform Ỹ ′ defined by
x = uy

1− z1u = 0

1− z2y = 0

z2
2 − z2

1 − u4z2
1 = 0

.

The intersection Ỹ ′ ∩ E ′ ∩ (A3 × U0) results to be empty.

We then work on the open subset A3 × U1 ' A5; we put z1 = 1 and we work with affine

coordinates x, y, u, z0, z2. Proceeding as in the first case, we find the equations of the total

transform 
x = uy

y(z0 − u) = 0

u = z2y

y2(z2
2 − 1− z4

2y
4) = 0

.
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The strict transform results to be defined by


x = uy

z0 − u = 0

u = z2y

z2
2 − 1− z4

2y
4 = 0

,

and its intersection with the exceptional divisor x = y = u = 0 is the union of the two

points P,Q of coordinates ((0, 0, 0), [0, 1,±1]) ∈ A3 × P2. Considering the third open subset

A3 × U2 ' A5 one finds the same two points.

In conclusion, we consider the composition of the two blow-ups Ỹ ′
σ′
→ Ỹ

σ→ Y , which is

birational. In the first blow-up σ, we pass from Y , with a singularity at the blown-up point

O with one tangent line, to Ỹ with a node in O′, its point of intersection with E. In the

second blow-up σ′, O′ is replaced by two points on the second exceptional divisor E ′. To

verify if Ỹ ′ is smooth, it is enough to check if P,Q are smooth, and this can be checked

easily.

The singularity of Y is called a tacnode. We have just checked that to resolve it two

blow-ups are needed. What allows to distinguish the singularity of the curve of Example 2

from the present example, is the multiplicity of intersection at the point O of the tangent

line at the singular point O with the curve: it is 3 in Example 2 and 4 in Example 3.

The general problem of the resolution of singularities is, given a variety Y , to find a

birational morphism f : Y ′ → Y with Y ′ non-singular. It is possible to prove that, if Y is

a curve, the problem can be solved with a finite sequence of blow-ups. If dimY > 1, the

problem is much more difficult, and is presently completely solved only in characteristic 0

(see for instance [Hartshorne], Ch. V, 3).

To conclude this Lesson, we will see a different way to introduce the blow-up of An at O.

Let π : An \ O → Pn−1 be the natural projection (a1, . . . , an) → [a1, . . . , an]. Let Γ be the

graph of π, Γ ⊂ (An \ O) × Pn−1 ⊂ An × Pn−1. We immediately have that the closure of

Γ in An × Pn−1 is precisely the blow-up X of An at O. This interpretation suggests how to

extend Definition 1.5 and define the blow up of a variety X along a subvariety Y .

Suppose that X is an affine variety and I = IX(Y ) ⊂ K[X] is the ideal of a subvariety

Y of X. Suppose that I = (f0, . . . , fr). Let λ be the rational map X 99K Pr defined by

λ = [f0, . . . , fr]. The blow-up of Y is the closure of the graph of λ with the projection to

X. Similarly one can define the blow-up of a projective variety along a subvariety defined



LESSON 18. 9

by an ideal generated by homogeneous polynomials all of the same degree. For details, see

for instance [Cutkosky].

Exercises 1.7. Sia Y ⊂ P2 be a smooth plane projective curve of degree d > 1, defined

by the equation f(x, y, z) = 0. Let C(Y ) ⊂ A3 be the affine variety defined by the same

polynomial f : C(Y ) is the affine cone of Y . Let O(0, 0, 0) ∈ A3 be the origin, vertex of

C(Y ). Let σ : X → A3 be the blow-up in O.

1. Show that C(Y ) has only one singular point, the vertex O;

2. show that C̃(Y ), the strict transform of C(Y ), is nonsingular (cover it with open affine

subsets);

3. let E be the exceptional divisor; show that C̃(Y ) ∩ E is isomorphic to Y .


